WEKO3
アイテム
Conics with a Hermitian curve
http://hdl.handle.net/10487/7831
http://hdl.handle.net/10487/7831d92a11e0-9fab-4911-a831-7d6d07acf1db
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 会議発表論文 / Conference Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2010-12-03 | |||||||||
タイトル | ||||||||||
タイトル | Conics with a Hermitian curve | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||
資源タイプ | conference paper | |||||||||
著者 |
本間, 正明
× 本間, 正明
× Homma, Masaaki
|
|||||||||
抄録 | ||||||||||
内容記述タイプ | Abstract | |||||||||
内容記述 | A Hermitian curve X is a plane curve of degree q +1 which is projectively equivalent to the plane curve with the inhomogeneous equation yq +y = xq+1 over the finite field Fq2 of q2 elements, which has q3+1 Fq2-rational points. The geometry of lines over Fq2 harmonizes with those points, that is to say, a line over Fq2 either tangents to X at an Fq2-rational point with multiplicity q + 1 or meets X in exactly q+1 Fq2-rational points. For the conics over Fq2, we can not expect them to behave well with the Fq2-rational points of X, however, in the joint research with Seon Jeong Kim on the two-point codes on X, we met a certain family of conics over Fq2 whose behavior on the Fq2-rational points of X seemed interesting. | |||||||||
書誌情報 |
THE REPORTS of Symposium on Algebraic Geometry at Niigata 2004 p. 01-09, 発行日 2004 |
|||||||||
著者版フラグ | ||||||||||
出版タイプ | VoR | |||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||||||
出版者 | ||||||||||
出版者 | 新潟大学 吉原久夫 | |||||||||
資源タイプ | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | Article |