G. DUAL-BIMODULES AND THE PROPERTY AB5* By

Y. Kurata and K. Hashimoto

Let R and S be rings with identity and $_RQ_S$ an (R, S)-bimodule. Then there exists an anti-lattice homomorphism θ from the submodule lattice of $_RR$ into that of Q_S given by

 $\theta(A) = r_Q(A)$ for any left ideal A of R,

where $r_Q(A)$ denotes the right annihilator of A in Q. Similarly we shall denote by $\ell_R(Q')$ the left annihilator in R of a submodule Q' of Q_S .

In this case, θ injective means that

 $\ell_R r_Q(A) = A$ for every left ideal A of R

and θ surjective means that

 $r_Q \ell_R(Q') = Q'$ for every submodule Q' of Q_S .

We shall call $_RQ_S$ a left dual-bimodule [6] if θ is bijective. A ring R for which $_RR_R$ is a left dual-bimodule is called a dual ring [2].

Lemonnier [8] has shown that, for a quasi-injective module Q_S with $R = \text{End}(Q_S)$, θ is bijective iff it is surjective and Q_S is finitely cogenerated and AB5*. Corresponding to this, it is shown in Section 1 that if $_RQ$ is finitely cogenerated, quasi-injective with $S = \text{End}(_RQ)$, then θ is bijective iff it is injective and $_RR$ is AB5* (Theorem 1.4). Using this it is also shown that $_RR$ is AB5* iff the minimal cogenerator $_RQ$ for R-mod is a left dual-bimodule with $S = \text{Eud}(_RQ)$ (Theorem 1.6).

From Lemonnier [8] it follows that if θ is bijective then both $_{R}R$ and Q_{S} are AB5*. The converse need not be true in general. However, we can show in Section 2 that θ is bijective iff $_{R}R$ and Q_{S} are both AB5*, in case $_{R}Q_{S}$ defines a quasi-duality in the sense of Kraemer [5] (Theorem 2.3).

In Section 3, using the notion of the relative simple injectivity, we shall give another characterization of the injectivity and of the surjectivity of θ and show that a ring R is a dual ring iff _RR and R_R are both simple injective and Kasch (Corollary 3.4).

Finally, we shall provide in Section 4 an example to illustrate the results given in this paper.

The detailed version of this paper will be submitted for publication elsewhere. 1. We say that an *R*-module $_RM$ satisfies the property AB5* or simply that $_RM$ is AB5* if

$$M' + \bigcap_{i \in I} M_i = \bigcap_{i \in I} (M' + M_i)$$

for any submodule M' and any inverse family $\{M_i\}_{i \in I}$ of submodules of RM, where $\{M_i\}_{i \in I}$ an inverse family means that for any pair $i, j \in I$ there exists a $k \in I$ such that $M_k \leq M_i \cap M_j$.

Corresponding to Lemonnier [8, Proposition 7], we have the folloing theorem, which can be seen as a generalization of [8, Corollary 8 and Theorem 13].

Theorem 1.4. Let $_{R}Q$ be finitely cogenerated, quasi-injective with $S = \operatorname{End}(_{R}Q)$. Then θ is bijective iff it is injective and $_{R}R$ is AB5^{*}.

As an application of Theorem 1.4, we have:

Theorem 1.6. For a ring R the following conditions are equivalent:

(1) $_{R}R$ is AB5*.

(2) There exists a cogenerator $_{R}Q$ for R-mod which is a left dualbimodule with $S = \operatorname{End}(_{R}Q)$.

(3) The minimal cogenerator $_{R}Q$ for R-mod is a left dual-bimodule with $S = \operatorname{End}(_{R}Q)$.

2. Let $_RQ_S$ be an (R, S)-bimodule. Following Kraemer [5] we say that Q defines a quasi-duality if Q is a faithfully balanced bimodule and if $_RQ$ and Q_S are finitely cogenerated, quasi-injective. Combining Propositions 1.3 and 2.2, we have:

Theorem 2.3. If an (R, S)-bimodule $_RQ_S$ defines a quasi-duality, then θ is bijective iff $_RR$ and Q_S are both AB5*.

3. In this section, we shall give another characterization of the injectivity and of the surjectivity of θ . To do this, for an *R*-module $_RM$, following Harada [3] we shall call $_RQ$ simple *M*-injective if every *R*-homomorphism from a submodule of *M* to *Q* with simple image can be extended to an *R*-homomorphism $M \to Q$. We shall simply call $_RQ$ simple injective if it is simple *R*-injective.

Proposition 3.1. Let $_{R}Q_{S}$ be an (R, S)-bimodule. If $_{R}Q$ is simpleinjective, then the following conditions are equivalent:

(1) θ is injective.

(2) Every simple left *R*-module can be embedded in $_{R}Q$.

(3) Every simple left *R*-module isomorphic to a factor module of a left ideal of R can be embedded in $_{R}Q$.

Proposition 3.2. Let $_RQ_S$ be an (R, S)-bimodule with $R = \text{End}(Q_S)$. If Q_S is simple Q-injective, then the following conditions are equivalent:

(1) θ is surjective.

(2) Every factor module of Q_S is Q-torsionless.

(3) Every simple right S-module isomorphic to a factor module of a submodule of Q_S can be embedded in Q_S .

By Propositions 3.1 and 3.2 and [6, Lemma 1.13] we have:

Theorem 3.3. Let $_RQ_S$ be an (R, S)-bimodule with $R = \text{End}(Q_S)$. Assume that Q_S is simple Q-injective. Then θ is bijective iff

(1) $_{R}Q$ is simple injective,

(2) every simple left R-module can be embedded to $_{R}Q$ and

(3) every simple right S-module isomorphic to a factor module of a submodule of Q_S can be embedded in Q_S .

Corollary 3.4. A ring R is a dual ring iff $_RR$ and R_R are both simple injective and Kasch.

4. Finally we shall provide an example ([6, Examples 4.1 and 4.2]) to illustrate the results given in this paper.

Let p be a prime number and let $R = \mathbf{Z}_{(p)} = \{b/a \in \mathbf{Q} \mid (a, b) = 1 \text{ and } (a, p) = 1\}$, where \mathbf{Q} denotes the field of rational numbers. Then R is a commutative local ring with the unique maximal ideal Rp and nonzero proper ideals of R are exhausted by $Rp^n, n > 0$. The quotient module \mathbf{Q}/R is an (R, R)-bimodule and the only nonzero proper submodules are those of the form Rp^{-n}/R for some n > 0. Since \mathbf{Q}/R is a left deal-bimodule,

(1) $_{R}R$ is AB5*.

Now let $Q = Rp^{-n}/R$ and $\overline{R} = R/Rp^n$. Then Q is an (R, \overline{R}) -bimodule and nonzero proper submodules of $Q_{\overline{R}}$ are exhausted by $Rp^{-i}/R, 1 \leq i \leq n-1$. Hence, there is no lattice isomorphism between the submodule lattices of $_RR$ and $Q_{\overline{R}}$. Therefore $_RQ_{\overline{R}}$ is not a left dual-bimodule. However,

(2) Q_R is AB5*.

(3) Both $_{R}Q$ and Q_{R} are finitely cogenerated quasi-injective and R =End $(_{R}Q)$ but not R = End $(Q_{\bar{R}})$.

(4) θ is surjective, but not injective.

(5) $_{R}Q$ is Kasch, but not simple injective.

References

[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag, New York Heidelberg Berlin, 1973.

[2] C.R. Hajarnavis and N.C. Norton: On dual rings and their modules, J. Algebra 93(1985), 253 - 266.

[3] M. Harada: On almost relative injective of finite length, preprint.

[4] F. Kasch: Moduln und Ringe, B.G. Teubner, Stuttgart, 1977.

[5] J. Kraemer: Characterizations of the Existence of (Quasi-)Self-Duality for Complete Tensor Rings, Algebra Berichte 56(1987) Reinhard Fischer.

[6] Y. Kurata and K. Hashimoto: On dual-bimodules, Tsukuba J. Math. 16(1992) 85 - 105.

[7] Y. Kurata and S. Tsuboi: Linearly compact dual-bimodules, Math.J. Okayama Univ. 33(1991), 149 - 154.

[8] B. Lemonnier: AB5* et la dualite de Morita, C. R. Acad. Sc. Paris 289(1979), 47 - 50.

[9] B. J. Mueller: Linearly compactness and Morita duality, J. Algebra 16(1970), 60 - 66.

[10] T. Onodera: Linearly compact modules and cogenerators, J. Fac. Sci. Hokkaido Univ. XXII(1972), 116 - 125.

[11] F.L. Sandomierski: Linearly compact modules and local Morita duality, in: R. Gordon, ed., Ring Theory (Academic Press, New York, 1972).

[12] W. Xue: Rings with Morita Duality, LN in Math. 1523(1992) Springer-Verlag.

Department of Information Science Kanagawa University,

System Development Laboratory Hitachi Ltd.