
 A Model for Knowledge Based Process Control Systems

 Shoichi Masui Shun'ichi Tano Motohisa Funabashi

 (Systems Development Laboratory, Hitachi Ltd.)

ABSTRACT

 A knowledge based control system is a process control system in which

expert know-how plays an essential role in its control schemes. In this paper,

a model for such a control system and a tool used to implement the system are

described.

1. Introduction

 A process control system based on a knowledge engineering approach is the

main issue of this paper. Though progress in process automation is very

rapid, the role of the expert plant operator is still important. The operator's

know-how may be indispensable for smooth plant operation and the intuition of an

expert operator is substantial for finding subtle abnormalties.

 Substitution of such operator's knowledge with computer programs has been

difficult, because conventional programming requires a fixed algorithm to

represent the knowledge. Knowledge engineering[1] with symbolic reasoning,

which has been applied to several practical systems[2][3][4], offers a way to

make transitory operator's know-how suitable for computerization.

 A knowledge based control system is a process control system which combines

operator know-how with conventional control algorithms based on knowledge

engineering. The way these two different kind of knowledge are combined,that is

the model for combining them, is important because of the requirement for real

time operation. In this paper, a hybrid model suitable for process knowledge

representation is proposed. Then , EUREKA , an expert system building tool for

real time operation, and its application to process control system are shown to

verify the proposed model.

2. Knowledge Based Process Control System

 In process control, human experts use various kinds of knowledge which

include plant status derived from observed data, plant control algorithms and

their experience with the plant to keep it in good condition. The knowledge can

be divided into the following two types (Fig.1).

(1) process knowledge: plant state shown as observed or assumed data and the

— 145 —

fixed control procedure sequence for each piece of control equipment.

(2) expert knowledge: the experience, know-how, rules of thumb and problem

solving strategies of each expert operator.

 These two kinds of knowledge are apparently different. Process knowledge is

 almost fixed and specific for each piece of equipment in the process. Therefore

this type of knowledge should be treated as a unit corresponding to the relevant

process equipment. The representation schema of object oriented programming [5]

is a suitable choice for this kind of knowledge. Each piece of equipment can be

described as an object. Observed and assumed data which show states of the

equipment are represented as slot-value pairs. Sequential control procedures

attached to the equipment correspond to methods of the object. Control procedure

s are often described in a conventional procedurallanguage such as FORTRAN, so

methods should be defined in such a language.

 On the other hand, expert knowledge is transitory and a characteristic of

the human expert. If observed data show some abnormality, the operator may try

to guess the related cause and determine appropriate control actions based on

his experience or knowledge of the plant. This knowledge can be described by

condition-action pairs. Therefore,the If- Then- rule may be a good candidate

for its representation. In addition, the rule is suitable because it is

convenient to add, delete or modify the toransitory part of the knowledge. In

process control, it is essential to be able to explicitly manage the knowledge

application sequence. Therefore, meta knowledge for controlling rule firing is

necessary to express human knowledge precisely.

 In summary, knowledge used in process control is categorized as follows

(Fig.1):

(1) Strategic level: knowledge for controlling expert knowledge application

(2) Interpretation level: Expert knowledge for process control represented

 by condition-action pairs.

(3) Procedural level: fixed control procedure sequence described by a

 conventional language.

(4) Data level: process data represented by slot-value pairs.

3. An Expert System Building Tool: EUREKA

3.1 Knowledge representation

 EUREKA is a programming environment for knowledge based process control

systems. It provides IF --THEN-- rules for representing expert knowledge and

objects for representing the states and functions of process equipment.

— 146 —

(1). Rules

 Rules in EUREKA (Fig. 2) have a condition (IF) part and an action

(THEN SEND) part. The condition part involves some conditions which must be

satisfied for this rule to be fired. Each condition shows an object status.

A fundamental condition description is represented by "(object-name $attribute-

name predicate value)". For example, (pump $pressure is greater than 40) is

a condition. Japanese words can be used for the description. (t'1 4)

SEEP 4 0 L;I±.Z°) is the corresponding Japanese description of the

above condition. A variable, which is a name preceded by "?", can be used

instead of an object-name and/or a value. When a condition is (?pump $pressure

is greater than 40), any pump having pressure greater than 40 can satisfy the

condition. When two or more conditions in a rule have the same variable, the

variable must have the same value. The following two conditions are satisfied

when pumpl and pump2 show the same pressure.

 (pumpl $pressure is ?x)

 (pump2 $pressure is equal to ?x)

 In the action part of the rule, messages to be sent to a designated object

are described. A typical message pattern is (object-name method-name

(arguments list)). Thus, (?pump start (300)) is a message. This message

is sent to a pump object which is specified in the IF part of the rule and

invokes the "start" program with "300" as its argument. A method is a procedure

attached to each object. Messages in a rule are processed in a sequential

manner.

(2). Objects

 Objects in EUREKA are models of process equipment. An object consists of

an object-name, data part (*Data), and methods part (*Methods).

 The object name should be unique in a system. In the data part, the

attribute name and its value pairs are used to describe an object's status.

A pump, for example, may be characterized by type, number, maximum_height,

pressure, revolutions_per_minute, state, etc., each of which is an object

attribute. In the methods part, names of methods(programs) attached to the

object are declared. Each method itself is described using a procedural

language like FORTRAN77 or C. Three methods, start, stop, and change-pressure

are declared as pump methods in Fig. 3.

 There are two object types, generic objects and instance objects.

A generic object is a template of an instance object and holds the default value

of each instance object attribute. An instance object is an active object which

is referred to and invoked by rules. Each instance object specifies one generic

object as its parent and inherits from it all the data and methods not

-- 147

specified. A special attribute name "generic" is used for the identification of

object type.

 There is a super object, called SYSTEM, in EUREKA's object hierarchy.

SYSTEM holds all the methods which are offered by EUREKA. As SYSTEM is assumed

to be the parent of all generic objects, all instance objects can use system

methods through the inheritance mechanism.

(3). Meta-rules

 Rules in EUREKA can be classified into rule groups. A rule can specify its

rule group name. A rule belonging to one group can befired only if the group is

activated and all conditions of the rule are satisfied. Meta-rule contains

knowledge about controlling rule group activation. The syntax of a meta-rule is

IF (event-name) THEN (rule-group name, priority x), which means, "when the

event is issued,the rule group should be activated with priority x". The rule-

group is queued in an agenda memory, and the rule-group with the highest

priority in the agenda memory is activated. This mechanism is useful for

managing rule application and effective in representing expert knowledge.

3.2 Architecture

 The inference mechanism offered by EUREKA is forward chaining. This

mechanism is straightforward and suitable for the high speed processing needed

for process control.

 Several algorithms [6][7][8] have been proposed based on the idea of

limiting the data compared with rule conditions, for example, the cross

reference chart of McDermott et al.[8]. These algorithms are executed in an

interpretive fashion, however, so the speed gained is insufficient for real time

applications.

 A new algorithm was developed for the EUREKA inference engine, based on

the network matching of RETE [9]. The concepts of our algorithm are:

(1) rule conditions are translated to inner code, called a network-branch, which

is a sequence of test nodes corresponding to each condition. This network-branch

is connected by a newly introduced 'candidate node' to make a network tree

of rule conditions. Introduction of the candidate node makes our network tree

simple and easy to handle (Fig.4). This simplification saves the time and memory

needed in RETE for complicated condition processing.

(2) network optimization ,including merging of the test nodes and reordering a

sequence of test nodes in a network-branch, is done in order to check the most

difficult to satisfy test node first. This optimization cuts processing time in

half.

(3) direct deletion of unused data elements stored in the network. Instead of

 — 148 —

network processing useless elements as in RETE, an efficient pointer management

mechanism for stored data retrieval is used, reducing the cost by half.

 The results of the evaluation show that processing speed is independent of

the total number of rules. Measured processing speed is approximately 160 rules/

sec, the fastest in the world. A HIDIC V90/50 super minicomputer (2MIPS) is

used for the evaluation.

 EUREKA has been successfully applied to several knowledge based control

and/or diagnosis systems. Among them, large scale power plant diagnosis and sem

i-conductor manufacturing process diagnosis systems are in pactical use. A

large scale plant, such as a power plant, has several thousand sensing points.

It is not an easy task even for an expert to guess what is happening from so

much data, and to determine appropriately what action should be taken in an

emergency case.

 In power plant diagnosis , about 200 rules are extracted from a plant

expert to find the true cause of a problem. Any trouble in the system

triggers rule inference and ,within 10 or 20 seconds, the true cause is reported

to the operator. In this case, real time capabilities are indispensable.

Therefore EUREKA is the best choice for knowledge processing. Each rule in the

system is a simple one that specifies the cause by interpretation of signals

comming directly from sensors.

 This and other applications show that the rule and object hybrid model

employed by EUREKA is easy to understand and accepted by the field expert

himself, even without the aid of a knowledge engineer.

4. Conclusion

 EUREKA is a rule-based and object-oriented hybrid knowledge representation

tool for process control systems. Knowledge on process control is described by

OBJECT, RULE and META-RULE. The OBJECT is used to represent process knowledge,

that is, states and functions of the process and control equipment. The RULE

represents heuristic knowledge about process control which is derived from the

experience of skilled experts on the process. The META-RULE provides a way to

control the sequence of RULE processing. This knowledge is used by EUREKA's

forward-chaining inference engine to mimic expert behavior in process control.

Acknowledgements

 The authors wish to thank Dr. Kouichi Haruna, deputy general manager of the

Systems Development Laboratory, HITACHI, Ltd. for providing us the opportunity

for this research.

- 149 -

References

[1] Bar r, A. and Fe i genbaum, E. A. (Eds.) : The Handbook of Artificial Intelligence

 (Vol 1 2 3) ; Kaufmann, 1981 1982

[2] McDermott,J. : R1:A Rule Based Configurer of Computer Systems ; Artificial

Intelligence, Vo1.19, 1982

[3] McDermott,J. : Building Expert Systems ; Symposium on Artificial

Intelligence Application for Business, 1983

[4] Smith,R.G., : On the Development of Commercial Expert Systems ; The Al

Magazine, Vo l . 5, No. 3, 1984

[5] Goldberg,A. and Robinson,D. : SmallTalk-80 The Language and its

Implementation ; Addison-Wesley, 1983

[6] Konolige,K. : An Inference Net Compiler for the Prospector Rule-Based

Consultation System ; Proceedings of 6th IJCAI, 1979

[7] Mark,W. : Rule-Based Inference in Large Knowledge Bases ; Proceedings on

AAAI Conf., 1980

[8] McDermott,J., Newe I I , A. and Moo re, J. : The Efficiency of certain production

 system implementations : in Pattern Directed Inference Systems ;Academic Press

1978

[9] Forgy,C.L. : RETE:A Fast Algorithm for Many Pattern/Many Object Pattern

Match Problem ; Artificial Intelligence, Vol.19, 1982

- 150 -

r

monitoring

and control

room

(expert knowledge)

How to use

on process

(Strategic

the knowledge

control

level)

What action should be done

When system shows a certain

symptom

(Interpretation level)

process

equipments

(process knowledge)

Figure 1

How to use

equipment

(Procedural

What is the

equipment

(Data level)

Knowledge

piece

level)

Representation Schema

 IE'THEN"-

RULE

 - 151 -

group-name

 {lack_of_pressure} /L
 (pump_start_up

 IFpumpl

(object-name(pump2
 (?pump

'variable 1------''11

predicate value

THEN SEND

 (?pump

 @pressure is

@pressure is

@pressure is

 and

@state is

equal to

greater

less

equal to

?x)

?x)

than 40

than 100

stop)

start (300) ---------------------

set (state running))

argument

user method system method

Meaning:

If both

pressure

pumpl and

greater

pump2

than 40

have

and

the same

less than

pressure and there is

100, then start the

a pump

pump at

having

300 rpm.

Figure 2 Rule Representation in EUREKA

object-name

pumpl

 *Data

attribute

name

class

////
type

number

maximum_height

 pressure

 revo. _pe r_m i nute

state

 value

pump

suction_pump

676105

150

50

500

running

a
*Methods

start ~___ ____

stop

change_pressure

Figure 3 Object Representation in EUREKA

 - 152 -

An

IF

 example rulel

C?objectA $attributel

•

•
•

is greater than 10

$attributeN is ?x)

C?obj ectB $attributel is

•
•

•
•

grea r than 20

 is equal to ?x)

THEN

condition related to

objectA itself

condition related to

objectB itself

SEND

 $attributeM

•
•

•
•

•

comparison

of objectA

of objectB

of

and

attributeN

attributeM

a

a te

node

subnet for obj ectA subnet for

Figure 4 An Example Network for

 obj ectB

--an internal

 test node

Condition

a mutual

test node

Matching

- 153 -

