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                                     Abstract 

  This paper presents a knowledge-based approach for a design automation system which synthesizes 
VLSIs based on register transfer level behavior specifications. 
By dividing the VLSI design problem into several design stages and introducing top-down and structured 

design knowledge at each stage, high-quality logic circuits can be synthesized with little computation. The 
ultimate goal of the knowledge-based design automation system architecture is also proposed.

1 Introduction

To reduce the VLSI design time and design costs, there is a strong need for a design automation system which 
can synthesize VLSIs based on high level specifications. Considerable effort has been devoted to the study of 
the fundamental logic synthesis technique and considerable progress has been made in the following areas: 

  • Logic minimization of Boolean expressions[1][2]. 

  • Mapping of Boolean expressions into circuits[3]. 

  • Local transformation of circuits[4]. 

  However, these technique only covers an elementary part of the logic design knowledge. For large and 
complex VLSI design, the following more advanced design knowledge must be clarified and formalized. 

  • VLSI architecture (data paths and control organization) design knowledge. 

  • Knowledge for expanding high level functions into Boolean expressions. 

  • Design process control knowledge. 

   This paper presents this advanced design knowledge in top-down and structured design frameworks. Intro-
ducing this top-down and structured design knowledge in the design automation system improves the design 
quality and decreases the computation time. 

  Section 2 gives a brief summary of the knowledge based design model. Section 3 introduces a hardware 
description language. Section 4 overviews the VLSI design expert system under development. Section 5 
formulates the architecture design knowledge. Section 6 deals with the knowledge for expanding high level 
function blocks into Boolean expressions. Section 7 shows a layout method.

2 Knowledge-based Design Model 

Human designers are quite flexible and can: 

  • Design high-quality objects based on abstract specifications. 

  • Modify or redesign already-designed objects to meet new, slightly changed specifications. 

  • Backtrack to the appropriate design step if a constraint violation or design deadlock occurs. 

  • Explain design results and design decisions. 

  • Improve their design skill from design experience. 

  Unfortunately, it is not yet possible to make a design automation system with these abilities. However, we 
have decided on a knowledge-based VLSI design model as shown in Figure 1 and have attempted to formalize 
each knowledge base. The model consists of four subsystems:
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• The design plan knowledge base contains knowledge for planning, scheduling, and focusing subparts to 

 be designed, modified or redesigned. A design plan is generated and executed, and then the result is 
  evaluated.

• The design operation knowledge base consists of design operators for synthesis, local modification, opti-
 maization, analysis, and evaluation. 

• The design context stores all information related to the design object. It includes specifications, designed 
 objects, design decisions for the design operators choice and selection reasons, and the evaluation value. 

• The designed instance base stores all designed instances. Each instance keeps all information copied from 
  the design context. 

In this paper, we focus on design operator knowledge and shows how we formalized this problem.

3 Hardware Specification

A successful design requires a clear idea of the end product. A VLSI is a processor which executes an algorithm. 
Therefore, a VLSI processor can be most concisely and clearly specified by the algorithm it executes. This 
algorithm can be formally described as a finite state machine in some specification language such as the Digital 
System Design Language (DDL)[5]. 

  Figure 2 shows a VLSI specification example. The processor has five registers (GRO, GR1, SC, BR, IR), 
a Memory-read-data input terminal, and a Memory-address output terminal. It has three control states 
(Instruction-fetch, Memory-read, Decode-execute) An automaton takes exactly one control state for each 
cycle. During each control state, several data transfer operations and execution operations are performed, 
followed by a state transition to the next control state. An execution operation refers to hardware resources  , 
applies a particular function, and sends the result to a destination resource. For example,

GRO  <- GRO + GR1

means that the contents of GRO and GR1 are added and the result is set to GRO.

4 System Overview

Because there is a great semantic gap between the behavior specifications and the VLSI mask pattern, it is 
difficult to design the mask directly from the specifications. Therefore, intermediate layers must be provided, 
and then abstract specifications must be successively refined into more concrete objects. 

  For a well structured design, these intermediate layers should be arranged according to the following criteria: 

  • Each layer must be concrete enough to have its own information representation language. 

  • The semantic gaps must be small enough to allow mapping operators to join the layers. 

  Figure 3 is an overview of the VLSI design expert system (SAVE) under development. SAVE is imple-
mented on the Krine (Knowledge Representation and Inference Environment) system[6], which integrates AI 
programming paradigms such as LISP procedures, rules, logic programming, frames, and so one. The knowl-
edge is described in a mixture of these paradigms. 
The design process is as follows: 

  • The behavior of a VLSI is described as a finite state machine in the digital system design language (DDL). 
    The DDL translator summarizes the DDL specifications into a table listing operations and conditions 

    which must be satisfied for the operation to be executed. 

  • Based on this table, the VLSI architecture is designed. The VLSI architecture consists of several function 
    blocks such as registers, arithmetic and logic units, and multiplexers. The architecture is designed so 

    that the component number would be a minimum and the resulting hardware would be reasonable in a 
     practical sense. 

  • Each architecture component (function block) is then expanded into Boolean expressions by the logic 
    design subsystem. Function blocks are classified into one of several function block types. For each function 

    block type, there are several circuits which differ in cost and speed. Design methods for generating these 
    circuits are integrated in this subsystem.
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• Boolean expressions are then converted to a network of real circuits such as the CMOS standard cell. If 

 the constraint on circuit cost or circuit performance is not satisfied, a procedure for improving current 

 circuits is applied.

 • Finally, circuits are laid out and routed.

5 Architecture Design

This section shows how to break a complex design problem into several smaller, simpler problems in a structured 
way (Figure 4). For example, the original problem X is divided into sub-problems A and B. Sub-problem A is 
further divided into sub-sub-problems AA and AB. Although some problems can be designed in an arbitrary 
order, most sub-problems are not independent. For example, sub-problem B must be solved after sub-problem 
A ,because B uses information obtained from A. These dependencies are shown as dashed lines in Figure 4. 

  The method of problem division is not unique. The depth and excellence of the method determines the 
design quality and the design time. 

  This paper discusses the division method shown in Figure 4. A VLSI consists of a data path subsystem and 
a control subsystem. The data path subsystem is divided into an arithmetic unit subsystem and data transfer 
subsystem. The data transfer subsystem is further divided into buses, multiplexers,  tri-state gates, and wires. 

  When the model is complete, optimum design knowledge for each sub-problem must be clarified. Correct, 
optimum, and efficient design needs theoretical background, design philosophy, and heuristics. 

  In VLSI architecture design, information about parallelism between operations can be used as theoretical 
background. The design philosophy is to merge hardware resources, which do not work simultaneously, into a 
single unit. 

  The rest of this section shows the parallelism analysis method and the optimum design knowledge.

5.1 Parallelism analysis 

The DDL specification is summarized in an operation table. Each entry in the operation table 
operation and the condition which must be satisfied for the operation to be executed[8].

consists of an

/execute-condition/ sink <- operand-1 operator operand-2

An automaton takes exactly one control state for each cycle. 

states Sk and , S1 is zero.

Therefore the logical product of any two control

Sic* Si =0 Relation 1

  Let two operations be OPi and OP1 and their conditions be Ci and Cj respectively. Then, the analysis of 
the parallelism can be reduced to calculating the logical product of Ci and C1 under the above relation. That is:

(1) If Ci * C2=0 then OPi 
(2) If Ci * C,40 then OPi

and OPi never work simultaneously. 

and OP; work simultaneously when Ci * C2 becomes true.

Using th is rule, we can infer parallelism between any two operations.

5.2 ALU Allocation 

If two hardware resources never work simultaneously, they can be merged into a single block. Therefore, 

operations which do not work in parallel can be merged into an ALU. This merging procedure reduces hardware 
costs, and suggests the following rule: 

  • Merge as many hardware functions, that do not work in parallel, as possible. 

The optimum ALU subsystem is obtained using the following graph procedure: 

  1. First, a graph is defined where nodes represent operations and edges exist only between operations which 
     do not work simultaneously. 

  2. Then, the graph is partitioned into completely connected subgraphs. 

  3. Finally, an ALU is allocated for each subgraph.
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After roughly formalizing the problem, heuristic knowledge for reducing computation time and maintaining 
reasonable ALU hardware design is collected. Figure 5 shows an example of the ALU allocation rule. The rule 
first checks the parallelism between an operation and the ALU under construction, then merges the operation 
into the ALU. By this procedure, an ALU becomes a multi-function unit. 

  During the ALU allocation, logical information about data transfer (e.g., source, sink, transfer condition) 
is also derived. This information becomes the specification for the data transfer path.

5.3 Data Transfer Path Design 

Based on the logical information about data transfer, physical data transfer paths are designed. The data 
transfer path design stages and the knowledge for each stage are as follows.

1. Bus design stage: A bus is assigned for a set of logical transfers, which don not work in parallel or whose 
  sources are the same. A minimum number of sets are obtained by the graph partitioning procedure as 

 shown in the ALU design. During bus design, information about logical data transfer is modified and 

  becomes the specification to the rest of the data transfer path design.

2. Multiplexer design stage: If there are multiple logical data transfers, whose destinations are the same, a 
  resource input multiplexer is generated between the sources and the destination.

3.  Tri-state gate design stage: Tri-state gates are inserted between the source and the bus.

  Figure 6 shows an example of the non-structured design data paths and the structured design data paths 
obtained from the same specifications. 

  At the architecture design level, details of each function block are not yet fixed. The next step is to realize 
each function block with lower level components.

6 Logic Design

The knowledge for function block design is also modeled in top-down and hierarchical style[9]. The problem 
division method depends on the function block type. If the function block is very complex and large, the 
division tree becomes wide and deep. If the function block is small and simple, it can be directly realized with 
gates. This section gives two examples: a multi-function block and a fixed-function block.

6.1 Multi-function Block Design 

An arithmetic and logic unit (ALU) is a multi-function unit. The design of an ALU is difficult because of its 
varying functions. An ALU has both data input/output terminals and control input terminals for selecting 
functions. If control signals are supplied to the control input terminals, the ALU will execute the designated 

operation between input data and then send the result to an output terminal. Therefore, ALU specifications 

can be expressed in terms of data input-output relations and control signals for specifying each input-output 

relation. For example

S4*S3*S2*S1*S0 F = A plus Cin

means that if control signals SO through S4 are all "1", the ALU executes the arithmetic sum of A and 
Cin. 
  There are several ways to divide an ALU into sub blocks. Figure 7 is an example of a division method 
(called ALU template) devised for medium-speed computers. The philosophy behind this template is as follows:

1. ALU logic is structured as output-stage logic, carry-predict logic, input logic which generates G and P 

  signals, and decoder logic. Here, the G signal implies nth-bit-carry generation, and the P signal indicates 

  the nth-bit-partial sum.

2. To perform an arithmetic sum function, the carry is predicted from the G and P signals and is applied, 
  along with partial sum P, to the output-stage logic.

3. To perform a logical function, the carry is set to zero, and P is controlled to produce the required logical 

  function.

  An ALU template outlines the ALU logical substructure. Details of each sub-block are not given at this 

level. When an ALU specification is given, sub-blocks are synthesized according to the following steps:
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1. The G, P, and Carry-gate logic is initialized to  "0". 

2. The syntax of each function specification is analyzed and sub-blocks are modified according to the syn-
  thesis rules.

[Rule example] 
IF the function syntax is "Control-code F = X plus Y plus CM" 
Then DO P = P + Control-code * (X @ Y) 

    DO G = G + Control-code * (X * Y) 
    DO Carry-gate = carry-gate + Control-code

  3. The G, P and Carry-gate logic is minimized. 

 4. The G, P and output logic is repeated n times (data bbit width). 

  5. Carry logic is synthesized. 

Figure 8 shows the effect of the ALU structured design.

6.2 Fixed-function Block Design 

Problem division of a fixed-function block such as an adder, multiplier, and divider is straight forward. Figure 
9 shows an example of problem division. The floating-point add/subtract block is hierarchically broken down. 
These fixed-function blocks are easily specified by a few parameters such as the amount of input data and the 
data bit-width. When these block parameters are given, parameters for each sub-block are derived and given 
to the sub-blocks. Then each sub-block is divided in turn.

6.3 Optimization Knowledge 

The top-down, structured division method can realize functionally correct circuits. However, global constraints 
such as circuit costs or circuit performance may not be satisfied. This problem is addressed with the following 
two approaches: 

  1. Generate and test: 
    There are several ways to divide a function block . The easiest way is to try each method to see if the 

    constraints are satisfied.

2. Controlled local-transformation of circuits. 

  When given logic circuits do not satisfy the global constraint, the designer usually tries to modify the 

  existing circuits. This process can be simulated with local-transformation rules and application control of 

  these rules. A local-transformation rule replaces a. small circuit subgraph with another subgraph which is 

  functionally equivalent but differs according to some global measure such as cost or performance. These 

  rules are categorized according to the measure. 

  When some global constraint is not satisfied, circuits are analyzed, the focus area candidate is decided, 

  and local transformation rules which may reduce the unsatisfied measure are selected and applied. 

  For example, if circuit performance is unacceptable, critical paths are analyzed and local transformation 

  rules which decreases the logical depth are applied.

Layout Knowledge

The top-down, structured design method produces circuits with a regular structure. In our experience, the chip 
area of regular circuits decreases if they are laid out regularly. Therefore, in our system, this regular layout 
knowledge is programmed for each function block type[10]. 

  Figure 10 shows an example of a regular layout. This is a multiplier layout with about 6000 gates.

8 Conclusion and Future Work

This paper proposed a knowledge-based approach for VLSI structured design. By properly arranging design 

stages and integrating top-down, structured design knowledge for each layer, high-quality logic circuits can be 
synthesized. 

  Future work will focus on clarifying the mechanism for design process control, redesign, using designed 
instances, and design skill acquisition.
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Model of the knowledge-based design expert system

<SYSTEM> SAMPLE 
 <REGISTER> GRO GR1 SC BR IR; 

 <INPUT> MEMORY-READ-DATA; 
 <OUTPUT> MEMORY-ADDRESS; 
 <AUTOMATON> CONTROL; 

   <STATE> 
   INSTRUCTION-FETCH: CO-BEGIN 

                   MEMORY-ADDRESS <- SC, 
                  GOTO MEMORY-READ END; 
 MEMORY-READ: CO-BEGIN 

IR <- MEMORY-READ-DATA, 
                       SC <- 1+ SC, 

                 GOTO DECODE-EXECUTE END; 
   DECODE-EXECUTE: CASE IR ADD 

                      CO-BEGIN 
                      GRO <- GRO + GR1, 

                      GOTO INSTRUCTUIN-FETCH 
                 SUBTRACT 

                      CO-BEGIN 
                      GRO <- GRO - GRl, 

                     GOTO INSTRUCTION-FETCH 
                    EXCLUSIVE-OR 

                    CO-BEGIN 
                    GRO <- GRO Q GR1, 

GOTO INSTRUCTION-FETCH

               END-CASE; 
   END <STATE>; 

 END CONTROL; 
END SAMPLE; 

FIG. 2 DDL specification example

END;

END;

END;
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IF 
1) there is an ALU, 

 2)there is an operation, 
 3)the ALU and the operation never work simultaneously, 

 4)the ALU does not include a function of the operation, 
 5)the function of the operation is mergeable with the ALU, 

 6)the left input port of the ALU is already connected 
      to the first operand of the operation, 

 7)the right input port of the ALU is already connected 
      to the second operand of the operation, and 

3)the output port of the ALU is not connected to the 
      sink of the operation, 

THEN 
 1)add the required function with its condition to the ALU, 

 2)update the transfer condition from the first operand, 
 3)update the transfer condition from the second operans, and 

 4)add a new path from the output port of the ALU 
      to the sink with its transfer condition. 

Fig.5 ALU allocation rule example
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