
Knowledge-based Approach for VLSI Structured Design

 Shigeru Takagi, Yasuyoshi Okada, Mitsukazu Washisaka

 NTT Electrical Communications Laboratories
3-9-11, Midori-cho, Musashino-shi, Tokyo, 180, Japan

 Abstract

 This paper presents a knowledge-based approach for a design automation system which synthesizes
VLSIs based on register transfer level behavior specifications.
By dividing the VLSI design problem into several design stages and introducing top-down and structured

design knowledge at each stage, high-quality logic circuits can be synthesized with little computation. The
ultimate goal of the knowledge-based design automation system architecture is also proposed.

1 Introduction

To reduce the VLSI design time and design costs, there is a strong need for a design automation system which
can synthesize VLSIs based on high level specifications. Considerable effort has been devoted to the study of
the fundamental logic synthesis technique and considerable progress has been made in the following areas:

 • Logic minimization of Boolean expressions[1][2].

 • Mapping of Boolean expressions into circuits[3].

 • Local transformation of circuits[4].

 However, these technique only covers an elementary part of the logic design knowledge. For large and
complex VLSI design, the following more advanced design knowledge must be clarified and formalized.

 • VLSI architecture (data paths and control organization) design knowledge.

 • Knowledge for expanding high level functions into Boolean expressions.

 • Design process control knowledge.

 This paper presents this advanced design knowledge in top-down and structured design frameworks. Intro-
ducing this top-down and structured design knowledge in the design automation system improves the design
quality and decreases the computation time.

 Section 2 gives a brief summary of the knowledge based design model. Section 3 introduces a hardware
description language. Section 4 overviews the VLSI design expert system under development. Section 5
formulates the architecture design knowledge. Section 6 deals with the knowledge for expanding high level
function blocks into Boolean expressions. Section 7 shows a layout method.

2 Knowledge-based Design Model

Human designers are quite flexible and can:

 • Design high-quality objects based on abstract specifications.

 • Modify or redesign already-designed objects to meet new, slightly changed specifications.

 • Backtrack to the appropriate design step if a constraint violation or design deadlock occurs.

 • Explain design results and design decisions.

 • Improve their design skill from design experience.

 Unfortunately, it is not yet possible to make a design automation system with these abilities. However, we
have decided on a knowledge-based VLSI design model as shown in Figure 1 and have attempted to formalize
each knowledge base. The model consists of four subsystems:

127 --

• The design plan knowledge base contains knowledge for planning, scheduling, and focusing subparts to

 be designed, modified or redesigned. A design plan is generated and executed, and then the result is
 evaluated.

• The design operation knowledge base consists of design operators for synthesis, local modification, opti-
 maization, analysis, and evaluation.

• The design context stores all information related to the design object. It includes specifications, designed
 objects, design decisions for the design operators choice and selection reasons, and the evaluation value.

• The designed instance base stores all designed instances. Each instance keeps all information copied from
 the design context.

In this paper, we focus on design operator knowledge and shows how we formalized this problem.

3 Hardware Specification

A successful design requires a clear idea of the end product. A VLSI is a processor which executes an algorithm.
Therefore, a VLSI processor can be most concisely and clearly specified by the algorithm it executes. This
algorithm can be formally described as a finite state machine in some specification language such as the Digital
System Design Language (DDL)[5].

 Figure 2 shows a VLSI specification example. The processor has five registers (GRO, GR1, SC, BR, IR),
a Memory-read-data input terminal, and a Memory-address output terminal. It has three control states
(Instruction-fetch, Memory-read, Decode-execute) An automaton takes exactly one control state for each
cycle. During each control state, several data transfer operations and execution operations are performed,
followed by a state transition to the next control state. An execution operation refers to hardware resources ,
applies a particular function, and sends the result to a destination resource. For example,

GRO <- GRO + GR1

means that the contents of GRO and GR1 are added and the result is set to GRO.

4 System Overview

Because there is a great semantic gap between the behavior specifications and the VLSI mask pattern, it is
difficult to design the mask directly from the specifications. Therefore, intermediate layers must be provided,
and then abstract specifications must be successively refined into more concrete objects.

 For a well structured design, these intermediate layers should be arranged according to the following criteria:

 • Each layer must be concrete enough to have its own information representation language.

 • The semantic gaps must be small enough to allow mapping operators to join the layers.

 Figure 3 is an overview of the VLSI design expert system (SAVE) under development. SAVE is imple-
mented on the Krine (Knowledge Representation and Inference Environment) system[6], which integrates AI
programming paradigms such as LISP procedures, rules, logic programming, frames, and so one. The knowl-
edge is described in a mixture of these paradigms.
The design process is as follows:

 • The behavior of a VLSI is described as a finite state machine in the digital system design language (DDL).
 The DDL translator summarizes the DDL specifications into a table listing operations and conditions

 which must be satisfied for the operation to be executed.

 • Based on this table, the VLSI architecture is designed. The VLSI architecture consists of several function
 blocks such as registers, arithmetic and logic units, and multiplexers. The architecture is designed so

 that the component number would be a minimum and the resulting hardware would be reasonable in a
 practical sense.

 • Each architecture component (function block) is then expanded into Boolean expressions by the logic
 design subsystem. Function blocks are classified into one of several function block types. For each function

 block type, there are several circuits which differ in cost and speed. Design methods for generating these
 circuits are integrated in this subsystem.

-- 128 —

• Boolean expressions are then converted to a network of real circuits such as the CMOS standard cell. If

 the constraint on circuit cost or circuit performance is not satisfied, a procedure for improving current

 circuits is applied.

 • Finally, circuits are laid out and routed.

5 Architecture Design

This section shows how to break a complex design problem into several smaller, simpler problems in a structured
way (Figure 4). For example, the original problem X is divided into sub-problems A and B. Sub-problem A is
further divided into sub-sub-problems AA and AB. Although some problems can be designed in an arbitrary
order, most sub-problems are not independent. For example, sub-problem B must be solved after sub-problem
A ,because B uses information obtained from A. These dependencies are shown as dashed lines in Figure 4.

 The method of problem division is not unique. The depth and excellence of the method determines the
design quality and the design time.

 This paper discusses the division method shown in Figure 4. A VLSI consists of a data path subsystem and
a control subsystem. The data path subsystem is divided into an arithmetic unit subsystem and data transfer
subsystem. The data transfer subsystem is further divided into buses, multiplexers, tri-state gates, and wires.

 When the model is complete, optimum design knowledge for each sub-problem must be clarified. Correct,
optimum, and efficient design needs theoretical background, design philosophy, and heuristics.

 In VLSI architecture design, information about parallelism between operations can be used as theoretical
background. The design philosophy is to merge hardware resources, which do not work simultaneously, into a
single unit.

 The rest of this section shows the parallelism analysis method and the optimum design knowledge.

5.1 Parallelism analysis

The DDL specification is summarized in an operation table. Each entry in the operation table
operation and the condition which must be satisfied for the operation to be executed[8].

consists of an

/execute-condition/ sink <- operand-1 operator operand-2

An automaton takes exactly one control state for each cycle.

states Sk and , S1 is zero.

Therefore the logical product of any two control

Sic* Si =0 Relation 1

 Let two operations be OPi and OP1 and their conditions be Ci and Cj respectively. Then, the analysis of
the parallelism can be reduced to calculating the logical product of Ci and C1 under the above relation. That is:

(1) If Ci * C2=0 then OPi
(2) If Ci * C,40 then OPi

and OPi never work simultaneously.

and OP; work simultaneously when Ci * C2 becomes true.

Using th is rule, we can infer parallelism between any two operations.

5.2 ALU Allocation

If two hardware resources never work simultaneously, they can be merged into a single block. Therefore,

operations which do not work in parallel can be merged into an ALU. This merging procedure reduces hardware
costs, and suggests the following rule:

 • Merge as many hardware functions, that do not work in parallel, as possible.

The optimum ALU subsystem is obtained using the following graph procedure:

 1. First, a graph is defined where nodes represent operations and edges exist only between operations which
 do not work simultaneously.

 2. Then, the graph is partitioned into completely connected subgraphs.

 3. Finally, an ALU is allocated for each subgraph.

— 129 —

After roughly formalizing the problem, heuristic knowledge for reducing computation time and maintaining
reasonable ALU hardware design is collected. Figure 5 shows an example of the ALU allocation rule. The rule
first checks the parallelism between an operation and the ALU under construction, then merges the operation
into the ALU. By this procedure, an ALU becomes a multi-function unit.

 During the ALU allocation, logical information about data transfer (e.g., source, sink, transfer condition)
is also derived. This information becomes the specification for the data transfer path.

5.3 Data Transfer Path Design

Based on the logical information about data transfer, physical data transfer paths are designed. The data
transfer path design stages and the knowledge for each stage are as follows.

1. Bus design stage: A bus is assigned for a set of logical transfers, which don not work in parallel or whose
 sources are the same. A minimum number of sets are obtained by the graph partitioning procedure as

 shown in the ALU design. During bus design, information about logical data transfer is modified and

 becomes the specification to the rest of the data transfer path design.

2. Multiplexer design stage: If there are multiple logical data transfers, whose destinations are the same, a
 resource input multiplexer is generated between the sources and the destination.

3. Tri-state gate design stage: Tri-state gates are inserted between the source and the bus.

 Figure 6 shows an example of the non-structured design data paths and the structured design data paths
obtained from the same specifications.

 At the architecture design level, details of each function block are not yet fixed. The next step is to realize
each function block with lower level components.

6 Logic Design

The knowledge for function block design is also modeled in top-down and hierarchical style[9]. The problem
division method depends on the function block type. If the function block is very complex and large, the
division tree becomes wide and deep. If the function block is small and simple, it can be directly realized with
gates. This section gives two examples: a multi-function block and a fixed-function block.

6.1 Multi-function Block Design

An arithmetic and logic unit (ALU) is a multi-function unit. The design of an ALU is difficult because of its
varying functions. An ALU has both data input/output terminals and control input terminals for selecting
functions. If control signals are supplied to the control input terminals, the ALU will execute the designated

operation between input data and then send the result to an output terminal. Therefore, ALU specifications

can be expressed in terms of data input-output relations and control signals for specifying each input-output

relation. For example

S4*S3*S2*S1*S0 F = A plus Cin

means that if control signals SO through S4 are all "1", the ALU executes the arithmetic sum of A and
Cin.
 There are several ways to divide an ALU into sub blocks. Figure 7 is an example of a division method
(called ALU template) devised for medium-speed computers. The philosophy behind this template is as follows:

1. ALU logic is structured as output-stage logic, carry-predict logic, input logic which generates G and P

 signals, and decoder logic. Here, the G signal implies nth-bit-carry generation, and the P signal indicates

 the nth-bit-partial sum.

2. To perform an arithmetic sum function, the carry is predicted from the G and P signals and is applied,
 along with partial sum P, to the output-stage logic.

3. To perform a logical function, the carry is set to zero, and P is controlled to produce the required logical

 function.

 An ALU template outlines the ALU logical substructure. Details of each sub-block are not given at this

level. When an ALU specification is given, sub-blocks are synthesized according to the following steps:

— 130 —

1. The G, P, and Carry-gate logic is initialized to "0".

2. The syntax of each function specification is analyzed and sub-blocks are modified according to the syn-
 thesis rules.

[Rule example]
IF the function syntax is "Control-code F = X plus Y plus CM"
Then DO P = P + Control-code * (X @ Y)

 DO G = G + Control-code * (X * Y)
 DO Carry-gate = carry-gate + Control-code

 3. The G, P and Carry-gate logic is minimized.

 4. The G, P and output logic is repeated n times (data bbit width).

 5. Carry logic is synthesized.

Figure 8 shows the effect of the ALU structured design.

6.2 Fixed-function Block Design

Problem division of a fixed-function block such as an adder, multiplier, and divider is straight forward. Figure
9 shows an example of problem division. The floating-point add/subtract block is hierarchically broken down.
These fixed-function blocks are easily specified by a few parameters such as the amount of input data and the
data bit-width. When these block parameters are given, parameters for each sub-block are derived and given
to the sub-blocks. Then each sub-block is divided in turn.

6.3 Optimization Knowledge

The top-down, structured division method can realize functionally correct circuits. However, global constraints
such as circuit costs or circuit performance may not be satisfied. This problem is addressed with the following
two approaches:

 1. Generate and test:
 There are several ways to divide a function block . The easiest way is to try each method to see if the

 constraints are satisfied.

2. Controlled local-transformation of circuits.

 When given logic circuits do not satisfy the global constraint, the designer usually tries to modify the

 existing circuits. This process can be simulated with local-transformation rules and application control of

 these rules. A local-transformation rule replaces a. small circuit subgraph with another subgraph which is

 functionally equivalent but differs according to some global measure such as cost or performance. These

 rules are categorized according to the measure.

 When some global constraint is not satisfied, circuits are analyzed, the focus area candidate is decided,

 and local transformation rules which may reduce the unsatisfied measure are selected and applied.

 For example, if circuit performance is unacceptable, critical paths are analyzed and local transformation

 rules which decreases the logical depth are applied.

Layout Knowledge

The top-down, structured design method produces circuits with a regular structure. In our experience, the chip
area of regular circuits decreases if they are laid out regularly. Therefore, in our system, this regular layout
knowledge is programmed for each function block type[10].

 Figure 10 shows an example of a regular layout. This is a multiplier layout with about 6000 gates.

8 Conclusion and Future Work

This paper proposed a knowledge-based approach for VLSI structured design. By properly arranging design

stages and integrating top-down, structured design knowledge for each layer, high-quality logic circuits can be
synthesized.

 Future work will focus on clarifying the mechanism for design process control, redesign, using designed
instances, and design skill acquisition.

131 —

References

[1] S.J.Hong, G.R.Cain and D.L.Ostapko :"MINI; A heuristic Approach for Logic Minimization", IBM
J .RES.DEVELOP.,PP.443-458(1974)

[2] D.W.Brown :"A State-machine Synthesizer", Proc. 18th DA conf.,PP.301-305(1981)

[3] T.Shinsha, T.Kubo, M.Hikosaka, K.Akiyama and K.Ishihara :"Polaris: Polarity Propagation Algorithm
 for Combinational Logic Synthesis", Proc. 21th DA Conf. PP.543-549 (1984)

[4] J.A.Darringer :"A New Look at Logic Synthesis", Proc. 17th DA Conf. PP.543-549(1981)

[5] J.R.Duley and D.L.Dietmeyer :"A Digital System Design Language (DDL)", IEEE Trans. Comput. VOL.
 C-17, No.9, PP850-861.

[6] U.Ogawa,K.Shima,T.Sugawara and S.Takagi :"Knowledge Representation and Inference Environment:
KRINE", Proc. FGCS'84, PP.643-651 (1984)

[7] M.Endo,T.Hoshino and O.Karatsu :"Optimization Technique of Logic Synthesis System:ANGEL (in
 Japanese)", DA23-5, IPSJ (1984)

[8] S.Takagi :"Rule Based Synthesis, Verification and Compensation of Data Paths", Proc. ICCD'84 PP.133-
 138 (1984)

[9] S.Takagi :"Design Method Based Logic Synthesis", CHDL'85 PP.49-63(1985)

[10] S.Takagi :"A Placement Method Based on Logic Circuit Structure information", Trans. IECE Jpn, Vol.J70-
 CNo.1,PP.11-20(1987)

Design plan

Plan, Schedule

 I Plan execution

 1 Evaluation

 I Refer
Design operator

Architecture

 I Sub-block

 Synthesis
 Optimization
 Analysis
Evaluation

FIG. 1

Modify

Refer

Design context

 Refer

Specification
 Function
 Constraint

Designed objects

Decisions

Evaluate result

 Store

Designed instance

Model of the knowledge-based design expert system

<SYSTEM> SAMPLE
 <REGISTER> GRO GR1 SC BR IR;

 <INPUT> MEMORY-READ-DATA;
 <OUTPUT> MEMORY-ADDRESS;
 <AUTOMATON> CONTROL;

 <STATE>
 INSTRUCTION-FETCH: CO-BEGIN

 MEMORY-ADDRESS <- SC,
 GOTO MEMORY-READ END;
 MEMORY-READ: CO-BEGIN

IR <- MEMORY-READ-DATA,
 SC <- 1+ SC,

 GOTO DECODE-EXECUTE END;
 DECODE-EXECUTE: CASE IR ADD

 CO-BEGIN
 GRO <- GRO + GR1,

 GOTO INSTRUCTUIN-FETCH
 SUBTRACT

 CO-BEGIN
 GRO <- GRO - GRl,

 GOTO INSTRUCTION-FETCH
 EXCLUSIVE-OR

 CO-BEGIN
 GRO <- GRO Q GR1,

GOTO INSTRUCTION-FETCH

 END-CASE;
 END <STATE>;

 END CONTROL;
END SAMPLE;

FIG. 2 DDL specification example

END;

END;

END;

— 132 —

 Subsystem

Translator

Architecture
design

Design layer

Specification
 in DDL

Logic design

Operation table

Architecture
(Datapath & ctl

 function block

 Boolean
expressions

SC

(Expand

 Layout
 Route

FIG.3 System

Circuit

 011"0"

 BR

MDR

1)1-------

ACC

 MWR

IR(&7)

I R(4.5)

 MWRI

 MWR

 GR

 MDR

Q

0 OR 11

0 13
B GR
0
0i

 OR

---------------------^ BR

Mask

 overview

X

Architecture

 A >/ \r
 Data paths

AA

 ArithmeticTransfer

 Bus - Multiplexer

B

Control

Tri-gate Wire

6R

MWR

 Sc

I R(8.15)------ oR
LI

GR(8,15)-------V i

GR
MWR

GF.
r)-----MWR

Es

r—

:l

bR
ACC

^

"SHIFT -LEFT

GR--------------
a_~T-121C~iT

1Tcl
ocl

BR
al I °0.—mot/

 IR(4.
I R(6

non-structured design data paths

Fig. 4 Architecture design method

IF
1) there is an ALU,

 2)there is an operation,
 3)the ALU and the operation never work simultaneously,

 4)the ALU does not include a function of the operation,
 5)the function of the operation is mergeable with the ALU,

 6)the left input port of the ALU is already connected
 to the first operand of the operation,

 7)the right input port of the ALU is already connected
 to the second operand of the operation, and

3)the output port of the ALU is not connected to the
 sink of the operation,

THEN
 1)add the required function with its condition to the ALU,

 2)update the transfer condition from the first operand,
 3)update the transfer condition from the second operans, and

 4)add a new path from the output port of the ALU
 to the sink with its transfer condition.

Fig.5 ALU allocation rule example

~2

I
-+MWR(O~~Shift-right

l'g.I{~~^~~y
.~IShift-Iett

a

L

F8-z

0~3

 ACC-
G

i3 R

MWR-^
TRG
-e

AR 4
IR

; Tri-state GOte

D;Register File

MWRI •+GR

y SC
-MDR

structured

Fig.6 Data

design

paths

data paths

design example

 133

 Floating point add\aub tenplata

SUO EI E2 S1 S2 F1 F2

Ai

B

Si

Input
logic

Decoder
 logic

Carry-predict
 logic

Carry-gate

Output

logic

Carry

 F

 SUR
EI>E2

F1 F2

I
F2

ZER

FI

SEL1

E1.E2

El
 E

I2

EI>E2 ~Se1

1E12

III ItU

RIRUS. S

SHIFT -II

ROO\SUOI
F'

zero-ant

SEL1

ROONSUO2

Rf NUS

SHIFT -L

SELS

MES-E REFUOF UEV-S HEY -F

Fig. 7 ALU template example

End-.....d-carry- addNaub-Canplate

1000

CPU

Time

(Sec)

100

10

conventional
(8 Functions)

 methods

32 Functions

a Functions

Fig. 9

sue

End-• rouiia-etr

 adder/~

FY

L

F

 Coot

Fixed—function block design (FLP adder)
10 20 30

Bit Width

I
Fan-in

1500

1000

500

 Using

/ /

functions

j<-32

 v+~uanwv~vl,wvvuvwovrliwvlluwlnui,unruclVUCa,wl.VIrvILWLW1 3111ft1lIIWMilIUWOJVI'1 1IlIQIOItaVi;eowlt~ln1'1nO1M~1fIi~yiileetlprollir1IINFOli4m111i911110010 1IIIOnoIIIp~li adlll1 ̀II lEl(nlilll°®OltesJ(HdenlllffeiiHPl4(J`lal1161it(~fq,iii39Ioti°i~~i'p('{s~DI.18t O1Iil?,Yh'rl'°(p 1!~]p(Je~~)~p 1!uW,~BDI11off~1U4"aU91~Ils~olnN,l~lpI111U1110U1IWJUIO101AlO'
lullI~31!<]Ialt1U1illE1I,t1I ISf4ENlI,lbof:41niopd`tti•ti,'' ;iltv0

 ° ~niqti~~qjpp1t!yntes~(pia.tl~tn]ronrIInWl/~pu.I01,:(1M°IUUItIQIIIt[0p 1I~ii((~~jj))~~11((gg~])~b~1a~'S~I1I,c.,:[~I9r~+lIlliai[~fQnj~kr1„l~~iitat}i~~Ii1}~ oa'l'!0III00III'AiCI111011DII IfilliltNMElhIU111111(1£9®I~,IgiAijI$0il 1®R[lel~~l~~]jp]~~lRlp[I1'IP13OIdt10y11E01ttFRar]lulq®1NIJQQiilaM1~QJlillilii6en1~nHiT.~InYE~ bliImal19CI111110taIIIWI1[II0IIII'1111aIti011ifti11110.iltt7tllt*J111111Ottit'IMI1i°OUl„1,~Q1it'II'MINi;14Us!>5~ 01117Ca5I000I19101/,701110a11~01ai1U111CDIBfHYBl7CKNYRiOliilnlA!9Y:2liColi011'`'Illl])II°ipin
ti' RaililIi11i0ttIIBi01YF~011103111Q1iliklilt,1tf[Riglil!t111I1~01&nel'll1n 19lII9UAli,t919H1IlllDOB9ILDIOI;11Git131,~

18M1n'fl~iUSililiVitlll liTIl6~inIr1131~UV11Rbtttb'b1]° 9t.flaiitIN~~p~O0Qyq~~gpty'1IIi[(~31ayp~111111IIII11.,l1iliIi9$I1°0° 91(~K~~II111~(IiitTO1nCAy~1N~INeitgiplUg~itlIaXTE.11'+1iJ(lllllOnC~1J1111011~q~I9UipJ~G~3iJyt~[~y~'fpX6lig ibltifdw't'itUNlfl:(10'0`I11OIJtl10111(1011°~0Jfl11 l0I(Ifiil~atl(lil-'iUU[llgl1,if00RIIOfI"oiff3Xlflltl~ll '~911lIµlHl!q~# I111§1111(1118li~iL91tFIR11igI00i110U1111,t1AIl~~ia[IIIIIIpi3Bfilli~111t:1i11111!!l001Iltlmllfi',[li0ti(0° o1111allU7iliRlUtttu11100itZOC2BuxIBtUd%IU,Itl011(17111170i1(J0IIQ~Ia°'011111tloOiIua{~.~--illulrlolt IYIli11111 t l01011111IOtlI9111!1'Illft11IIIIttNT.11Oal~ '0'Lli~1UINJ~I,l,lu~at~lb?uli.il'!sl+!`yIialfj
,: 'lell't.M1l!ill,ll}Jo IwtlaalIll1Illlnl1Il1t11Iaen1I101;.II0lrolilalI1011lilli na01190tagte0t~lotno~e~iItnlae

i'r'"~manfar,,gtilI0e[b° ue~
nil1uylyy~~~~yyypp~[[[p~~t[~mu(p~}Q~](~~~ue'11''nI'tet:.eIatoi1ilplp1~1;I®I ~~l[I~IidAlillthuiluouliWl111~~1~r!r1IlR.+,rtoW(ii0v1 01'1p ~9„„,,

,,,.lael'.imumill0iOIIHIa.III1t111r1nrII1lin~/tllJll.1li: 9ltlilaltfl]0c1U1appi(lCflll7lli91U11nlff@1111ti1100aenu'CNI®C~N~AIn1pI11111~apZlOtOltF3t3Y+'11_ I~Il~QY~Iyyntd~Ykie1'11,11y1419NIJIOlILI05!)0~0,~pj'i1Qi~111I'llIMY'ip](~lllllgf7iin i0116aitn' ' lig!pppl1NIDi~t1I11'IIIIi] IIIaX6iFJf{iMl~iltl7[I"~Ii'I IIIi1~1~'ieiJi'11••11111111l'i'Oi(I'1I'"iiii~l111611 'iliit!1111110uI'l'"II37 ®n.'•1 M~a~l; u0tIIII AI/lllII`ilIl~~Il~f(I1a.b o11ifL t,.IN'''tlyll_11+.':ti11"aJ
e~1'IIf1i~Al11R,NR~31911~89Er~~i19>^~PlfI1~ar~frfot~lIlI1n(I~E}rI1~1P! l~l1!iriIafflAl° lill,[I111UtlIalIIn/111I I&1F70ig)ig(aI~IQIj Aa ~.,....!....._.?__!R1..._~.__I0._._.101_i}i!Nt~i_ItU_!1~taoH110t~11Olinf19emIIHT1

i0 20 30

sit Width

Fig, 8 Evaluation of synthesized ALU Fig.10 Regular layout example (multiplier)

— 134 —

