■Full-Length Paper■

Cloning and Sequencing of the Poly (3-hydroxybutyrate)(PHB) Synthase Gene from Purple Non-Sulfur Bacteria *Rhodospirillum centenum* and Expression of the Gene in *Escherichia coli*

Mari Shiraki^{1,3}, Takashi Nagano¹, Emiko Suzuki¹ and Terumi Saito^{1,2}

¹ Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259^{,1293}, Japan

² Research Institute for Integrated Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan

³ To whom correspondence should be addressed. E-mail: shiraki-bio@chem.kanagawa-u.ac.jp

Abstract: A 10-kb genomic fragment was isolated from *Rhodospirillum centenum* by Southern-hybridization and colony-hybridization, using a probe amplified by PCR with oligo-nucleotide primers constructed from a sequence conserved in poly (3-hydro xybutyrate)(PHB) synthase genes. After subcloning of an approximately 3-kb fragment (*Smal-Eco*RV) that caused the production of PHB in *Escherichia coli* in the presence of β -ketothiolase (*phbA*), an acetoacety-CoA reductase (*phbB*) gene from *Ralstonia eutropha* H16 was obtained and sequenced. This fragment contained an open reading frame (ORF) whose amino acid sequence was highly similar to the sequences of other known PHB synthase genes, especially to a synthase from *Azospirillum brasilense* (74% identity).

Keywords: poly (3-hydroxybutyrate), PHB, PHB synthase, purple non-sulfur bacteria, *Rhodospirillum centenum*, *phb*C

Introduction

The production of intracellular polyesters belonging to the class of polymers known as polyhydroxyalka noates (PHAs) has been observed in a wide array of prokaryotic organisms¹). The monomers composing the polyesters range in length from C4 (β -hydroxybutyrate) to C16 (β -hydroxyhexadecanoate)²). PHAs have attracted attention as a potential alternative to conventional petrochemical-derived plastics³⁾. Poly (3-hydroxybutyrate) (PHB) is the simplest and most common PHA¹). The metabolic pathways leading to the synthesis of PHB have been investigated in many bacteria. Ralstonia eutropha, a bacterium which accumulates PHB intracellularly at levels equivalent to about 70-90% of dry cell weight at maximum, has been extensively studied, and the genes of three enzymes involved in the synthesis of PHB have been cloned and sequenced^{4, 5)}. As in *R.eutropha*, in most bacteria, including Zoogloea ramigera, Alcaligenes *latus*, and *Rhodobacter sphaeroides*, a three-step metabolic pathway has been revealed. The first step is catalyzed by the enzyme β - ketothiolase (EC2.3.1.16), which condenses acetyl coenzyme A (acetyl-CoA) to acetoacetyl-CoA⁶. This intermediate is then reduced to D-(-)- β -hydroxy butyryl-CoA by an NADPH-dependent acetoacetyl-CoA reductase

Fig. 1. Pathway of PHB synthesis and related reaction steps in PHB accumulating bacteria. A, b-ketothiolase; B, acetoacetyl-CoA reductase (NADPH-dependent); C, Acyl-CoA synthetases; D, butyryl-CoA dehydrogenase; E, enoyl-CoA hydratase (forming D-3hydroxybutyryl-CoA); F, acetoacetyl-CoA reductase (NADH-dependent); G, enoyl-CoA hydratase (forming L-3hydroxybutyryl -CoA); H, PHB synthase. Thick arrows indicate the pathway of PHB synthesis in R. eutropha and thin arrows, the pathways in R. rubrum and R. centenum.

(EC 1.1.1.36). In the last step, PHB synthase catalyzes the polymerization of D(-)-3-hyd roxybutyryl-CoA to PHB. In Rhodospirillu rubrum, PHB is synthesized via a five-step pathway. An NADHdependent acetoacety-CoA reductase (EC 1.1.1.35) catalyzes the formation of L-(+)-3-hydro xybutyryl-CoA, which is subsequently converted to D-(-)-3-hyoxybutyryl CoA by two stereospecific enoyl-CoA hydratases prior to polymerization⁷ (Fig.1). *Rhodo*iri-lum centenum was isolated in 1987, and exbits a number of general properties typically observed in purple non-sulfur bacteria, but also displays a number of unusual characteristics as follows: (1) absence of any repression by O_2 of photo pigment synthesis; (2) synthesis of "R-bodies"; (3) swarming motility on agar surfaces; and (4) conversion of vibrioid/spiral cells to thick-walled cysts, and accumulation of PHB at cysts, under condition of aerobic growth in darkness on butyrate as a sole carbon source^{8, 9)}. Since among numerous PHB-accumulating bacteria, R. centenum is unique and limited in terms of the conditions it needs to accumulate PHB, investigation of the regulation of PHB synthesis in *R. centenum* may be important. As a first step in this process, we describe here the cloning and sequencing of the PHB synthase gene from R. centenum and its expression in E. coli.

Materials and Methods

Bacterial strains, plasmids, and culture

Bacterial strains and plasmids used in this study are listed in Table 1. All Escherichia coli strains were grown aerobically in Luria-Bertani (LB) medium or on solid LB agar (1.5%, wt/vol) plates at 37°C, or in M9 medium¹⁰. The following concentrations of antibiotics were used: ampicillin, 50 µg/ml; chloramphenicol, 34 µg/ml; tetracycline, 10 µg/ml. R. centenum was cultivated anaerobically under illumination (60-W incandescent bulb) at 30°C in 1927 CENS medium: in 1 liter, 2.2 g sodium pyruvate, 0.9 g K₂HPO₄, 0.6 g KH₂PO₄, 1 g NH₄Cl, 5 mg disodium EDTA, 200 mg MgSO₄·7H₂O, 1 ml True Blue Trace Element solution (containing 2.5 g EDTA, 0.2 g MnCl₂, 0.1 g H₃BO₃, 0.1 g Na₂MoO₄, 50 mg NiCl₂·6H₂O, 20 mg CoCl₂·6H₂O, 10 mg CuCl₂· 2H₂O, 5 mg Na₂SeO₃, and 5 mg NaVo₃·nH₂O per 250 ml deionized water), 75 mg CaCl₂·2H₂O, 2 ml chelated iron solution (prepared by dissolving 1 g FeCl₂·4H₂O and 2 g dissodium EDTA in 1 liter deionized water, and adding 3 ml concentrated HCl), 20 µg vitamin B₁₂, 15 µg biotin, 0.5 g and Na₂S₂O₃. 5H₂O; pH was adjusted to 6.8 with NaOH⁸.

DNA preparation and manipulation

Standard methods were used for the preparation and manipulation of DNA, PCR, Southern hybridi-

Strains	Table 1. Strains and plasmids
E. coli	
JM109	recA endA1 gyrA96 thi hsdR17 supE44 rela1 ∆(lac-proAB)/F'[traD36proAB+ lac1 lacZ⊿M15]
BLR(DE3)/pLysS	F- ompT hsdS ₈ (rs-ms-) gal dcm ⊿(srl-recA)306::Tn10(Tc1)(DE3)/pLysS(Cm1)
R. centenum	Wild type
Plasmids	
PUC18, 19	High copy cloning vector; Amp ^r
pSTV29	Low copy cloning vector; Cm ^r
pET23b	Expression vector; Amp ^r
pET100	pET23b carrying Xbal/EcoRI fragment containing R. eutropha phaCAB PHB synthetic operon
pSTVReAB	pSTV29 carrying Sse8387-EcoRI fragment containing R. eutropha phaAB
pUCReC	pUC19 carrying Smal-Stul tragment containing R. eutropha phaC
pET100Ce	pET100 carrying about 2-kbp fragment containing R. centenum phaC instead of R. eutropha phaC
pRcCP1	pUC18 carrying about 10-kbp Pstl fragment containing R. centenum phaC
pRcCP2	pUC18 carrying about 10-kbp Pstl fragment opposite direction containing R. centenum phaC
pRcCS1	pUC18 carrying about 4.5-kbp Smal fragment opposite direction containing R. centenum phaC
pRcCS2	pUC18 carrying about 4.5-kbp Smal fragment containing R. centenum phaC
pRcCE1	pUC18 carrying about 3-kbp EcoRI-EcoRV fragment opposite direction containing R. centenum phaC
pRcCE2	pUC18 carrying about 3-kbp EcoRI-EcoRV fragment containing R. centenum phaC

zation, and colony hybridization. Sequencing was performed with a SEQ-4×4 system and Thermosequenase Cy 5.5 (Amersham Biosciences, Tokyo, Japan), and with a BigDye Terminator v.3.1 Cycle Sequencing kit (ABI PRISM 310) as recommended by the manufacturer. Sequences were processed using the program GENETYX⁻ MAC/ATSQ, version 4.2.0 (Software Development Co., Ltd., Tokyo, Japan).

Design of primers for cloning the PHB synthase gene

The primer of an inner part of the PHB synthase gene as a probe for Southern hybridization and colony hybridization was designed from consensus sequences based on comparisons with PHB synthase genes of purple non-sulfur bacteria, Rhodosporillum rubrum (accession number AF178117), and Rhodobacter sphaeroides (AY945501), and a root nodule bacterium, Rhizobium meliloti (U17227). A 500-bp fragment of the R. centnum PHB synthase gene was amplified by PCR with 5'-TGGATCAAY AARTTCT ACATAAT-3' as the forward primer and 5'-TTCCARTAGAGCAGRTCGAAG-3' as the reverse primer using genomic DNA of R. centenum as a template. The PCR product was labeled with [³²P]dCTP and used as a probe in Southern hybridization and colony hybridization. R. centenum genomic DNA was completely digested with PstI. The resulting fragments were subjected to Southern hybridization.

Other analytical methods

PHB content was quantitated as the amount of crotonic acid by high-pressure liquid chromatography as described by Karr et al^{11} .

Results and Discussion

Cloning of a genomic fragment relevant to the PHB synthase gene

R. centenum genomic DNA was digested completely with *Pst*I. The resulting fragments were separated on a 1% agarose gel and transferred onto a nylon membrane. The DNA fixed on the nylon membrane was hybridized with a ³²P-labeled 500-bp probe prepared from PCR products with genomic DNA as a template (see Materials and Methods). The DNA corresponding to the positive signal, which was about 10-kbp long was extracted from

Fig. 2. Restriction map of the cloned fragment containing the PHB synthase gene of *R. centenum*.

the agarose gel, ligated to PstI-digested pUC18, and introduced into E. coli JM109 by transformation. Of about 5,000 ampicillin-resistant recombinant colonies, two positive colonies were selected by colony hybridization. Both colonies were found to have about 10 kbp of foreign DNA, but oriented in the opposite direction to each other. One Smal fragment (about 4.5 kbp) was isolated from one of two plasmids and ligated to pUC18 digested with SmaI. To confirm that the cloned 10-kbp and 4.5-kbp fragments have the PHB synthase gene, Southern hybridization and PCR were done using the same probe and same primers. Fig. 2 shows a restriction map of the 10-kbp fragment. According to this map, the Smal-EcoRV fragment (about 3 kbp) contained the region for the PHB synthase gene, where the nucleotide sequence was analyzed. Within the 3-kbp fragment, one open reading frame (1,792 nucleotides) was found. It specified a protein with a deduced molecular mass of 66,962 Da (597 amino acids). The initiation codon was preceded by a putative Shine-Dalgarno sequence (Fig.3). The PHB synthase in R. centenum had about 74 and 64% identity to the PHB synthase in Azospirillum brasilense and Rhodospirillum rubrum in amino acid sequence, respectively (Fig.4).

Expression in *E. coli* of the PHB synthase gene from *R. centenum*

To confirm the cloning of the fragment having the ability to synthesize PHB, two systems which contain the β -ketothiolase (*phb*A) and acetoacety-CoA reductase (*phb*B) genes from *Ralstonia eutropha* H16 were constructed. One system consists of *E. coli* JM109 transformed with pSTVReAB carrying *R. eutropha pha*AB and pRcCP1 or pRcCE2 carrying *R. centenum pha*C. The other system consists of *E. coli* BLR transformed with pET100Ce which contains *R. eutropha pha*AB and

101	
	MAESQGPELKIP
201	03400039503403476500330302476303336340303430346302463024630246303467176717600351646302946476700382767 300
	D P V E M S R A M A R I A E H S Q R I V T E F L S R H A E I S G S
301	C0003A00033T0AA00T032D33D30CTT02T03A0AT0A00AG0032AT0AT032003A0030322AA03T0AT02A03032AA03T07032T07032T07032A03 400
	A
401	ACTACATGAOGCTCTGGOAGOGCAOGAOCOAGOGTTTOCTGGGOGGOGGAGOOGGAGOOGGTGATOCAGOGGGCAAGGAGGATCGOOGCTTOAAGGACAG 500
	Y M T L W Q R T T Q R F L G G E A E P V I Q P A K E D R R F K D S
501	0320T33AA03AGAACAO3CTGTT0GACTTCATCAA9CAGT03TATCTGCTGA0032002CTTCATGCAQ303GA035T03A4339A5T33A4039A5T33A403403405T33A403405T33A403405T33A403405T33A403405T33A403403403405T33A403405T33A403405T33A403403405T33A403403405T33A403403405T33A403405T33A403405T33A403405T33A4034034034034403403403403403403403403403
	A W N E N T L F D F I K Q S Y L L T A R F M Q A T V H G V E G L D
601	GACAGGACCGCCCCGCACTCCTACACGCCCCCACTACGCCCCCCACTACGCCCCCCACGCACCCCCCCC
	D R T A R K L D F Y T R Q Y V D A M A P S N F V M T N P E V L R T T
701	
	L E T G G E N L V K G L E N L L A D L E R G K G Q L A I S M T D Y
801	
	S K F E V G R N I A V T P G K V V F Q N D L M Q L I Q Y A P T T E
901	
	Q V H R R P L L I I P P W I N K F Y I L D L R P Q N S F V K W L T D
1001	A00403860444033510T104T03510T00763351C44T00393034024T010100340446400T103462407404453500464639000011300
	Q G H T V F I V S W V N P G E H L S D K T F E D Y M V E G P L A A
1101	GCTCCAACCCATGGACGCCCCACCGGGGACCCGGGGACGCGGGGGACGCACGCTGGCCACGCGGGCACCGCTGGCCCACACGCCGCCGCCCACACGCCGCCCACACGCCGCC
	L D A M E A A T G E R E A N V I GYCLG G T L L A S T L S Y M T
1201	G03CAG9C0AC0A003CATCAACAC0C0CATGTACCTCGTCAC0CTCGAC9CACTTCTCCCCAG003G3G4ACTGTC0GTCTTCATCGACGAG3AACAAC 1300
	A Q G D D R 1 K S A M Y L V T L T D F S E P G E L S V F I D E E Q L
1301	T03003002T6GA63AG03GAT603CAG30AG302TT02T6GA033CT0202CAT62DGA03AOCTTCAACAT6CT603G302AA03AOCTGATCT6GTC 1400
	A A L E E R M R S Q G F L D G S A M A T T F N M L R A N D L I W S
1401	GTTOGTGGTGAACAACTACCTGCTGCCGCCACACCACCCCCTCCCT
	F V V N N Y L L G K D P F P F D L L Y W N S D S T R M P A A M H S
1501	
	FYLRNMYQRNLLVQPGGITLKGVPIDLRRITVPT
1601	00TTCATGCTCT0C4000003AGGA00ACAT030000CTG3AAGAG0A0CTATG0030AAD3CAGCTCTATG30033003GTGAAGTT0GTGCTQ3003C 1700
	FMLSTREDHIAPWKSTYAATQLYGGPVKFVLAA
1701	CT033800A0AT0300380ET03T0AA000300CT038033AAAGTACA630AATTA0CTGAA0A0GAAGT000030CT000003ACA63T03FT03AG 1800
	S G H I A G V V N P P S A E K Y S H Y L N T K L P A S P D S W F E
1801	GBBBCGAAGCAGETCCCCBBCGAGCTGGTCGCCCGAAATACCGCCAAGTGCGTCCCCCCGGTAGCGCCCAAGETCCCCCCCCCC
	G A K Q V P G S W W P E Y G K W V A R Y G G G K V P A R V P G D G R
1901	GGTTG2023CACTTG2ACGACG20C202GC2ACGTATGTG202GETCAAQAGGCTTGGAGTAG0AG02GC00GG2002GG2AAA0002G2002GETCGTGACATG 2000
	L P A L E D A P G S Y V R V K S L E *

Fig. 3. Determined nucleotide sequence and deduced amino acid sequence of the R. centenum PHB syntheses gene. Boxed, bold, shaded "GAGG" is a putative Shine Dalgarno sequence, and boxed bold "C" is a putative center of an active site.

M.Shiraki et al.: Cloning and Sequencing of a PHB Synthase Gene from R. centenum 17

R	centenum	IEFLSRHAEI SG-SADPLNLGG-AFLEMTSRMAADPA	67
A	brasilense	1 MCDLGVDAGFTGRLLDMLKLPFGVCDAA-AGDALHEAHLLLLDL-VR-WE-GEEFLSRQASDGV-GAKN-PDPMDVGH-AFLEMITTRMADPA	89
R	eutropha	I	66
R	rubrum	1MIDTRAEADLTEWRAWAAWCEKSRTMWA-TALQCA-APPSSPSCPOP-AVGCOPAVGCDAARAFLEGVLIPSQ-PV	75
R	sphaeroi des	1MATEEOSPOSORDAOFERINANLTRIDELSKRI.TAALTKR-KI.SDPALHOPSODVFI.KAMTAYMAEMONPA	71
		0000 A \$1 \$2 \$20 \$100.55	
R	centenum	68 K-LINDAGVSLWO-DYN+TLWGRTTGR-FLGGEAEPVI GPAKEDRRFKDSAWNENTLFDFI KGSYLLTARFMGATVHGNEGLDDR-TARKLDFYTRGYVDA	162
A	brasil ense	90 K-LINKAQMILWQ-DYL-TLWQRITTQR-FFQQDAQPVI APAKDORRFKDSAWDENTLFDFI KQSYLLSARWMQSTVNEVDQLDDH-TAKKVDFYTRQFVDA	184
R	eutropha	67 Q-LODI QORYMK-DESA-LWOAWAEG-KA-EATOPLHDRRFADOAWRTNLPYRFAAAFYLLNARALTELADAVEADAKT-RORI R-FAI SOWDA	154
R	rubrum	76LD-AQAA-WA-ROI AALCQAAAKR-LRCEEAAPVI EPACDONRFKDOAWIKDPLFDTLKQCYLLTARLVATTLENSCCOPAC-RQ-RLAFYCRQVVDA	167
R	sphaeroi des	72 KILEH-CISFWAKSLKHWE-ACHOLYKG-ELKPPPDVTPKDR-RESNPLWDTHPFFNMLKQQYLMWAEAVNQAVEALEH EPSDKKRWEYFSRCI-VOL	166
		. * . *	**.
R	centenum	163 MAPSNEVMINPEVL-RITILET COENLYKCLEN LADLERCKCOLAISMITDYSK FEVORALAVTPCKVVF CNDLMCLICYAPTTECM-HRAPLLIIPPW N	< 261
A	brasilense	185 MAPSNEVMINPEVL-RITILET GEORENLYKGLEH LIKDLERGKGELRI SMITDYDAFGXGKNI AVTPGKVVFGITDLINGLI GYTPTTPEVVKRPLM VPPW N	< 283
R	eutropha	155 MSPANFLATNPEAQ-RLLIESCCESLRAGVRNMEDLTRGKISCTDESAFEVORWAVTEGAVVFENEYFOLLQYKPLTDKVHARPLLMPPOLN	< 249
R	rubrum	168 LAPTNFAATNPLVR-RTALESOOKSLLINGLEN.LIRDLEROOGRILRPTMODETAFEVORRTLAMIPOKVVFONALMOLI LYAPTTPKV-KRPLLVVPPW N	< 266
R	sphaeroi des	167 FSPTNFFGTNPDALERAIATDG-ESLVQQLEN_VFDLEANVADLLVTLADPEAFGVQQNLATTEQSVVYRNRVFELLQVXPTTETVHETPLLLFPPW N	< 265
		.,*** **********.	**, ***
R	centenum		361
A	brasil ense	284 YYI LOLPEKNSFI KWAVDQCHSVFVLSWMPDEKLACKGFEDYMFEGVLAALDAI EKVTCEKD/WAI CYCOLOGTILLASTLSYMAAKKDORI KSATFFTTM	1 383
R	eut r opha	250 YYLLDLOPESSLVRHWEOCHTVFLVSWRNPDASWACSTWOOYLEHAALRALEVARDISCOOKLINU.GEOOVOCTI VSTALAVLAARGEHPAASVTLLTTL	. 349
R	rubrum		366
R	sphaeroi des	266 FYI LDLKPONSLLKWLVDOOFTVFV/SWMNPDKSYACI ONDDYI REGYMRAMAEVRSI TROKCI NAVOYOCI AGTTI TI TI AH OKACIDPS/PISATFFTTL	365
		.******	÷ .
R	centenum	362 TDFSEPGELSVFI DEEQLAALEER-MRSQG-FL-DQSAWAT-TFINILRANDLI WS-FWINIYILLQKDPFPFDLLYWISDSTRMPAAM-ISFYLRIWY	452
A	brasil ense	384 LDFTEAGELSVFI DEEQLTM ESQ-MAQQG-YL-DQSKWAT-TFNMLRANDLI VG-FVVNVYLLQKDPFPFDLLYWNSDSTFMPAAWHSFYLPNVY	474
R	eut ropha	350 LDFADTCI LDVFVDEGHVO-LREATLOG-CACAPCALLRG-LELANTFSFLFPNDLWWWVVD-NYLKGNTPVPFDLLFWWQDATN_POPWYOW/LRHTY	445
R	rubrum	367 VDFSEPGELGVFI DPPLLDALDDQ-MARDG-GL-DCDLLSM-AFNNLFONDLLWSVF-I NYVLLGKTPAAFDLLYWNCDSTRWPAAMORYYLREMY	457
R	sphaeroi des	366 TDFSDRÆVQAFLNDOFVDELERQVAVDELOKTFMSRTFSYLFSNDLLYQPALKS-YMMEAPPAFDLLYWKEDGTNLPAQMAVEYLRELC	456
		****	***
R	centenum	453 GRNLLVOPGG TLKGVPI DLRFT TVPTFMLSTREDH APWKSTYAATOLYGOPVK-FVLAASCH AGVNVPPSAEKYSHVLNTKLPASPDSWFEGAKOVP	551
A	brasil ense	475 GINLLAGPGAVTLGGMPI DLRKWTPSFFLSAREDH APWKSTYMDALLFSGPVK-FVLAASGH AGVMPPAAGKYCYWTNAKLPKASDDWLASSEGTP	573
R	eutropha	446 LONELKVPCKLTVCCMPVDLASI. DVPTYI YCSREDH VPWTAAYASTALLANKLR-FVLCASCH ACM NPPAKNKRSHWINDALPESPCOWLACAI EHH	544
R	rubrum	458 GKNKLVGPGGLTVLGHALDLRFLRTPVYLLSARDDH APWISTFKATGLYGGPLR-FVLAGSGH AGM NPPAKARYGYWTNADTSLEAESWLEGATPHG	556
R	sphaeroides	457 QODRLAQOT-FPVLQSPVQLKDVTLPVQAI AQETDH APVKSSFNGFRQFQSTDKTFI LSQSGHVAQI VNPPSRVKYQHYTNEQPAGTPESFREGAEF-H	554
		· . * * * **** ** ****.*** *. *	1212
R	centenum	552 - CSWIPEYCKWARYCCCKVPARMPCOCR-LPALEDAPCSYV-RVKSLE	597
A	brasilense	574 - CONVINE MININGSTFSECKVPARINPEKCO-LPVLEDAPCSY-AKVRIV-	618
R	eutropha	545 - GSWIPDNTAWLAGDAGAKRAAPANYOVARYRALEPAPORYV-KAKA	589
R	rubrum	557 - CSWIPDWAAWAAGYACERWAARDPTKCE-REPLEDAPCSYV-KVRT	600
R	sphaeroi des	555 ACEWINPEWGAWLAERSCHKOMPARCPCDSKI-PEL-APAPCSYVAAVCCA	601

Fig. 4. Comparison of the amino acid sequence es R. centenum PHB synthase and other bacterial PHB synthases. Bold face "C" is a putative center of an active site and well conserved.

R. centenum phaC. A system with the same vectors but carring R. eutropha phaC instead of R. centenum phaC was used as a positive control, and JM109 harboring pSTVReAB and pUC18 was examined as a negative control. Fig. 5 shows that the cloned fragment containing the R. centenum PHB synthase gene synthesized PHB in E. coli on LB medium and M9 medium, but at only about 10% of the level produced by R. eutropha phaC. The reason why R. centenum phaC produces only a small amount of PHB in E. coli is not clear.

As it was only when *R. centenum* was cultivated under cyst-forming conditions with butyrate that PHB was produced, it is presumed that the

FIG. 5. Comparison of PHB accumulation in *E. coli* harboring various vectors. A) *E. coli* JM109 or BLR cultivated in LB medium with 2% glucose at 37 °C for 39 hours. PHB content was measured with a HPLC-based method. PUC18, pUCReC, pRcCP1, pRcCE2, *E. coli* JM109 harboring pSTVReAB with each vector, respectively; pET100, pET100Ce, *E. coli* BLR harboring each vetor. B) *E. coli* JM109 cultivated in M9 medium with 1% glucose at 37°C for 39 hours. PHB content was measured by HPLC. pUC18, pUCReC, pRcCP1, *E. coli* JM109 harboring pSTVReAB with each vector.

synthesis of PHB is strictly controlled in R. centenum. Azotobacter vinelandii, a soil bacterium, which undergoes a process of cellular differentiation to form metabolically dormant cysts resistant to desiccation, produces the exopolysaccharide alginate, which is essential for the encystment process. Transcription of the algD gene, which codes for GDP-mannnose dehydrogenase, a key enzyme in the alginate biosynthetic pathway, is initiated at two promoters, one of which, p2, has the sigmaE consensus sequence. An AlgU, A. vinelandii sigmaE factor, mutant was impaired in alginate production, encystment, and transcription of the algD gene^{12,13}). R. centenum PHB synthase may be controlled by a similar system. The control region upstream of the PHB synthase gene of *R. centenum* should be examined.

References

- Anderson AJ and Daws EA (1990) Occurrence metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. *Microbiol. Rev.* 54: 450-472.
- Merrick JM (2002) Microbial waterinsoluble aliphatic polyesters (PHA). In: *Biopolymers-Polyesters I,* vol. 3. Doi Y and Steinbüchel A, eds., Wileyvch. pp.105-118.
- Marchessault RH and Yu G (2002) Crystallization and material properties of polyhydroxyalkanoates. In: *Biopolymers-Polyesters II, vol. 3.* Doi Y and Steinbüchel A, eds., Wiley-vch. pp.157-202.
- Schubert P, Steinbüchel A, and Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847.
- 5) Bernd HAR and Steinbüchel A (2002) Microbial water-insoluble aliphatic polyesters (PHA). In: *Biopolymers-Polyesters I, vol. 3.* Doi Y and Steinbüchel A, eds., Wiley-vch. pp.173-215.
- Nishimura T, Saito T, and Tomita K (1978) Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch. Microbiol. 116: 21-27.
- Moskowitz GJ and Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate. II. Enzymatic synthesis of D-(-)-β-hydroxybutyryl coenzyme A by an enoyl hydrase from *Rhodospirillum rubrum*. *Biochemistry* 8: 2748-2755.
- Favinger J, Stadtwald R and Gest H (1989) *Rhodospirillum centenum*, sp. Nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. *Antonie van Leeuwenhoek* 55: 291-296.
- Nickens D, Fry CJ, Ragatz L, Bauer CE and Gest H (1996) Biotype of the purple nonsulfur photosynthetic bacterium, *Rhodospirillum centenum*. Arch. Microbiol. 165: 91-96.
- 10) Sambrook J and Russell DW (2001) Molecular

cloning 3rd ed. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, N. Y.

- Karr D, Waters JK and Emerich DW (1983) Analysis of poly-β-hydroxybutyrate in *Rhizobium japonicum* bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. *Appli. Enviro. Microbiol.* 46: 1339-1344.
- 12) Moreno S, Najera R, Guzman J, Soberon-Chavez

G and Espin G. (1998) Role of alternative sigma factor algU in encystment of *Azotobater vinelandii*. *J. Bacterol.* 180: 2766-2769.

 Nunez C, Moreno S, Soberon-Chavez G, and Espin G. (1999) The Azotobacter vinelandii response regulator AlgR is essential for cyst fprmation. J. Bacteriol. 181: 141-148.