
1The Friedman rule proposes the reducing policy to make the net rate of nominal interest rate zero.

1 Introduction

A characterization of optimal monetary policy is one of central issues in monetary theory.

The traditional monetary theory has emphasized optimality of nonexpansionary monetary policy

such as the Friedman rule (Friedman, 1969), which is one of the most famous dicta on monetary

policy.1 In practice, however, there seems no central bank stating that its object is to implement

such a nonexpansionary policy. Additionally, after the Lehman crisis in 2008, central banks of

not a few developed countries adopted an expansionary monetary policy such as quantitative

easing.

Differently from the traditional theory, recent studies on optimal monetary policy has demon-

strated, in several environment, suboptimality of nonexpansionary monetary policy. As argued

by Akyol (2004) and Kryvtsov, Shukayev, and Ueberfeldt (2011) for example, we now know

that one of important sources of suboptimality of nonexpansionary policy is endowment (and

productivity) shocks, which is uninsurable due to incompleteness of markets. Although these

studies directly assumes the presence of endowment shocks, such shocks can be described en-

dogenously. In the overlapping generations (OLG) model with spatial separation (Smith, 2002;

Gomis-Porquears and Smith, 2003; Bhattacharya, Haslag, and Martin, 2005; Haslag and Martin,

2007; Bhattacharya, Haslag, and Martin, 2009) and search (Zhu, 2008), for example, endowment

shocks arise endogenously and nonexpansionary policy becomes suboptimal. Then, the aim of
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this article is to present another situation that nonexpansionary policy becomes suboptimal.

This article develops a simple OLG model of money with nominal idiosyncratic shocks. At

each date, a new generation consisting of a continuum of ex-ante identical agents living for

two periods is born. They also learn their types at the beginning of the second period of their

lives. The nominal idiosyncratic shocks are then modeled by random money transfer, contingent

upon agents’ types in the second period, proportional to money holding. Although these shocks

may be caused endogenously by, for example, money search and random relocation, we describe

them as if they are exogenous nominal taxes/subsidies. In this model, Pareto optimality, which

includes golden rule optimality, is adopted as an optimality criterion for stationary feasible

allocations, or a first-best situation.

In this article, we characterize a monetary equilibrium by a difference equation and find an

equivalent condition for the existence of a unique stationary monetary equilibrium given each

money growth rate. It is shown that, for any money growth rate, the stationary monetary

equilibrium given it does not realize a first-best situation, i.e.: it cannot generate a Pareto

optimal allocation. So, we should consider a second-best situation. A second-best money growth

rate is defined as one maximizing the welfare of stationary monetary equilibrium. We then

show that a second-best rate of money growth exists and is greater than one. This implies

suboptimality of nonexpansionary policy. A numerical example is also provided.

This article contributes to the literature by demonstrating suboptimality of nonexpansionary

monetary policy under nominal idiosyncratic risks. Remark that, differently from the previous

studies, our model does not impose any frictions such as spatial separation and search (except

for friction due to the OLG framework). The important role of the nominal idiosyncratic shocks

in our model is to cause the unexpected and nondegenerate ex-post distribution of money. In

our model, nominal idiosyncratic shocks are (implicitly) assumed to be not insurable by the lack

of complete asset structures and any other insurance instruments such as insurance companies.

Therefore, such uninsured shocks causes heterogeneous money holdings among second-period

agents in the same cohort and, as a result, endowment shocks.

This article then concludes that, even in the absence of any frictions, there exists a situation

wherein expansionary policy can be optimal (in the sense of second best) and therefore frictions

emphasized in the previous studies might not be critical components to make expansionary

policy optimal. By the way, in our model, an ex-post nondegenerate distribution of money,
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caused by the exogenous nominal idiosyncratic risks, has an important role for optimality of

expansionary policy. In the previous studies, such an ex-post nondegenerate distribution of

money (between buyers and sellers in Zhu (2008) and between movers and nonmovers in Smith

(2002) and others) is generated endogenously. One may consider that this is a main reason for

suboptimality of reducing policy in the previous studies.

The organization of this paper is as follows: Section 2 introduces the primitives of the model

that we consider. Section 3 presents our main results. Proofs of propositions are provided in

Section 4.

2 The Model

We develop a stationary overlapping generations model of money, wherein agents face id-

iosyncratic nominal shocks. Time is indexed by t and runs discretely from 1 to infinity. In each

period, there exists a single perishable commodity called the consumption good.

In each period, one new generation, consisting of a continuum of agents with unit mass, is

born and lives for two periods. Agents are ex-ante identical but learn their type θ ∈ Θ at the

beginning of the second period of their lives, where Θ := {−τ, ρ}, 0 < τ ≤ 1, and 0 < ρ. The

ex-post distribution of old agents on Θ is represented by a probability measure π on Θ.2 Assume

that
∑

θ∈Θ θπθ = 0, which implies that πθ > 0 for each θ ∈ Θ and τ = ρπρ/(1− πρ).
3

The endowment and preference structures are independent of time and agents’ types. Each

agent is endowed with ωy > 0 units of the consumption good in the first period of her life

and ωo ≥ 0 units in the second period. He/she ranks his/her consumption streams contingent

upon their types in the second period, c = (cy, (cθ)θ∈Θ) ∈ �+ × �Θ
+, according to a lifetime

utility function U : �+ ×�Θ
+ → �, where cy is first-period consumption and cθ is second-period

consumption when his/her type is θ. It is assumed that there exist real-valued functions uy and

uo on �+ such that, for each (cy, (cθ)θ∈Θ) ∈ �+ ×�Θ
+,

U(cy, (cθ)θ∈Θ) = uy(c
y) +

∑
θ∈Θ

uo(c
θ)πθ,

where ui, i ∈ {y, o}, is assumed to be strictly monotone increasing, strictly concave, and twice

continuously differentiable on the interior of its domain. Also assume that limx↓0 u′i(x) =∞ for

each i ∈ {y, o}.
2The realizations of types are assumed to be identical and independent for agents in each generation.
3The model degenerates into the one without idiosyncratic nominal risk if and only if τ = ρ = 0. In order to
consider the case with idiosyncratic risks, therefore, we have assumed that τ > 0. On the other hand, the
proviso that τ < 1 is a further technical assumption to ensure the consistency in the model.
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In the initial period, there also exists a continuum of one-period-lived agents, called the

initial olds, with unit mass. They have learned their own types θ ∈ Θ and their distribution

on Θ is represented by π, defined as above. Each of them is endowed with ωo units of the

consumption good and ranks his/her consumption cθ1 according to ū(cθ1) := cθ1 when his/her

type is θ ∈ Θ.

We adopt Pareto optimality as a criterion of optimality. A stationary feasible allocation

of this economy is a vector c = (cy, (cθ)θ∈Θ, (cθ1)θ∈Θ)) ∈ �+ × �Θ
+ × �Θ

+ satisfying that cy +

∑
θ∈Θ cθ1πθ = ωy + ωo and cy +

∑
θ∈Θ cθπθ = ωy + ωo, where cy, cθ, and cθ1 are consumptions by

the young agents, the type θ old agents, and the type θ initial olds, respectively. It is

• interior if it satisfies that cy > 0 and cθ > 0 for each θ ∈ Θ,

• Pareto optimal (PO) if there is no stationary feasible allocation c̃ such that U(c̃y, (c̃θ)θ∈Θ) ≥
U(cy, (cθ)θ∈Θ) and c̃θ1 ≥ cθ1 for each θ ∈ Θ with strict inequality somewhere, and

• golden rule optimal (GRO) if it satisfies that U(cy, (cθ)θ∈Θ) ≥ U(c̃y, (c̃θ)θ∈Θ) for each

stationary feasible allocation c̃.

Note that, for each stationary feasible allocation c, it must hold that
∑

θ∈Θ cθπθ = ωy+ωo−cy =

∑
θ∈Θ cθ1πθ but it is not necessarily required that cθ = cθ1 for each θ ∈ Θ.

In this economy, the central bank issues money, which is an infinitely-lived outside asset

yielding no dividend. Its stock at date t is denoted by Mt. The initial money stock M0 (in

the implicitly defined period 0) is given and held by the initial olds, where it is assumed that

each initial old has M0 units of money. Then, the constant money growth is assumed, i.e.:

Mt = σMt−1 for each date t ≥ 1, where σ > 0. The newly issued money of period t ≥ 1,

Zt := Mt −Mt−1, is equally distributed among the old agents at the period. We also introduce

idiosyncratic nominal shocks. An agent holding one unit of money at the beginning of each

period will pay [resp. receive] |θ| units of money in that period if his/her type is θ < 0 [resp.

θ ≥ 0]. Therefore, a type θ agent might be interpreted as a taxpayer if θ < 0 and a recipient if

θ ≥ 0.

We denote by pt and qt the real price of money and the real money balance in period

t ≥ 1, respectively. Of course, it must hold that qt = ptMt for each period t ≥ 1. Therefore,

we define an equilibrium in terms of real money balances instead of real prices of money. A

monetary equilibrium given money growth rate σ is a positive sequence of real money balances,

qe, such that there exists a sequence me such that: an initial old whose type is θ ∈ Θ consumes
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cθ1 = ωo+(qe1/M1)((1+θ)M0+Z1) and, for any period t ≥ 1, (i) each young agent chooses his/her

money holding me
t to maximize U(cyt , (c

θ
t+1)θ∈Θ) subject to the first-period budget constraint,

cyt = ωy − (qet /Mt)m
e
t ,

and the second-period budget constraint when his/her type is θ ∈ Θ,

cθt+1 = ωo + (qet+1/Mt+1)((1 + θ)me
t + Zt+1),

and (ii) me
t = Mt. Moreover, it is stationary if there exists some q > 0 such that qet = q for

each t ≥ 1. This is a standard definition of monetary equilibrium: condition (i) is the utility-

maximizing problem with sequential budget constraints and condition (ii) is the money market

clearing condition. Note that both tax and subsidy are dominated by money and yield ex-post

heterogeneity of money holding.

Although money grows and agents faces nominal idiosyncratic risks in our model, they do

not affect feasibility of monetary equilibrium allocations. To be more precise, we can observe

the following statement.

Remark. The good market equilibrium holds at any monetary equilibrium given any σ > 0.

To verify this remark, let σ > 0 and let qe be a stationary monetary equilibrium given σ.

The consumption {(cyt , (cθt )θ∈Θ)}t≥1 corresponding to qe is then given by cyt = ωy − qet and

cθt = ωo+(1+θσ−1)qet for each t ≥ 1 because me
t = Mt for each t ≥ 1. Therefore, for each t ≥ 1,

cyt +
∑
θ∈Θ

cθtπθ = (ωy − qet ) +
∑
θ∈Θ

(ωo + (1 + θσ−1)qet )πθ

= ωy + ωo + σ−1qet+1

∑
θ∈Θ

θπθ

= ωy + ωo,

because
∑

θ∈Θ θπθ = 0. This establishes the previous remark. As a summary, the money growth

and nominal idiosyncratic risks themselves do not lose any amount of the consumption good.

3 Main Results

This section provides our main results. Proofs of those results are provided in the following

section. Although we will consider the welfare of a stationary monetary equilibrium, we have

adopted Pareto optimality (PO) as an optimality criterion for stationary feasible allocations.
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To apply the PO criterion to allocations corresponding to a stationary monetary equilibrium,

we first explore a tractable condition identifiable with PO (and golden rule optimality, GRO).

Proposition 1 An interior stationary feasible allocation c = (cy, (cθ)θ∈Θ, (cθ1)θ∈Θ) is Pareto

optimal if and only if there exists some co > 0 such that:

(A) co = cθ for each θ ∈ Θ; and

(B) u′o(co)/u′y(cy) ≤ 1.

Furthermore, it is golden rule optimal if and only if there exists some co > 0 satisfying (A) and

(B) with equality.

By this proposition, we can say that, at each PO allocation, (A) consumptions must fully

insured and (B) the marginal rate of substitution between the first- and the second-period

consumption must be less than or equal to one. Furthermore, GRO implies PO but PO does not

necessarily imply GRO. This is standard characterizations of PO and GRO in the OLG model.4

We next explore equivalent condition for existence and uniqueness of stationary monetary

equilibrium given a money growth rate. Before doing so, we characterize a monetary equilibrium

by a difference equation.

Proposition 2 A positive sequence qe such that qet ∈ (0, ωy) for each t ≥ 1 is a monetary

equilibrium given money growth rate σ > 0 if and only if it holds that

σqetu
′
y(ω

y − qet ) = qet+1

∑
θ∈Θ

(1 + θ)u′o(ω
o + (1 + θσ−1)qet+1)πθ (1)

for each t ≥ 1.

As a corollary of this proposition, we can characterize a stationary monetary equilibrium, de-

noted by q ∈ ]0, ωy[ , given σ > 0 by the single equation:

σu′y(ω
y − q) =

∑
θ∈Θ

(1 + θ)u′o(ω
o + (1 + θσ−1)q)πθ. (2)

To avoid the situation that the return of money at a stationary monetary equilibrium becomes

negative, we will concentrate our attention on the situation that σ ≥ τ . We should then explore

the condition for existence of a unique solution of this equation. The following proposition

provides such a condition.

4Interested readers might find Ohtaki (2013), which characterizes golden rule optimality in a stochastic OLG
environment.
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Proposition 3 For each money growth rate σ ≥ τ ,

a. a stationary monetary equilibrium given σ exists if and only if r0 < 1/σ; and

b. it is unique,

where r0 := u′y(ωy)/u′o(ωo).

By Proposition 1, the equivalent condition provided in Proposition 3.a can be interpreted as

Pareto suboptimality of the initial endowment stream when σ = 1. Given the initial endow-

ment stream (ωy, ωo), therefore, a stationary equilibrium is hard to exist when a money growth

rate increases (and it banishes when σ = r−1
0 ). We denote by q∗(σ) the stationary monetary

equilibrium given σ ∈ [τ, r−1
0 [ . Because a stationary monetary equilibrium exists and is unique

for each σ ∈ [τ, r−1
0 [ , q∗(σ) is well-defined. By applying the implicit function theorem, one can

obtain that q′∗(σ) < 0 on its domain. Furthermore, it is easy to verify that limσ↑r−1
0

q∗(σ) = 0.

We are now ready to argue on the optimal monetary policy. We first verify that the stationary

monetary equilibrium given a money growth rate is never first-best, i.e.: it does not generate

Pareto optimal allocation.

Proposition 4 For any σ ∈ [τ, r−1
0 [ , the stationary monetary equilibrium given σ cannot gen-

erate Pareto optimal allocations.

As shown in this proposition, the stationary monetary equilibrium given each money growth

rate does not achieve the first-best situation. Therefore, we should consider the second-best

situation. Given a money growth rate σ, the equilibrium welfare, denoted by W (σ), can be

written as

W (σ) = uy(ω
y − q∗(σ)) +

∑
θ∈Θ

uo(ω
o + (1 + θσ−1)q∗(σ))πθ.

In this article, we define a second-best situation as a situation wherein a money growth rate

is chosen to maximize the welfare at stationary monetary equilibrium. To be more precise, a

money growth rate σ ∈ [τ, r−1
0 [ is second-best if W (σ) ≥W (σ̃) for each σ̃ ∈ [τ, r−1

0 [ .

To study a second-best money growth rate, define the function V : �2
++ → � by

V (σ, q) := uy(ω
y − q) +

∑
θ∈Θ

uo(ω
o + (1 + θσ−1)q)πθ.

The welfare at the stationary monetary equilibrium given σ, W (σ), can be then represented

by W (σ) = V (σ, q∗(σ)). By differentiating W , we can obtain that W ′(σ) = V1(σ, q∗(σ)) +

where r0 := u′y(ωy)/u′o(ωo).
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V2(σ, q∗(σ))q′∗(σ), i.e.: an increment of the equilibrium welfare by an increase in σ can be divided

into two parts: V1(σ, q∗(σ)) and V2(σ, q∗(σ))q′∗(σ). By easy calculation, we can obtain that

V1(σ, q) = − q

σ2

∑
θ∈Θ

θu′o(ω
o + (1 + θσ−1)q)πθ

= − q

σ2

⎡
⎣ ∑
θ∈Θ−

θu′o(ω
o + (1 + θσ−1)q)πθ +

∑
θ∈Θ+

θu′o(ω
o + (1 + θσ−1)q)πθ

⎤
⎦

> − q

σ2
u′(ωo + q)

∑
θ∈Θ

θπθ = 0,

for each σ ≥ θ and each q > 0, where Θ− := {θ ∈ Θ : θ < 0} and Θ+ := {θ ∈ Θ : θ ≥ 0}. We

can also obtain that

V2(σ, q∗(σ)) = −u′y(ωy − q∗(σ)) +
∑
θ∈Θ

(1 + θσ−1)u′o(ω
o + (1 + θσ−1)q∗(σ))πθ

=
∑
θ∈Θ

[
−1 + θ

σ
+ 1 +

θ

σ

]
u′o(ω

o + (1 + θσ−1)q∗(σ))πθ

= −1− σ

σ

∑
θ∈Θ

u′o(ω
o + (1 + θσ−1)q∗(σ))πθ

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 0 if σ

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 1

for each σ ∈ [θ, r−1
0 [ , where the second equality follows from Eq.(2). Here, we should note that,

in the absence of nominal idiosyncratic risks (i.e.: 0 ∈ Θ and π0 = 1), which is the case excluded

in the current setting, V1(σ, q) = 0 and W ′(σ) = V2(σ, q∗(σ))q′∗(σ). In that case, furthermore,

the second-best money growth rate becomes σ = 1, a stationary monetary equilibrium at which

also becomes GRO and therefore is CPO. This may indicate that the term V2(σ, q∗(σ))q′∗(σ)

is related to the intertemporal consumption smoothing and σ �= 1 distorts the consumption

smoothing between consumptions when young and old. On the other hand, in the presence of

nominal idiosyncratic risks, we have shown that V1(σ, q) > 0, which is a factor increasing the

equilibrium welfare. This is because an increase in σ smooths contingent consumptions in the

second-period (See also Eq.(1)). In other words, V1(σ, q∗(σ)) is related to the risk sharing in the

second period and a low σ distorts the risk sharing among contingent consumptions when old.

Therefore, we can consider that W ′(σ) = V1(σ, q∗(σ)) + V2(σ, q∗(σ))q′∗(σ) contains a trade-off

between intertemporal consumption smoothing and better risk sharing and the central bank

should choose a money growth rate to remedy such a trade-off. Then, the final proposition of

this article provides a characterization of second-best monetary growth rates:

Proposition 5 A second-best money growth rate exists and is greater than one if and only if

r0 < 1.
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This proposition says that, in the presence of nominal idiosyncratic risks, a constant or reduc-

ing monetary policy is not optimal and there exists some expansionary monetary policy being

optimal (more precisely, second best), provided that r0 < 1, which means Pareto suboptimality

of the initial endowment stream (See Proposition 1). The last condition makes money essential,

i.e.: it ensures the existence of stationary monetary equilibrium even when there is no money

growth, i.e.: σ = 1.

To close this section, we presents an example illustrating some comparative statistics.

Example. Suppose that ωy > 0, ωo = 0, and uy(x) = uo(x) = x1−γ/(1 − γ) for γ > 0 where

uy(x) = uo(x) = lnx if γ = 1. First note that τ and ρ are not independent of each other. To

observe this fact, let μ = πρ ∈ ]0, 1[ . By the proviso that −τ(1 − μ) + ρμ = 0, we can obtain

that τ(ρ) := ρμ/(1 − μ) = τ ∈ ]0, 1]. Also note that it must hold that ρ ≤ (1 − μ)/μ because

τ(ρ) ≤ 1.

In this economy, a monetary equilibrium given σ, denoted by {qt(σ)}t≥1, is characterized by

(∀t ≥ 1) qt+1(σ) =

[
A(σ)

(ωy − qt(σ))
γ

qt(σ)

]− 1
1−γ

given q1(σ)

if γ �= 1 and qt(σ) = A(σ)ωy/(1 +A(σ)) for all t ≥ 1 if γ = 1, where

A(σ) =
(1− μ)(1− τ(ρ))

(σ − τ(ρ))γ
+

μ(1 + ρ)

(σ + ρ)γ
.

A unique stationary monetary equilibrium given σ, denoted by q∗(σ), has then a closed form

that

q∗(σ) =
[A(σ)]

1
γ

1 + [A(σ)]
1
γ

ωy.

Here, we examine the effect of an increase in risk of nominal shocks on the welfare and the

second-best money growth rate. Further specify the economy by ωy = 1 (and ωo = 0), γ = 0.5,

μ = 0.5. Because μ = 0.5, an increase in ρ = τ ∈ ]0, 1] represents an increase in risk of nominal

shocks in the sense of Rothschild and Stiglitz (1970). Figure 1 depicts the relation between

money growth rate σ and equilibrium welfare W (σ) by the solid line when ρ = 0.45, the dashed

line when ρ = 0.65, and the dot-dashed line when ρ = 0.85. It can be observed that an increase

in risk of nominal shocks worsens the welfare at a second-best money growth rate. In fact, we

can calculate that the second-best money growth rate is about 1.25 if ρ = 0.45, about 1.42 if

ρ = 0.65, and about 1.62 if ρ = 0.85. The welfare at the second-best money growth rate is then
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Figure 2: Comparative Statistics w.r.t. ρ

about 2.80 if ρ = 0.45, about 2.77 if ρ = 0.65, and about 2.73 if ρ = 0.85. Figure 2.a depicts the

relation between ρ and the second-best money growth rate, denoted by σ∗∗(ρ) and Figure 2.b

does between ρ and the welfare at the second-best money growth rate. Therefore, an increase

in risk of unexpected redistribution of money actually worsens the welfare.

4 Proofs of Propositions

This section provides proofs of propositions in the previous section.

Proof of Proposition 1. Let c = (cy, (cθ)θ∈Θ, (cθ1)θ∈Θ) be an interior stationary feasible

allocation. Let Θ(c) := {θ ∈ Θ : cθ1 > 0}. We first claim that Θ(c) �= ∅, i.e.: there exists some

θ′ ∈ Θ such that cθ
′

1 > 0. In fact, it follows from the fact that c is interior that 0 <
∑

θ∈Θ cθπθ =∑
θ∈Θ cθ1πθ, which implies the existence of θ′ ∈ Θ such that cθ

′
1 > 0.

We then characterize Pareto optimality. Note that c is Pareto optimal if and only if there exist

Pareto weights γ ∈ �++ and (γθ1)θ∈Θ ∈ �Θ
+ such that c maximizes γU(cy, (cθ)θ∈Θ)+

∑
θ∈Θ γθ1c

θ
1πθ

subject to the resource constraints: cy +
∑

θ∈Θ cθπθ = ωy + ωo and cy +
∑

θ∈Θ cθ1πθ = ωy + ωo.

Therefore, Pareto optimality of c is completely characterized by the existence of Pareto weights
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γ ∈ �++ and (γθ1)θ∈Θ ∈ �Θ
+ and Lagrange multipliers λ ≥ 0 and λ1 ≥ 0 such that

γu′y(c
y) = λ+ λ1, (3)

(∀θ ∈ Θ) γu′o(c
θ) = λ, and (4)

(∀θ ∈ Θ) γθ1 ≤ λ1 with equality if cθ1 > 0. (5)

Note that λ1 = γθ
′

1 for each θ′ ∈ Θ(c) because cθ
′

1 > 0.

Suppose that there exists γ ∈ �++, (γ
θ
1)θ∈Θ ∈ �Θ

+, λ ≥ 0, and λ1 ≥ 0 satisfying Eqs.(3)–(5).

By Eq.(4), there exists some co > 0 such that co = cθ for each θ ∈ Θ. By Eqs.(3) and (4), it

follows that

1 =
u′o(co)
u′y(cy)

+
λ1

γu′y(cy)
≥ u′o(co)

u′y(cy)

because λ1 ≥ 0.

On the other hand, suppose the existence of co > 0 such that co = cθ for each θ ∈ Θ and

u′o(co)/u′y(cy) ≤ 1. Let γ = 1, λ = u′o(co), λ1 = γθ
′

1 = u′y(cy) − u′o(co) ≥ 0 for each θ′ ∈ Θ(c)

and γ1θ′′ = 0 for each θ′′ ∈ Θ \ Θ(c). It is immediate to verify that γ ∈ �++, (γ
θ
1)θ∈Θ ∈ �Θ

+,

λ ≥ 0, and λ1 ≥ 0 satisfies Eqs.(3)–(5). This completes the proof of characterization of Pareto

optimality.

Finally, we characterize golden rule optimality. Note that c is golden rule optimal if and only

if it maximizes U(cy, (cθ)θ∈Θ) subject to the resource constraints: cy +
∑

θ∈Θ cθπθ = ωy + ωo

and cy +
∑

θ∈Θ cθ1πθ = ωy + ωo. Then, the solution of the previous optimization problem is

completely characterized by, in addition to the stationary feasibility of c, u′y(cy) = u′o(cθ) for

each θ ∈ Θ. Because of strict concavity of uo, the last condition is equivalent to the existence of

some co > 0 such that co = cθ for each θ ∈ Θ and u′o(co)/u′y(cy) = 1. This completes the proof

of Proposition 1. Q.E.D.

Proof of Proposition 2. Combining the first-order conditions of the agents’ optimization

problems and the money market clearing condition, we can obtain Eq.(1). Q.E.D.

Proof of Proposition 3. Let σ ≥ τ . Because θ < 0, σ > 0. Note that 1 + θσ−1 ≥ 0 for each

θ ∈ Θ. In fact, for each θ < 0, we obtain that 1 + θσ−1 ≥ 1 + θσ−1 ≥ 0. On the other hand, for

each θ ≥ 0, 1 + θσ−1 ≥ 1 ≥ 0.

Nominal Idiosyncratic Shocks and Optimal Monetary Policy � � 55



Define the function f : ]0, ωy[→ � by

(∀q ∈ ]0, ωy[ ) f(q) :=
u′y(ωy − q)∑

θ∈Θ(1 + θ)u′o(ωo + (1 + θσ−1)q)πθ
.

Note that f is continuous. Furthermore, f is strictly monotone increasing because it follows

that, for each q ∈ ]0, ωy[ ,

f ′(q) =
−u′′y(cy)

∑
θ∈Θ(1 + θ)u′o(cθ)πθ − u′y(cy)

∑
θ∈Θ(1 + θ)(1 + θσ−1)u′′o(cθ)πθ(∑

θ∈Θ(1 + θ)u′o(cθ)πθ
)2

and 1 + θσ−1 ≥ 0, where cy = ωy − q and cθ = ωo + (1 + θσ−1)q for each θ ∈ Θ.

First suppose the existence of stationary monetary equilibrium, q ∈ ]0, ωy[ . By strict mono-

tonicity of f , we can obtain that 1/σ = f(q) > limx↓0 f(x) = u′y(ωy)/u′o(ωo).

Suppose now that u′y(ωy)/u′o(ωo) < 1/σ. Because limq↓0 f(q) < 1/σ and limq↑ωy f(q) =∞ >

1/σ, it follows from the intermediate value theorem that there exists some q ∈ (0, ωy) such that

f(q) = 1/σ. This q is stationary monetary equilibrium.

By strict monotonicity of f , we can conclude such a q is unique. This completes the proof

of Proposition 3. Q.E.D.

Proof of Proposition 4. Let σ ∈ [τ, r−1
0 [ . Then, the consumption stream at the equilibrium,

denoted by (cy, (cθ)θ∈Θ), is given by cy = ωy − q∗(σ) and cθ = ωo + (1 + θσ−1)q∗(σ) for each

θ ∈ Θ. By the proviso on the probability space, (Θ, π), there exists at least one θ̂ > 0 in Θ.

Obviously, cθ �= cθ̂, which does not satisfy the characterization of Pareto optimality provided by

Proposition 1. Therefore, the stationary monetary equilibrium given σ cannot achieve a Pareto

optimal allocation. Q.E.D.

Proof of Proposition 5. Suppose the existence of a second-best money growth rate σ∗,

which exceeds unity. Then, it follows from its definition that 1 < σ∗ < r−1
0 , which implies that

r0 < 1/σ∗ < 1. This completes the only if part of the proposition.

Suppose now that r0 < 1 or equivalently 1 < r−1
0 . Recall that q′∗(σ) < 0, V1(σ, q) > 0, and

V2(σ, q∗(σ))

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 0 if σ

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 1

for each q > 0 and each σ ∈ [τ, r−1
0 [ . Thus, we can obtain that

W ′(σ) = V1(σ, q∗(σ)) + V2(σ, q∗(σ))q′∗(σ) > 0
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for each σ ∈ [τ, 1], which implies that a second-best money growth rate, if any, is greater than

one. Furthermore, it follows from the fact that limσ↑r−1
0

q∗(σ) = 0 and r0 < 1 that

lim
σ↑r−1

0

W ′(σ) = lim
σ↑r−1

0

V2(σ, q∗(σ))q′∗(σ) < 0,

which implies that there exists some δ ∈ ]0, r−1
0 −1[ such that W ′(r−1

o −ε) < 0 for each ε ∈ ]0, δ].

Therefore, every σ ∈ [r−1
0 − δ, r−1

0 [ is not second-best and a second-best money growth rate, if

any, is less than σ := r−1
0 − δ > 1.

As a summary, a second-best money growth rate, if any, lies on [1, σ]. Because W is contin-

uous on [1, σ], which is a compact set, we can conclude that there exists a second-best money

growth rate σ∗∗ in [1, σ]. Finally, it can be shown by applying the intermediate value theorem

that σ∗∗ ∈ ]1, σ[ because W ′(1) > 0 and W ′(σ) < 0. Q.E.D.
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