サステナブルビル構造システムに関する研究

- 構造設計法の提案 -

岩田研究室 200770136 島 有希子

1. 序

建築鋼構造分野から地球環境に配慮した「サステナブ ルビル構造システム(図1)」が提案された¹⁾。この構造シ ステムは、構造全体の長寿命化を第一の目標とし、やむ なく建物を解体しなければならない場合、部材レベルの リユースを可能とする。また、リユース材を主架構の部 材である柱や梁に使用することも想定している。

本システムは、主架構と制振部材を分離する損傷制御 構造の考え方を採用している。制振部材には方杖状に配 置した座屈拘束ブレース(以下、BRブレース)を用いる。

3. 設計法

3.1 設計フローの提案

図3にサステナブルビル構造システムの設計フローを 示す。本システムの設計法は、損傷制御構造の設計概念 を基本的な枠組みとする。一般的な設計フローに、SB接 合部、BRブレースの設計と時刻歴応答解析が加わる。

a)長期荷重

長期荷重は、主架構のみで負担する。SB接合部を設計す るため、柱梁接合部は剛接合の状態で、長期荷重時に柱 梁接合部にかかる曲げモーメントを算出する。

柱梁接合部は、接合部ユニットを介して鋼棒に初期張力 を導入し、締め付ける(図2)。この鋼棒を用いた接合部 をサステナブル接合部(以下、SB接合部)とする。SB接 合部では、生じる曲げモーメントの大きさに応じて接合 部の剛性が段階的に変化する。そのため、使用時に要求 される剛性と大地震時に要求される変形性能を両立して いる。接合部の剛性が低下するため、BRブレースによる 効率の良いエネルギー吸収が可能となる。

また、本システムは、高度に品質管理された汎用的な 部材、部品を工場で製作し、現場でそれを組み立てる。 そのため、建築物そのものの品質を明確に提示すること が可能となる、システム構造体の特徴を併せ持つ。

2. 研究目的

既往の研究で行われた、SB接合部の実大実験より、基 本的な力学的特性が明らかになり、それを表現できる数 値解析モデルが構築された。しかし、SB接合部を含め、 システム全体としての設計法が確立していない。

b) 一次設計

BRブレースを配置した後、Co=0.2で層間変形角1/200以内 を満足できるように部材の断面調整を行う。床は合成床 として扱うので、梁の剛性に床の分を考慮する3。

c)二次設計

鋼棒の初期張力が解消され、SB接合部が半剛状態となり、 BRブレースによるエネルギー吸収が行われる。梁の剛性 は床が梁から剥離するとし、梁のみの剛性とする3)。

d)時刻歴応答解析

地震波を入力し、構造全体の層間変形角、主架構の柱梁 部材の損傷確認、SB接合部の状態、BRブレースのエネル ギー吸収量などのクライテリアの確認をする。

3.2 想定モデル

外周部にSB接合部を用いたチューブ構造とする。BRブ レースは外周部のみ方杖状に配置する。隅角部の柱は角 形鋼管とする。床構造は解体が容易な構法³⁾とする。

Study on a sustainable building structure system -Proposal for the structural design methodSHIMA Yukiko

4. 解析方法

4.1 SB接合部の力学モデル

既往の研究4)で構築された、SB接合部の数値解析モデ ルを用いる。鋼棒は平行部とネジ部を軸バネでモデル化 し、直列につないでいる。

4.2 SB接合部の寸法設定

図4に接合部ユニットの詳細を示す。鋼棒の平行部の長 さと鋼棒のネジ部の長さは図4に示す通りとする。鋼棒の 配置位置は幅(B)、せい(D)ともに梁断面を4分割し、端部 から1/4の位置とする(図5)。

4.3 BRブレースのモデル化

BRブレース全長を3分割し中央のエネルギー吸収部と 両端のガセット部に分けてモデル化する。ガセット部は リブによる補強を想定した矩形の弾性部材とする。

5.SB接合部の設計

5.5 柱フランジ部の降伏曲げ耐力

柱フランジ部の降伏曲げ耐力はスプリットティ形式柱 梁接合部の耐力を参考に算出する。SB接合部は降伏場の 数がスプリットティの半分になる(図6)。よって、降伏耐 力。P.の係数を半分の4として計算する。下記の式を用い て柱フランジと補強プレートの降伏曲げ耐力。M、を計算 する。算定に必要な各寸法を図7に示す。

$${}_{c}M_{y} = {}_{c}P_{y} \cdot d_{f}$$
⁽²⁾

$${}_{c}P_{y} = 4 \cdot {}_{c}M_{0} \left\{ \frac{b_{1}}{h} + \frac{b_{1}}{h_{m}} + \pi + \frac{2}{\pi} \left(\frac{h}{b_{2}} - 1 \right)^{2} + \frac{2}{\pi} \left(\frac{h_{m}}{b_{2}} - 1 \right)^{2} \right\} \quad (3)$$

$$_{c}M_{0} = \frac{c^{t_{f}^{2}}}{4} _{c}F_{y} \tag{4}$$

$$h_{m} = \frac{b_{2}}{2} + \sqrt{\left(\frac{b_{2}}{2}\right)^{2} + \frac{\pi \cdot b_{1} \cdot b_{2}}{4}}$$
(5)

。P,: 柱フランジ部の面外降伏引張耐力, F,: 柱フランジの降伏強さ

5.1 接合部ユニット

エンドプレート、アンカープレートの板厚は、鋼棒の 初期張力によってかかる応力に対して、長期許容応力度 以内となるように決定する。本研究では、鋼棒の長さを 既往の研究と同様に400mmとする。素材はS45Cとし、初期 張力は鋼棒の降伏耐力の1/3とする。

5.2 鋼棒径の最小限度の設計方法

接合部の離間モーメントが長期荷重による梁端モーメ ントを上回るように鋼棒径を設計する。設計した鋼棒径 でせん断力に対しての検討も行う。

5.3 SB接合部離間モーメント

SB接合部の実大実験2)で用いている算定式とする。

(1) $M_s = 2n \cdot T_0 \cdot d_c$

n:鋼棒の行数(2), To:初期導入張力, dc:梁圧縮フランジ縁端から梁中心距離 5.4 鋼棒径の最大限度の設計方法

柱フランジ部の降伏曲げ耐力を算出し、鋼棒の降伏モ ーメントがその値以下になる鋼棒径で設計する。

dr: 梁フランジ - 引張力が作用する鋼棒間距離,

b1:接合鋼棒-柱フランジ縁端距離, b2:接合鋼棒-柱ウェブ間距離,

h:接合鋼棒-梁フランジ板厚中心間距離, d:柱フランジ板厚,

5.6 鋼棒の降伏モーメント

SB接合部の実大実験²⁾で用いている算定式とする。 $M_{y} = \sum_{i=1}^{n} 2F_{y} \cdot \frac{d_{i}^{2}}{d}$ (6)

Fy: 鋼棒の降伏強度, di:梁圧縮フランジ縁端からi行目の鋼棒までの距離, d」: 梁圧縮フランジ縁端から最初に降伏する鋼棒までの距離

6. BRブレースの設計

BRブレースとして図8のような形状の鋼モルタル板を 用いた座屈拘束ブレース5を使用する。

6.1 芯材断面の設計

図9に示すように等価線形化法に基づいて設計する。計 算の条件は、BRブレースによる剛性付加分を考慮し、BR ブレース付加による効果は直行性を有する減衰の付加と する。また、主架構の一次モードは直線と仮定する。 **6.2 拘束材の設計**

BRブレースの拘束材の設計は、文献5)に従って行う。

7. 試設計

提案した設計フローに基づき、サステナブルビル構造 システムの試設計を行う。設計した建物モデルで地震応 答解析を行い、本解析モデルの応答性状を確認する。 7.1 立体解析モデル

解析モデルは、階数の異なる2つのモデルとする。各 構面とも5スパンで同一平面の5層と10層の鉄骨造とする。 柱脚は露出形式柱脚を想定し、回転バネでモデル化する。

図10に10層モデルの平面図と立面図を示す。表1に両モ デルの主架構の部材断面表を示す。本解析においては、 Ds=0.3としたときの保有水平耐力を満足する部材断面と する。想定荷重は、固定荷重5.1kN/m²、積載荷重1.8kN/m² とし、全ての層において、6.9kN/m²とする。

7.2 解析モデルの設計条件

表2に主架構、SB接合部、BRブレースそれぞれの目標ク

ライテリアを示す。 ω_{max} は、拘束力の指標 $P_{E}/P_{y}(P_{E}: 拘束)$ 材のオイラー座屈荷重、 $P_{y}: 芯材の降伏荷重)を用いた性$ $能評価式<math>\omega$ =150 P_{E}/P_{y} の関係より算出する⁵⁾。

静的増分解析における外力分布は、Ai分布に従うもの とする。減衰は瞬間剛性比例型とし、1次固有周期に対す る減衰定数は2%とする。

時刻歴応答解析に用いる入力地震動は、観測地震動は 神戸海洋気象台 NS、El centro NS、八戸 EW、Taft EW、 模擬地震動は、日本建築センター作成によるBCJを採用す る。観測地震動は、地動最大速度25kineと50kineに基準 化し、それぞれレベル1、レベル2の設定とする。

7.3 鋼棒径の最小限度の設計

表3に各層外周フレームの梁端モーメントの最大応力 と、SB接合部の鋼棒径 φ 21、 φ 29、 φ 32、 φ 36のそれぞ れの離間モーメントを示す。初期張力は鋼棒の降伏耐力

表3 鋼棒径の最小限度算定 a)5層モデル 表 4 鋼棒径の最大限度算定 a) 5 層モデル

	梁端モーメント		離間モーン	ドント(kN.m)			柱フランジ曲げ耐力	接	合鋼棒降伏	モーメント(k)	N.m)
	(kN.m)	φ21	φ29	φ32	φ36		(kN.m)	φ21	φ29	φ32	φ36
R	65.3	54	103	125	159	R	331	135	258	314	397
10F	64.0	54	103	125	159	10F	331	135	258	314	397
9F	67.5	68	129	157	199	9F	830	169	322	392	497
8F	67.3	68	129	157	199	8F	830	169	322	392	497
7F	67.8	81	155	189	239	7F	2002	204	388	473	599
6F	67.2	81	155	189	239	6F	2002	204	388	473	599
5F	68.1	81	155	189	239	5F	2002	204	388	473	599
4F	67.6	97	185	225	285	4F	5639	242	462	563	713
3F	66.0	97	185	225	285	3F	5639	242	462	563	713
2F	64.7	97	185	225	285	2F	5639	242	462	563	713

b) 10 層モデル

b) 10 層モデル

	梁端モーメント	離間モーメント(kN.m)				
	(kN.m)	φ21	φ29	φ32	φ36	
R	68.8	48	92	113	143	
5F	71.1	69	132	161	204	
4F	71.6	83	159	193	244	
3F	71.0	83	159	193	244	
2F	67.2	83	159	193	244	

	柱フランジ曲げ耐力	接合鋼棒降伏モーメント(kN.m)					
	(kN.m)	φ21	φ29	φ32	φ36		
R	343	121	231	281	356		
5F	886	173	330	402	509		
4F	1745	208	396	483	611		
3F	3879	208	396	483	611		
2F	3879	208	396	483	611		

7.4 鋼棒径の最大限度の設計

表4に仮定断面で算定した柱フランジ部の降伏曲げ耐 力と、鋼棒の降伏モーメントを示す。表4より、両モデル 柱フランジ部降伏モーメントを超えてしまうため、鋼棒

以上の結果より、鋼棒径の最小限は 429、最大限は 4 32なので、せん断力に対する検討も考慮した上で、本解 析モデルでは常時荷重時の安全性を考慮し、φ32とする。

表5 BR ブレース芯材断面表

a) 5 層モデル

b) 10 層モデル

200
200
180
150

7.5 BRブレース芯材の設計

等価線形化法の計算結果より、両モデルとも主架構と BRブレースの剛性比は5とする。表5に設計した各階のBR ブレースのエネルギー吸収部の断面を示す。

7.6 一次·二次設計

主架構にBRブレースを配置し、一次設計と二次設計を 行って部材の断面調整を行う。また、5層モデルの一次固 有周期は0.686秒、10層モデルは1.138秒である。

7.7 応答解析結果

図11に神戸波レベル2の3層目中央部における、鋼棒の 軸変形荷重関係を示す。鋼棒の塑性率は最大で2程度であ り、破断には至らない。下層では鋼棒の初期張力が抜け て塑性化し、接合部は半剛接合の状態となっている。主 架構の損傷程度を見ると、両モデルとも柱梁部材は弾性 範囲内であり、BRブレースでエネルギーを吸収している。

ŧ. 0.005 0.01 0.015 0.0 層間変形角(rad) a) 5 層モデル

		表6 応答 a)5	層間変刑 層モデル)角一覧 レ	
		El Centro	八戸	Taft	BCJ
	FL5	1/ 76	1/ 164	1/ 112	1/ 11:
h	FL4	1/ 74	1/ 172	1/ 102	1/ 102
2	FL3	1/ 71	1/ 172	1/ 107	1/ 104
	FL2	1/ 74	1/ 130	1/ 113	1/ 100
	FL1	1/ 105	1/ 144	1/ 145	1/ 12

b) 10 層モデル

El Centro

八戸

Taft

BCJ

FL10	1/ 195	1/ 277	1/ 197	1/210
FL9	1/ 125	1/ 188	1/ 139	1/ 141
FL8	1/ 136	1/ 188	1/ 115	1/ 146
FL7	1/ 128	1/ 180	1/ 86	1/ 132
FL6	1/ 132	1/ 168	1/ 114	1/ 151
FL5	1/ 117	1/ 132	1/ 125	1/ 133
FL4	1/ 117	1/ 118	1/ 133	1/ 113
FL3	1/ 140	1/ 130	1/ 136	1/ 102
FL2	1/ 141	1/ 117	1/ 120	1/ 90
FL1	1/ 156	1/ 123	1/ 126	1/ 99
7	長7 BR つ	ブレース	累積塑性	

歪エネルギー率一覧

a) 5 層モデル

鋼棒は下層で塑性化しているものが多く見られた。

図12に神戸波におけるレベル1とレベル2、表6に各 地震波におけるレベル2の応答層間変形角を示す。 両モ デル共に目標とした層間変形角を超える地震波もあるが、 概ね満足している。5 層モデルでは、固有周期が短いこ とから特定の地震波で応答変位が大きく出た。

以上より、5層モデル10層モデルにおいて、本システ ムで設計クライテリアを満足した設計ができたと言える。 7.8 BRブレース拘束材の設計

図13に神戸波におけるレベル2、表7に各地震波にお けるレベル2のBRブレースの累積塑性歪エネルギー率ω を示す。ωの値は各層の最大値である。全ての地震波の 中での最大値は5層モデルでは186、10層モデルでは135 であり、拘束力の指標 P_E/P_vを5層では1.65以上、10層 では1.2以上とすればよい。

結論 8.

- 既往の実験結果の知見を統合し、サステナブルビル構 造システムの設計法を提案した。
- 2) 提案した設計法に沿って5層5スパンと10層5スパンの

	El Centro	八戸	Taft	BCJ
FL5	134	12	64	146
FL4	186	12	80	176
FL3	118	5	40	99
FL2	172	17	88	173
FL1	92	9	49	103
	El Centro	八戸	Taft	BCJ
	El Centro	八百	Taft	BC.I
FL10	0	0	0	0
FL9	11	1	7	10
FL8	7	1	6	4
FL7	20	2	23	16
FL6	21	4	17	23
FL5	31	11	17	42
FL4	41	26	18	64
FL3	45	42	29	96
FL2	53	53	40	124
FI 1	59	59	46	135

建物を想定した立体モデルで試設計を行い、設計法の 有効性を確認した。

【参考文献】

1)	會澤貴浩、山田哲、岩田衛: サステナブルビル構造システムの提案とその基本
	特性、日本建築学会環境系論文集、第581号、2004.7
2)	岡田健、山本重治、山田哲、岩田衛: サステナブルビル構造システムの柱梁接
	合部に関する実験、日本建築学会構造系論文集、第591号、2005.5
3)	島有希子、平田倫央、加藤貴志、前田親範、岩田衛: サステナブルビル構造シ
	ステムの部分架構実験、日本建築学会技術報告集、2008.6
4)	岩田衛、平田倫央、山本重治、長尾真奈: サステナブルビル構造システムの柱
	梁接合部の力学モデルとその検証、日本建築学会構造系論文集、第606号、2006.8
5)	村瀬亮、村井正敏、岩田衛: 鋼モルタル板を用いた座屈拘束ブレースの実験的
	研究 - その 4 - 、日本建築学会構造系論文集、第 620 号、2007.10

(166)