【カテゴリーⅡ】

日本建築学会構造系論文集 第74巻 第637号, 537-542, 2009年3月 J. Struct. Constr. Eng., AIJ, Vol. 74 No. 637, 537-542, Mar., 2009

RC 造柱の地震後の残存軸耐力に関する研究 EXPERIMENTAL STUDY ON RESIDUAL AXIS LOAD CAPACITY OF REINFORCED CONCRETE COLUMN

島崎和司* Kazushi SHIMAZAKI

Shear failure of columns may lead to collapse for existence buildings. After a severe earthquake, some buildings collapsed by loss of axial capacity of the columns, however, some buildings have stayed even many columns were fractured by shear. For the examination of building collapse, it is required to investigate the axial load capacity of the columns after shear failure and to analyze the building performance using the pertinent analytical model for the columns. This paper investigates the analytical model for the collapse analysis of a building based on Yoshimura's concept of the failure surface contraction.

The reduction rate was obtained as a function of the maximum deformation, shear margin ratio, and so on, using the regression analysis of experimental results. The tested results are explained by this formula with good agreement.

Keywords: Reinforced concrete structure, column, damage level, shear span ratio, Residual Axis Load Capacity 鉄筋コンクリート構造, 柱, 損傷レベル, せん断スパン比, 残存軸耐力

1. はじめに

近年東京などの首都圏に起こるであろうと言われている首都直下 地震における既存建物のリスク評価のためには、建物の倒壊危険度 の評価が必要である。建物の崩壊は、鉛直支持部材、特に柱におけ るせん断破壊がその要因となる。地震後の建物においては、柱がせ ん断破壊して建物が倒壊した例や、多くの柱がせん断破壊したもの の、倒壊を免れている例が見受けられる。建物が崩壊するか否かは、 せん断破壊後の部材の軸力保持能力の検討と、保持できなくなった 軸力を建物として保持できるかの検討が必要になる。そのために地 震時に損傷を受けた柱部材の鉛直支持能力を評価することを目的と した研究が行われている¹⁾⁻⁸⁾。また、耐震診断においては、せん断余 裕度とせん断補強筋比、変形レベルに応じた残存軸耐力が定められ ている⁹⁾。

地震時の柱の軸力保持能力は水平力との複合応力であり、複雑と なる。実際に建物が崩壊するか否かは、変形レベルに応じた軸耐力 をモデル化した解析モデルによる検討が必要になる。一部の柱がせ ん断破壊した場合、その柱の水平剛性は著しく低下する。そのため、 塑性偏心が大きくなり、その柱の水平変形量がさらに増大して軸耐 力が減少し、崩壊に至る可能性がある。こうした現象を評価するた めには、せん断破壊後の軸耐力をモデル化して、ねじれを考慮した 解析を行う必要がある。また、制震補強のように耐震補強された建 物の安全性を地震応答解析で検証するような場合、既存の柱の軸力 保持能力喪失時までのモデル化は重要である。解析におけるモデル 化としては、図1に示したような材端に曲げばね、中央に剛塑性の 軸力せん断相関ばねを設け、それぞれが軸力と相関性を持つ破壊曲

せん断力(kN)

図2 縮小破壊面の模式図¹⁾²⁾

面で設定するのが簡易であろう。

芳村ら¹¹²は、定軸力下での柱の水平加力実験を行い、せん断破壊 後の水平力の低下領域を軸力が保持できなくなる限界変形まで検討 し、この関係を定式化し、これを塑性論に基づく破壊局面の縮小に より説明している。図2に示したように、せん断破壊直後の破壊曲

* 神奈川大学工学部建築学科 教授・博士(工学)

Prof., Kanagawa University, Dr. Eng.

(113)

-537 -

面を正負の軸耐力(*N_c*, *N_t*:本論では、圧縮を正とする)と、長期 軸力時(*N₀*)のせん断破壊点の3点を通る2次曲線や楕円で表し、せ ん断破壊後は、水平変形の増大に伴い、破壊曲面がこれと相似形に 縮小すると考えることで説明することができるとしている。このせ ん断破壊縮小曲面の縦軸が、作用している軸力まで低下したときに、 軸方向に崩壊することになる。芳村らは、定軸力下での水平カー水 平変形関係を用いてせん断破壊縮小曲面を定式化している。せん断 破壊後の水平カー水平変形関係をバイリニアで与え、水平変形量と 残存軸耐力の関係を与える式を導いている⁸。堀田ら¹⁰は、この芳村 らの提案を応用して、図1と同様なモデルを方立壁に適用した解析 を行っている。

せん断破壊縮小曲面は、損傷後の残存軸耐力低減率(図2の縦軸) が部材パラメータにより設定できれば、変動軸力への対応を含めて 簡易なモデル化が可能となり、解析プログラムにより倒壊の解析が 可能となる。本研究では既存不適格 RC 建物の柱を対象として、損 傷を受けた柱の残存軸耐力を、実験結果を整理して最大水平変形等 のパラメータの関数として求め、損傷後の破壊曲面を設定する簡易

$$Q = -\frac{Q_{su}}{r(N_0 - N_T)(N_C - N_0)} \left(N - \frac{rN_C + (2 - r)N_T}{2} \right)^2 + \frac{r(N_C - N_T)^2 Q_{su}}{4(N_0 - N_T)(N_C - N_0)}$$
(4)

(3)式で与えられる縮小率が、水平加力により損傷を受けた試験体の 残存軸耐力実験結果のデータから定めることができれば、(4)式によ る破壊曲面を容易に定義することができる。

部材がせん断破壊するか否かは、材端の曲げ耐力時のせん断力と 部材のせん断耐力との比であるせん断余裕度により判断されること になる。曲げ耐力、せん断耐力ともに軸力により耐力は変動するが、 本論では長期軸力時の値とし、柱のせん断耐力 Q_{su} を(1)式で求め、 曲げ耐力を略算式である(5)式で求めて、逆対称曲げを受けるときの せん断力に対する比としてせん断余裕度を定義した。

な手法を検討する。

2 縮小せん断破壊曲面

1)破壊曲面

せん断破壊曲面が2次曲線で表わせると仮定したとき、この破壊曲面を定義するには、3点を決める必要がある。この3点を、(1)式による水平力を受けない正負の軸耐力(N_c , N_T : 圧縮が正)、および、長期軸力時(N_0 : 圧縮応力度は σ_0)のせん断耐力 Q_{su} とする。

$$N_{T} = a_{g}\sigma_{y}$$

$$N_{C} = a_{g}\sigma_{y} + bDF_{c}$$

$$Q_{su} = \left\{ \frac{0.053 \, p_{t}^{0.23} (18 + F_{c})}{M \,/(Qd) + 0.12} + 0.85 \sqrt{p_{w}\sigma_{wy}} + 0.1\sigma_{0} \right\} bj$$
(1)

ここで、 a_g : 主筋全断面積(mm²)、 σ_y : 主筋の降伏強度(N/mm²)、 b: 柱幅(mm)、D: 柱せい(mm)、 p_i : 引張鉄筋比(%)、

 $F_c: コンクリート強度 (N/mm^2)、 p_w: せん断補強筋比、$

 σ_{wy} : せん断補強筋の主筋の降伏強度 (N/mm^2) 、

d:柱の有効せい(mm)、j:柱の応力中心間距離(mm) この3点を通る2次曲線は次式で与えられる。

一方、せん断破壊直後の軸耐力保持機構は、せん断破壊面で切断 し、その上部のみ取り出すと図3に示した模式図で考えられる¹¹⁾¹²⁾。 鉛直方向の力の釣り合いを考えると、せん断破壊後の軸耐力に関係 するのは、破壊面の P_v、P_uの鉛直方向成分と、主筋の軸耐力に因係 するのは、破壊面の P_v、P_uの鉛直方向成分と、主筋の軸耐力になる。 P_uは、P_vの摩擦力とすると、せん断破壊面でのクラック幅とせん断 補強筋の拘束力が影響することになり、クラック幅は水平変形に影 響を受ける。従って、(3)式で与えられる縮小率はこれらのパラメ ータの影響を受けると想定される。

2)実験データによる縮小率

用いた実験データは、著者等の実験³⁾⁴⁾と、水平加力により損傷を 受けた試験体の残存軸耐力を直接求めている実験⁵⁾⁶⁾のうち、主筋が 異形鉄筋である表1に示した22体のデータとした。これらは部材寸法 200~300mmの縮小試験体で、引張鉄筋比0.52~0.82%、せん断補強 筋比0.1~0.6%、せん断スパン比*M/Qd*=0.85~2.3である。

著者等の実験における試験体³⁾⁴⁾は、一定軸力で、ある損傷レベル に対応した部材角での水平繰り返し実験を行い、その後水平力を除 荷した状態で、鉛直方向の残存軸耐力を確認するための加力を行っ ている。代表的な試験体の水平加力終了時の損傷状況を写真1に、

(2)式で与えられる破壊曲面の圧縮軸耐力 N_cが、損傷を受け N_Rまで低下し、引張軸耐力 N_Tが不変で、縮小した破壊曲面が元の破壊曲面と相似とすると、破壊曲面の縮小率 r を次式で定義すれば、

$$r = \frac{\left(N_R - N_T\right)}{\left(N_C - N_T\right)} \tag{3}$$

縮小した破壊曲面は次式で与えられる2)。

図3 せん断破壊時の破壊面での力の釣り合いの模式図¹⁰⁾¹¹⁾

-538 -

表1 実験データー覧

No.		断面寸法(mm)		コンクリート	鉄筋					*	
		幅	有効	応力 中心	圧縮強度	引張鉄 筋比	せん断 補強筋	帯筋比	せん断 スパン	軸力比	 参考文
		I	せい	距離	(N/mm²)	p,(%)	(N/mm^2)	p " (%)	щ		献
1	1	200	175	153	22.4	0.82	391	0.10	2.29	0.15	
2	2	200	175	153	22.4	0.82	391	0.10	2.29	0.15	
3	3	200	175	153	22.4	0.82	391	0.10	2.29	0.15	3
4	4	200	175	153	22.4	0.82	391	0.10	2.29	0.15	J
5	5	200	175	153	22.4	0.82	391	0.30	2.29	0.15	
6	6	200	175	153	22.4	0.82	391	0.30	2.29	0.15	
7	7	200	175	153	22.0	0.82	477	0.10	2.29	0.15	
8	8	200	175	153	22.0	0.82	477	0.10	2.29	0.15	
9	9	200	175	153	22.0	0.82	477	0.30	2.29	0.15	
10	10	200	175	153	22.0	0.82	477	0.30	2.29	0.15	4
11	11	200	175	153	22.0	0.82	477	0.10	1.14	0.15	
12	12	200	175	153	22.0	0.82	477	0.10	1.14	0.15	
13	13	200	175	153	22.0	0.82	477	0.30	1.14	0.15	
14	14	200	175	153	22.0	0.82	477	0.30	1.14	0.15	
15	a9	300	300	270	25.1	0.74	335	0.6	1.67	0.20	
16	a10	300	300	270	25.1	0.74	335	0.6	1.67	0.20	5
17	a11	300	300	270	25.1	0.74	335	0.6	1.67	0.20	Ŭ
18	a12	300	300	270	25.1	0.74	335	0.6	1.67	0.20	
19	No.2	250	250	220	17.7	0.52	379	0.192	0.85	0.20	(
20	No.4	250	250	220	16.8	0.52	379	0.192	1.14	0.18	6
21	No.1	250	250	220	17.7	0.52	379	0.192	0.85	0.20	Ŭ
22	No.3	250	250	220	16.8	0.52	379	0.192	1.14	0.18	

写真1水平加力後のひび割れ

写真2鉛直加力後のひび割れ

表2 実験データの残存軸耐力

No.		せん断 余裕度	最大変 形比 (%)	主筋 _{pg} σ _y (N/mm²)	せん断 補強筋 p _w σ _{wy} (N/mm ²)	水 加 破 形	残存軸 耐力 N _R (KN)	軸耐力 _{Nc} (KN)	縮小率 r
1	1	0.8658	0.0200	8.16	39.1	22	1144	1222	0.95
2	2	0.8658	0.0400	8.16	39.1		1125	1222	0.94
3	3	0.8658	0.0800	8.16	39.1	曲げ→ せん断	243	1222	0.37
4	4	0.8658	0.0004	8.16	39.1		1162	1222	0.96
5	5	1.0249	0.0400	8.16	117.3	1.222.00 J. R	1183	1222	0.97
6	6	1.0249	0.0800	8.16	117.3	曲げ	1047	1222	0.89
7	7	0.8707	0.0400	7.99	47.7		953	1200	0.84
8	8	0.8707	0.0800	7.99	47.7	曲げ→ せん断	250	1200	0.37
9	9	1.0321	0.0400	7.99	143.1		1058	1200	0.91
10	10	1.0321	0.0800	7.99	143.1	曲げ	942	1200	0.83
11	11	0.6606	0.0200	7.99	47.7	せん断	469	1200	0.52
12	12	0.6606	0.0400	7.99	47.7	せん断	200	1200	0.34
13	13	0.7413	0.0400	7.99	143.1	せん断	475	1200	0.52
14	14	0.7413	0.0800	7.99	143.1	せん断	220	1200	0.36
15	a9	0.9562	0.1140	6.63	201.0	曲げ→ せん断	932	2856	0.44
16	a10	0.9562	0.0618	6.63	201.0	曲げ→ せん断	1726	2856	0.67
17	a11	0.9562	0.0405	6.63	201.0	曲げ	2932	2856	1.02
18	a12	0.9562	0.0786	6.63	201.0	曲げ→ せん断	1471	2856	0.60
19	No.2	0.6889	0.0161	4.83	72.8	せん断	474	1408	0.45
20	No.4	0.8165	0.0266	4.83	72.8	せん断	432	1352	0.44
21	No.1	0.6889	0.0320	4.83	72.8	せん断	221	1408	0.31
22	No.3	0.8165	0.0640	4.83	72.8	せん断	189	1352	0.30

鉛直加力終了時の損傷状況を写真2に示す。文献5)の実験は、定軸 カ下での水平加力試験を行い、水平耐力が所定の割合に低減したと ころで、鉛直加力実験を行ったものである。文献6)の実験は、定軸 カ下で鉛直支持能力が失われるまで加力した実験(No.1,3)を元に して、特定の損傷レベルまで加力した後の残存軸耐力を求めたもの である(No.2,4)。このほか、実験データとしては、芳村等の実験が文 献1)に26体示されている。これらの実験は定軸力下で水平変形を 増大させて、崩壊するまで実験を行っており、(3)式で定義する縮 小率が0.3付近に集中するため、縮小率rを求めるための統計処理 のデータとしては用いていない。

表2に表1に示した各試験体の残存軸耐力 N_Rと、この N_Rを用い (3) 式により求めた縮小率rを示した。表2中には、図3の模式図 を考慮して、主筋の軸耐力に対応する主筋比と降伏強度の積 p_goy、 せん断補強筋の耐力に対応するせん断補強筋比と降伏強度の積 p_wo_{wy}、クラック幅に関連する変形量を部材せいで除した最大変形比 R を記載してある。せん断破壊面のクラック幅は変形量と比例関係 に、またせん断補強筋の拘束力は平均的なひずみ量に関連すると考 え、変形量を部材せいで除した最大変形比 R をパラメータとして採 用した。クラック幅に関連する変形量として部材角でも算定したが、 最大変形比 R のほうが相関がよかった。

これらのパラメータにより、縮小率rが求まると仮定し、線形重回帰分析を行った。表3に重回帰解析結果を、図4(a)に回帰結果か

表3rに関する線形重回帰分析結果

	係数	標準誤差	t	回帰統	計
切片	-8.87E-01	1.91E-01	-4.63	重相関 R	0.92
$p_g \sigma_y$	6.10E-02	2.18E-02	2.80	重決定 R^2	0.85
$p_w \sigma_{wy}$	5.75E-04	5.39E-04	1.07	補正 R^2	0.82
せん断余裕度	1.56E+00	2.49E-01	6.24	標準誤差	0.11
最大変形比	-6.61E+00	1.04E+00	-6.38		

ら得られる推定値と実験値の対応を示す。相関性の高い結果となっている。図4(b)は、この推定式を用いて文献¹⁷⁷に示された37体のデータも含めて実験値と推定値の対応を示したものである。ここで、縮小率rは主筋の効果を考えて、0.3を下回らないものとした。これについては、主筋量等の関数となると考えられるが、表2に示した試験体では、最小値が0.3であり、また芳村ら¹¹のデータも0.3付近に集中するため0.3とした。推定値には、最低値としての0.3付近にデータが多くあるが、おおむねよい相関性を示している。

表3の重回帰解析結果を見ると、主筋の効果である pg oy とせん断補強筋の効果である pw ow の寄与が少なく、特に pw ow の寄与が少な

(a)表1のデータとの対応
 (b)拡張した実験データとの対応
 図4 縮小率rの推定値と実験値の対応

- 539 -

い。これをパラメータから省略して改めて重回帰解析結果を行った 結果が表 4、回帰結果から得られる推定値と実験値の対応を示した のが図 5 である。表 4(a)、図 5(a)は、パラメータとしてせん断補強 筋の効果を省略したもの、表 4(b)、図 5(b)は、さらに主筋の効果を 省略して、せん断余裕度と最大変形比のみとしたものである。せん 断補強筋に関するパラメータを省略しても、相関度はそれほど変わ らないが、主筋の効果を無視すると相関度が低下している。これよ り縮小率rは、せん断余裕度m、変形比 R と主筋強度 pgoy (N/mm²) の関数として次式で与えられる。

ここで、1.0≥r≥0.3

より簡略化するために、パラメータをせん断余裕度と最大変形比のみとすると次式となる。

r = -0.66 + 1.86m - 6.3R(7)

表4 パラメータを縮約したrに関する線形重回帰分析結果
 (a) 3 パラメータ

	係数	標準誤差	t	回帰統計	
切片	-8.87E-01	1.91E-01	-4.63	重相関 R	0.92
$p_g \sigma_y$	6.10E-02	2.18E-02	2.80	重決定 R^2	0.85
せん断余裕度	1.56E+00	2.49E-01	6.24	補正 R^2	0.82
最大変形比	-6.61E+00	1.04E+00	-6.38	標準誤差	0.11

(b) 2 パラメータ

	係数	標準誤差	t	回帰統計	
切片	-6.67E-01	1.93E-01	-3.45	重相関 R	0.88
せん断余裕度	1.86E+00	2.39E-01	7.80	重決定 R^2	0.78
最大変形比	-6.33E+00	1.10E+00	-5.76	補正 R^2	0.76
				標準誤差	0.13

(7)式による推定はばらつきがやや大きくなるので、使用する場合に は注意が必要である。

部材の断面が決まれば、せん断余裕度 m と主筋強度 pg o, は一定値 となる。破壊面の縮小率を(6)(7)式で与えれば、せん断破壊後の破壊 面は、水平変形量に比例して縮小していくことになる。これにより、 水平変形に伴い、せん断耐力が減少し、縮小率が作用軸力まで達し たときに軸耐力を失うことになる。これは、軸力変動を伴う部材に おいてもそのまま適用可能である。軸方向変位も、塑性論に従い破 壊面に直交する変形の鉛直方向成分とすれば、水平変形との関係か ら導くことが可能で²⁾、解析プログラムに組み込むことにより、建 物の崩壊解析が可能となる。

3 検証実験

1) 実験概要

前章で求めた破壊曲面の縮小による崩壊の検討が、実際の柱の破 壊と適合するかを検証するための実験を行った。試験体は、旧基準 で設計された既存 RC 低層建物の柱を想定し、実建物の 1/3 程度の サイズを有する柱部材とした。コンクリート設計基準強度 (*Fc*=18 N/mm²)、主筋 (12-D10)、柱断面寸法 (*b*×*D*=200×200mm) である。 既往の研究 ³⁾⁴⁾のうち損傷が大きかった 3 体の試験体 (No.8,12,14) とパラメータを合わした。表 5 に試験体一覧を示す。

試験体は水平に倒した状態で、PC 鋼棒を反力に用いて1 MN 油圧

表5 検証実験試験体一覧

計除は	コンクリート	柱内法高	柱断面	主筋	せん断	せん断余
司马史 14	強度	h _o (mm)	b × D	(上·下端筋)	補強筋	裕度
No.15	24.4 (N/mm ²)	800	200mm	12-D10	2-D4@124	0.90
No.16		400	×			0.69
No.17		400	200mm		2-D4@42	0.78

2)実験結果

ジャッキで軸力 0.15bDF_c(N)を作用させる。これに、大野式加力方 法を用いて逆対称モーメントとなるようにして、5MN 圧縮試験機で 層間変形角 R=1/100 で一回繰り返し加力する。次に、R=0 から R=1/50 までに軸力が2割増大するように、水平変形に比例して軸力を徐々 に増やしていきながら水平加力を行う。その後、除荷時にも同じ割 合で軸力を増加させながら、層間変形角 R=1/50 での繰り返し水平 加力を行い、試験体が軸力を保持できなくなった時点で終了する。 ここでの層間変形角は、階高さに対する変形角を意味しているので、 No.16,17 の部材角は2倍となる。軸方向変形は、両スタッブ間の変 形を直接計測した。

図 6 にせん断カー水平変位関係を示す。R=1/100 の定軸力での加 カ中にせん断ひび割れが入り、載荷を繰り返すにつれ、せん断ひび 割れの幅が大きくなった。せん断補強筋間隔の小さい No.17 では一 箇所のひび割れが大きくなるのではなく、多くのひび割れが発生し た。No.15 は柱内法高が他の 2 体の試験体に比べて大きいため、剛 性が低く、R=1/100 で曲げ降伏し、その後すぐにヒンジ領域でせん 断破壊を起こした。せん断破壊が片方のヒンジ領域に生じ、大野式 加力ではせん断破壊後の逆対称変形を保持できなかった。

図7に鉛直力-鉛直変位関係示す。すべての試験体で、軸力が増加するにつれ、柱端部からの圧壊・剥離が起こり、主筋が座屈し最終的に軸耐力を喪失した。No.15 は、弾性時の軸剛性は他の試験体

-540 -

の半分であり、また、せん断破壊後に逆対称変形が崩れたため、荷 重一変形関係に乱れがある。定軸力下での*R*=1/100 での繰返し荷重 時では、せん断破壊後も軸方向変位はそれほど変わらなかった。 *R*=1/50 の繰り返し時には、水平力の除荷時に、やや軸変形が減少す るが、全体的には軸力の増大とともに増大した。せん断破壊後の軸 剛性は、せん断余裕度の大きなものほど大きいが、弾性剛性の 1/200 以下となっている。写真 3 に最終状況を示す。

3) せん断破壊曲面との対応

図8に各試験体の(2)式で定められるせん断破壊時の初期破壊曲 面と、(6) 式で求めた縮小率により(4)式で定められる R=1/100、1/50 時の縮小せん断破壊曲面と実験結果の対応を示す。せん断破壊後、 水平変形量の増大に伴い破壊曲面が縮小していくため、せん断耐力 は低下する。本実験では、定軸力でR=1/100まで変形させ、損傷を 増大させているので、破壊曲面の縮小に伴い、水平方向に移動する ことになる(図8のI)。次に、軸力を増大しながら R=1/50 まで変 形を増大させる。このときは、軸力が増大しながら、変形の増大に よる破壊曲面の縮小に伴い、せん断耐力が減少することになる(図 8のII)。その後、R=1/50で繰り返し加力を行う。このときは、最 大水平変形は変わないので破壊曲面は縮小せず、軸力のみが増大し て R=1/50 の破壊面に沿ってせん断耐力が低下する。このせん断耐 力が0となったところで、軸方向の耐力も残存軸耐力に達して、崩 壊することになる(図8のIII)。 No.16,17 に関しては、実験結果が設定した縮小破壊曲面に沿った 挙動となっており、十分に予測できているといえる。No.15 は、 R=1/00ではせん断破壊を生じず曲げ降伏して、想定したせん断破壊 面の外側に実験値がある。R=1/50に向かう途中で、写真3に示すよ うにヒンジ領域でせん断破壊し、R=1/50では、想定した破壊曲面よ り実験値のほうが小さな値となっている。これは、材端での曲げ降 伏後のせん断破壊であり、その後の軸力保持は、モーメントとの相 関によるコンクリートの圧縮破壊で決まっていると考えられる。

4)曲げ降伏後のヒンジ領域でのせん断破壊

ヒンジ領域では、せん断破壊をした後、水平変形の増大に伴うせん断破壊面の縮小(水平軸方向の縮小)と、モーメントが存在することによる軸耐力の限界による縮小(鉛直軸方向の縮小)の両者から破壊曲面が縮小すると考えられる。図9に、ヒンジ領域でせん断クラックが生じた後の部材端での鉛直方向力の釣り合いの模式図を示す。作用するモーメントに対して鉄筋が抵抗している(Ts+Cs=0)とすると、軸耐力 N_c はコンクリートの圧縮力(Cc)のみによるものとなる。圧縮領域の幅 x を圧縮鉄筋周りのコンクリートと考え、「鉄筋

図9 ヒンジ領域でのせん断破壊後の模式図

コンクリート造建物の耐震性能評価指針(案)」¹³⁾を参考に、かぶり 厚を 0.1D としてその 2 倍の 0.2D と考えると、軸耐力 N_cは次式で与 えられる。

 $N_c = 0.2bDF_c$ (8)

(8)式で与えられる軸耐力を、残存軸耐力として縮小せん断破壊面を 描くと図 10 に示したようになり、実験結果がこの縮小破壊曲面に沿 った挙動となっている。芳村ら¹⁾も曲げ降伏後のせん断破壊柱を曲 げ型として、単なるせん断破壊型の柱と区別して定式化している。 これを、解析に取り入れて崩壊の検討をするためには、図1におけ る材端の M-N 相関バネのせん断破壊後の縮小が必要になる。

(117)

図10 ヒンジ領域での軸耐力に基づくせん断破壊面との対応

-541 -

5) 縮小せん断破壊曲面とせん断カー水平変形関係

せん断破壊曲面の縮小率rが(6)(7)式で与えられる場合、水平変形 の増大に伴いrが減少し、せん断耐力が減少することになる。また、 軸力が増大すると破壊面に沿って、せん断耐力が減少することにな る。(6)で求めた縮小率による関係を、せん断力-水平変形関係とし て No.16,17 の実験結果に重書きしたのが図 11 である。実験値は、 せん断破壊後に破壊曲面から求まる値に急速に近づき、変形ととも にせん断耐力が低下している。破壊曲面から求まるせん断力がやや 過小評価になっている点はあるが、おおむね対応していると考えら れる。これをさらに一致させるためには、せん断破壊面の縮小の仮 定を見直し、非対称に縮小させる必要があるが、解を複雑にするだ けで、建物の倒壊評価を行う上での精度の向上には、あまり寄与し ない。

6 まとめ

本研究は、建物の倒壊危険度の評価のため、建物の崩壊解析に用いる柱のせん断破壊後の鉛直支持能力の解析モデルを、芳村らの提

図11 せん断破壊面縮小によるせん断力-水平変形関係との対応

久)の一環として実施し、実験の計画、実施では神奈川大学・教務 技術主任五十嵐泉氏、修論生の岩松氏、卒論生の外川博之、武井健、 宮崎剛、牛島拓也、河合大地氏の協力を得ました。首都大学東京・ 教授・芳村学博士からは、破壊曲面の概念について詳しい説明と、 コメントを頂きました。本論の査読者からは貴重なコメントを頂き ました。関係各位に深く謝意を表します。

- 案したせん断破壊面縮小の考え方に基づき構築しようとしたもので ある。縮小せん断破壊面の縮小率を、残存軸耐力に着目して実験デ ータを整理し、損傷の指標としての水平変形などのパラメータによ る回帰式として提案した。本研究で得られた知見は以下のとおりで ある。
- せん断破壊後の残存軸耐力は、せん断余裕度、主筋量、せん断 補強筋量に正の、最大変形量に負の相関があり、せん断余裕度 と最大変形量の寄与が高い。
- 得られた回帰式によるせん断破壊後の残存軸耐力は、著者等以
 外の実験結果においてもよい相関性を示した。
- 本論で算定した破壊曲面縮小率を用いて縮小したせん断破壊面 を描くと、柱のせん断破壊後の変動軸力下での水平力と軸力は、 おおむねこの破壊面に沿った挙動を示す。
- 水平変形に伴い縮小する破壊面で算定されるせん断力を、せん 断カー水平変形関係の実験値に重描きすると、実験値の傾向を おおむね説明できる。

今後は、この剛塑性バネを設定し、せん断破壊以降の水平、軸剛性 を評価することにより、建物の倒壊危険評価を行うことが必要とな る。また、本論ではデータ数が少なく、曲げ降伏後のヒンジ領域で のせん断破壊に対する M-Q-N 相関についての縮小に関する提案式 が提示できなかった。ヒンジ領域でのせん断破壊については、損傷 の進行に伴うせん断耐力の低下を考慮する必要があり、建物の倒壊

- 参考文献
- 1) 芳村学、高稲宜和:崩壊変形を含む鉄筋コンクリート柱の荷重低下域における挙動の定式化、日本建築学会構造系論文集 第 587 号 pp163-171 2005.1
- 2)芳村学、高稲宜和:破壊曲面縮小の概念に基づくせん断破壊型鉄筋コン クリート柱の鉛直変形評価に関する研究、日本建築学会構造系論文集 第592号 pp 167-175 2005.6
- 3) 岩松、島崎和司:RC 造柱の地震後の残存軸耐力に関する研究、日本建築 学会大会学術講演梗概集、C-2、pp.655-656、2006.9
- 4) 岩松、五十嵐泉、島崎和司: RC 造柱の地震後の残存軸耐力に関する研究 その2繰り返し載荷とせん断スパン比の影響、日本建築学会大会学術講 演梗概集、B-2、pp.313-314、2007.8
- 5) 渡辺篤史、田才晃:柱のせん断劣化過程における残存軸耐力と損傷修復 性、コンクリート工学年次論文報告集, 2000
- 6)黒木光博、榎本将弘、山崎和弘、田才晃:耐震診断基準における残存耐力の検証(その1から3)日本建築学会大会学術講演梗概集 2005.9
- 7)加藤大介、李柱振、中村友紀子、本多良政: RC 造柱の残存軸耐力に関す る実験と考察、日本建築学会構造系論文集 第 619 号 pp127-132 2007.9
- 8) 高稲宜和、芳村学:破壊曲面縮小の概念に基づくせん断破壊型鉄筋コン クリート柱の定量的損傷評価、日本建築学会構造系論文集 第 618 号 pp 191-197 2007.8
- 9)日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準 改 修設計指針同解説 2001年改訂版
- 10) 堀田久人、吉崎敦子: せん断破壊型方立て壁が RC 架構の崩壊形・耐 震性能に及ぼす影響に関する解析的研究、日本建築学会構造系論文集 第630 号、pp.1339-1346、2008.8
- J. P. Moehle, K. J. Elwood, and H. Sozen, "Gravity Load Collapse of Building Frame During Earthquakes", ACI SP-197: S.M. Uzumeri Symposium - Behavior and Design of Concrete Structures for Seismic Performance, ACI, pp. 215-238, 2002.4

評価のためには、さらなる検討が必要である。

12)高稲宜和、芳村学、中村考也:鉄筋コンクリート柱の崩壊変形に関する研究、日本建築学会構造系論文集第573号 pp153-160 2003.11
13)日本建築学会:鉄筋コンクリート造建物の耐震性能評価指針(案)・同 解説、日本建築学会、p178 2004.1

(2008年7月1日原稿受理, 2008年11月27日採用決定)

謝辞

本研究は神奈川大学における文部科学省学術フロンティア研究プロジェクト(災害リスク軽減を目的としたソフト・ハード融合型リスクマネジメントシステムの構築に関する研究、研究代表者: 在本孝

-542 -