既存構造物の崩壊危険度評価に関する実験的研究 ~漸増する軸力を受ける柱の水平加力による崩壊~

島崎研究室 200402653 河合 大地

1、はじめに

地震時には軸力とせん断力を同時に受け、破壊曲面を 越えると崩壊につながる破壊を生じる。この破壊曲面の 推定のために地震後に、柱の有する鉛直力支持能力に着 目した実験が行われてきた。今回の実験では、昨年度ま でに行われた実験を元に、水平加力時に軸力を徐々に増 やしていき、柱の崩壊を評価するための破壊曲面の検討 を行う事を目的とする。

2、実験概要

- 1) 試験体 試験体は、旧基準で設計された既存 RC 構造物の柱を想定し、実建物の 1/3 程度のサイズを有する柱部材で計画した。コンクリート強度 (Fc=18N/mm²)、主筋 (12-D10、12-Φ9)、柱断面寸法 (b×D=200mm×200mm) である。昨年度、損傷が大きかった 4 体の試験体を対象として、せん断補強筋比を、0.1%、0.3%とした。表 1 に試験体一覧を示す。図 1 に試験体図を示す。
- 2) 加力方法 試験体を水平に倒しPC鋼棒を反力に用いて1MN油圧ジャッキで軸力0.15bDFc(N)を作用させながら、5MN圧縮試験機で水平力を想定した大野式加力で逆対称モーメントに作用させる(図 2)。加力サイクルはR=1/100を1回、その後にR=1/50を行う。R=1/50から軸力を徐々に増やしていき、試験体が軸力を保持できなくなるまで繰り返し加力する。

表 1 試験体一覧

				200		
試験体	設計基準強度 Fc	柏内法高 h ₀	柱断面 b×D	主筋	せん断補銃	破壞形式
No.8-C		800mm	200mm		D4 @124	せん断型
No.12-C	18		v	12-D10	D4@124	日の政治
No.14-C	N/mm ²	400mm	×		D4 @42	曲げ型
No.16-C	The Control of the Co		200mm	12-Ф9	D4 @142	せん断型

表 2 使用材料の機械的性質

コンクリート強度	圧縮強度	引張強度
	(N/mm^2)	
Fc=18	24.4	2.42

鋼材	降伏強度 (N/mm²)	7		
D10 SD295	375	523		
Ф9 SR235	356	461		
D4 SD295	410	625		

表 3 軸力計算

部構		1/50								-1/50						
変位 (mm)	1	2	3	•••	14	15	16	15	14	•••	2	1	0	-1	-2	•••
軸力 (kN)	109	110	111	•••	122	123	124	125	126	•••	138	139	140	141	142	

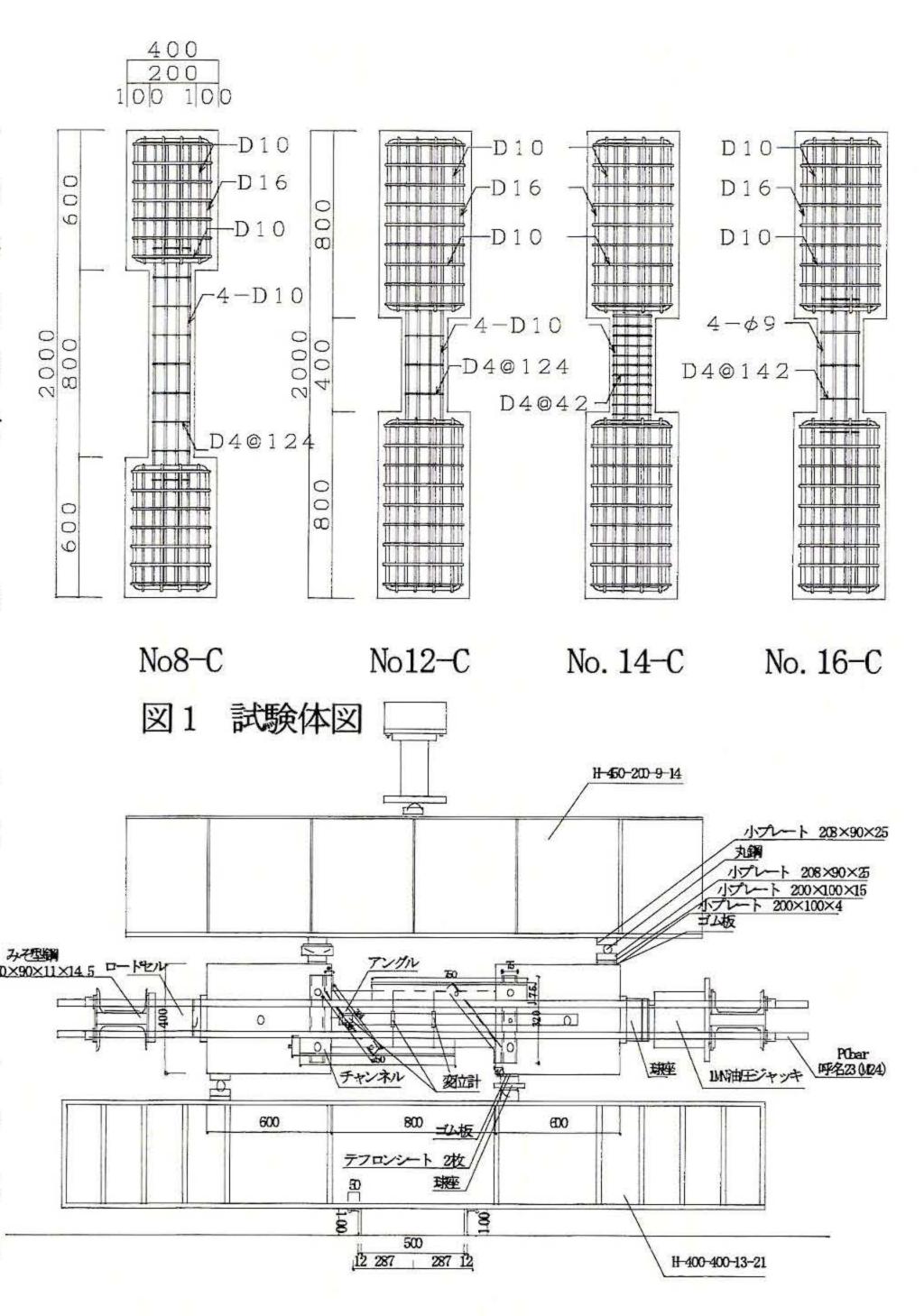
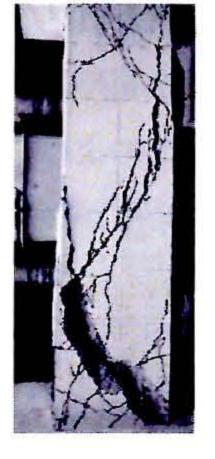



図2 水平力加力装置

No. 8-C

No. 12-C

No. 14-C No. 16-C

写真1 最終ひび割れ状況

表 4 実験結果

	最大耐力					
試 験 体	せんと	軸力				
	(+)	(-)	(kN)			
N o .8 - C	72	69.5	177.8			
No.12-C	93.8	51.8	154.6			
No.14-C	98.7	73.5	216			
No.16-C	103.6	79.6	168			

3、ひび割れ状況

No. 8-C、No. 12-C、No. 14-C では曲げひび割れ、曲げせん断ひび割れ、せん断ひび割れの順にひび割れが入った。No. 16-C では柱とスタブの接合部に曲げひび割れが発生し、その後、部材中央に大きなせん断ひび割れが発生した。No. 8-C、No. 12-C、No. 16-C は載荷を繰り返すにつれ、せん断ひび割れの幅が大きくなった。No. 14-C では一箇所のひび割れが大きくなるのではなく、多くのひび割れが発生した。軸力が増加するにつれ、柱端部からの圧壊・剥離が起こった。写真1に最終ひび割れ状況を示す。

4、実験結果・考察

- 1) せん断力-水平変位関係 図3に示す。No.8-Cは他の3体の試験体とは異なる軌道を描いた。これは柱内法高が他の3体の試験体に比べて大きいため、このような結果になったと思われる。No.8-C以外は最初の加力で最大耐力となり、その後低下、水平力を負担できなくなった。
- 2)破壊曲面の検討 図4に芳村¹⁾らの研究を参考にした破壊曲面の縮小を示す。初期破壊曲面は、初期圧縮耐力点、引張耐力点、およびせん断破壊点を通る。破壊の進行に伴い、破壊曲面が引張耐力点不動のまま初期破壊曲面との相似形を保ちながら縮小すると仮定し、表5に示した昨年度実施した実験結果のせん断耐力、残存軸耐力を用いて描いた。各試験体の崩壊点は、設定した縮小破壊曲面の近傍にあり、充分な精度を有すると思われる。

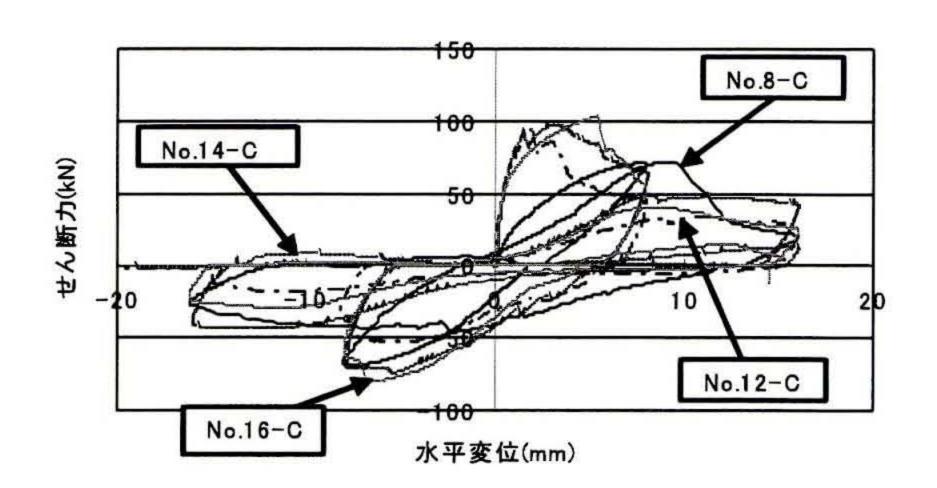
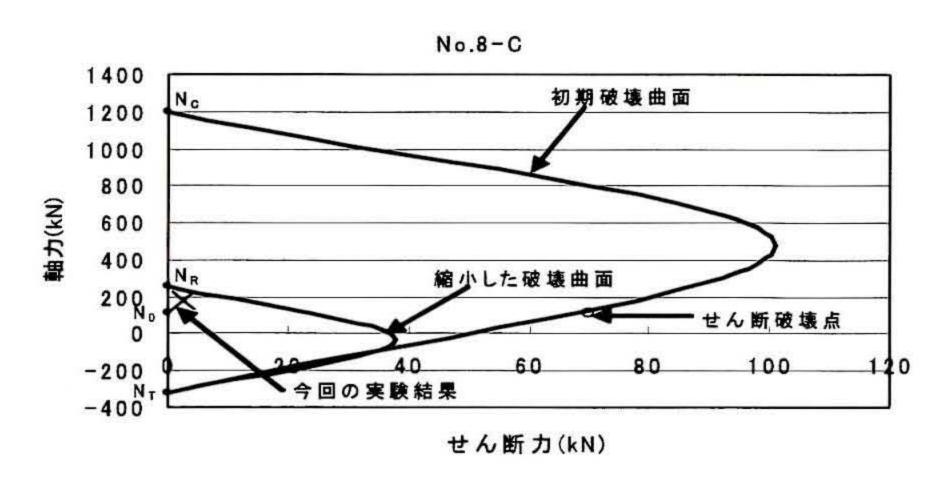
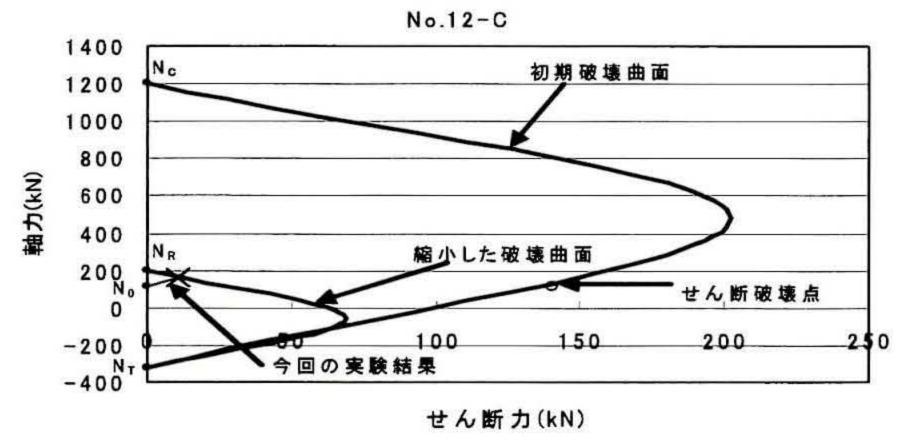
今回の実験結果を比較してみると、No. 14-C は破壊曲面より外側にあり、他の3 体は内側で崩壊している。これはせん断余裕度と柱内法高が影響していると思われる。No. 8-C と No. 14-C を比較してみると、せん断余裕度は同じくらいだが、柱内法高が大きく異なるためこのような結果になったと思われる。No. 16-C はせん断余裕度が高いが、丸鋼であるため崩壊が早かったと思われる。

5、まとめ

破壊曲面縮小の考え方は実験結果と概ね一致した。 No. 14-C は安全側であり、それ以外の試験体はやや危険側となった。せん断余裕度が高いと崩壊は起こりにくいが、柱スパンが大きい場合や丸鋼が用いられている場合は、破壊曲面より低い値になるので危険であり、さらなる検討が必要と思われる。

本実験は文部科学省・学術フロンティア(2005~2009)の補助を受けた。 参考文献 1) 芳村学、高稲宜和:破壊曲面縮小の概念に基づくせん断破壊 型鉄筋コンクリート柱の定量的損傷評価

- 2) 既存鉄筋コンクリート造建築物の耐震診断基準・同解説 2001
- 3) 武井健、宮崎剛、牛島拓也: RC 造柱の残存軸耐力に関する実験的研究 (神奈川大学卒業論文 2006)

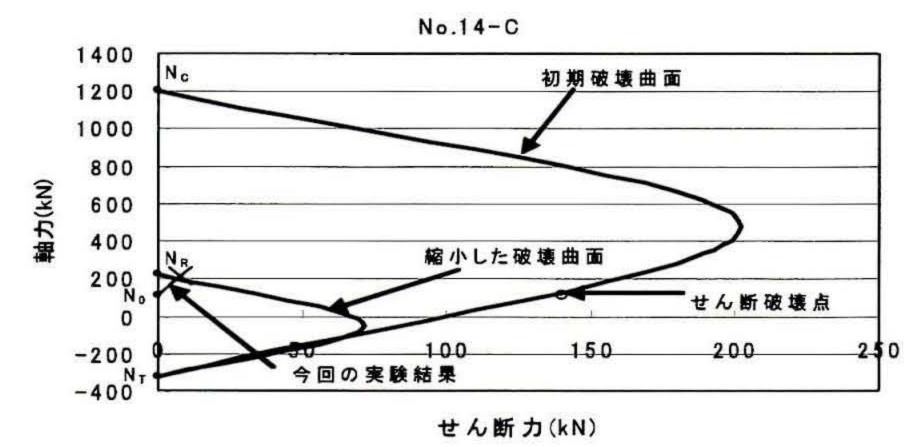

図3 せん断力-水平変位関係

表 5 昨年度の実験結果

試験体	初期圧縮 耐力点 N _c (kN)	引張 耐力点 N _T (kN)	せん断 破壊点 (kN)	導入 軸力 N _o (kN)	残存軸 耐力 N _R (kN)	せん断余裕度
No.8	1199.5	-321	70.2	108	250	0.69
No.12	1199.5	-321	140.5	108	199.7	0.34
No.14	1199.5	-321	140.5	108	220	0.59
No.16	1153.4	-273.4	127	108	214	0.76

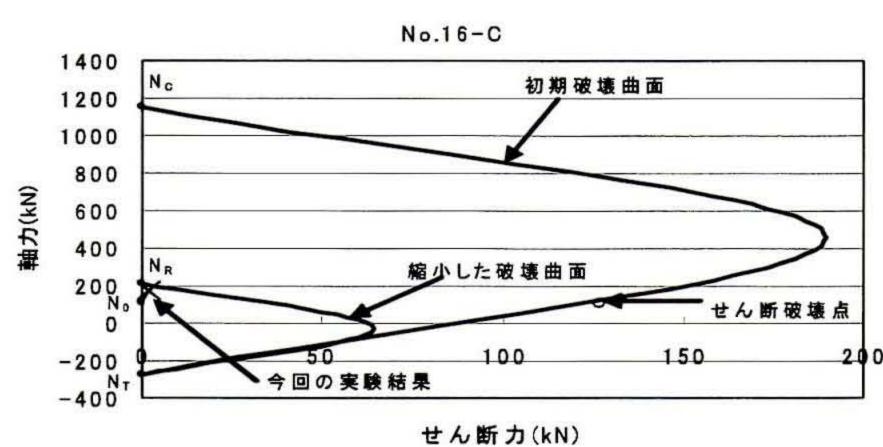


図4 破壊曲面の縮小