22294

座屈拘束ブレースにおける軸剛性調節

正会員 〇中村 慎* 山下哲郎** 百 同 村井正敏*** 同 岩田 衛****

座屈拘束ブレース 軸剛性 増厚板 鋼モルタル板

1. 序

近年、制振部材を用いた RC 構造物耐震補強事例が増え ている。このときダンパーに求められる性能は、小さな 変形からのエネルギー吸収であると考えられる。

座屈拘束ブレースの場合、小さな変形からエネルギー 吸収を行うには、初期剛性の向上が重要となる。現在採 用される主な軸剛性向上方法に、芯材塑性化部長さを芯 材長さに対して短く取る方法がある。しかし、この方法 では芯材塑性化部が短くなることで、その歪が過大にな り、ブレース自体にも過酷な条件を与え、疲労性能が低 下することなども報告されている¹⁾。

では(1)式により試験体を設定する。

2.2 試験体

試験体一覧を表1に、試験体の部品を図2に、芯材形 状を図 3 に示す。R56N16-55 試験体は芯材塑性化部の幅 厚比を 11 とし、特に芯材塑性化部の幅を絞らない。 R40D17-93 と R40D45-135 試験体は R56N16-55 試験体の芯 材塑性化部に絞りを設け、α1=0.4 とすることでより小さ な変位から変形をはじめる。よって R40D17-93 試験体の 降伏変位は R56N16-55 試験体よりも 0.36mm ほど小さく

そこで著者等は、芯材塑性化部長さを極力保ちながら 軸剛性を向上させる方法として、端部に鋼板(以下、増厚) 板と呼ぶ)を溶接した座屈拘束ブレースを着想した。本報 では、着想した座屈拘束ブレースの軸剛性、性能につい て報告する。

2. 実験計画

2.1 軸剛性計算式

軸剛性の計算値は、文献²⁾の式をパラメータの変化を把 握しやすいように変形した以下の式より算出する。

$$k_{C} = \frac{EA}{L} \left(\frac{\beta_{1}\beta_{2}}{\alpha_{1}\beta_{1}\beta_{2} + 2\alpha_{2}\beta_{2} + 2\alpha_{3}\beta_{1}} \right) \cdots (1)$$

A:塑性化部断面積 L:芯材長さ E:ヤング係数 図 1 のようにαは各部の長さを表す比率になり、βは各 部の断面積の芯材塑性化部に対する比率となる。本研究

なる。さらに R40D45-135 試験体は、端部両面に増厚板 PL16 mmを溶接して軸剛性を向上させているため、その降 伏変位は R56N16-55 試験体と比較すると 0.66mm 小さく なる。

絞られた芯材の強軸方向には変形を補剛する目的でス ペーサーを取り付ける。また絞られていない部分には、 φ11 の丸鋼を取り付ける。芯材の降伏荷重 P_vは素材試験 より、拘束材の座屈荷重 P_E はオイラー座屈荷重式より試 験体長さ(l=2351mm)を用いてそれぞれ算出する。

2.3 載荷方法

載荷は軸方向変位による正負交番漸増繰り返し載荷と する。載荷パターンは表2の通りである。3.0% 歪載荷は 耐力低下まで行う。本試験体は芯材塑性化部の長さが異 なるため層間変形角でなく軸歪を合わせた制御とする。 なお軸歪を合わせて制御した本実験の 3.0% 歪時の相当層 間変形角は、R56N16-55 試験体で約 1/48、R40D17-93 と

芯材形状 図3

表1 試験体一覧															
試験体名	芯材						拘束材			クリアランフ		市田田山村生	δv		
	α ₁ L mm	厚さ mm	幅 mm	A mm ²	σ_y N/mm ²	P _y kN	幅厚比	幅 mm	高さ mm	I × 10 ⁴ mm ⁴	P _e k N	mm	P _E /P _y	N/mm	mm
R56N16-55	1313	16	176	2816	272	765	11	203. 2	61	947	3468	1.0	4.5	354×10^{3}	2.13
R40D17-93	940	16	105	1680	272	457	6.6	203. 2	61	947	<mark>34</mark> 68	1.0	7.5	243×10^{3}	1.77
R40D45-135	940	16	105	1680	272	457	6.6	203. 2	61	947	3468	1.0	7.5	301×10^{3}	1.47
A:塑性化部断面積 σ _y :降伏応力度 P _y :降伏荷重 I:断面二次モーメント P _E :座屈荷重 δ _y : 弾性限界変形量															

Rigidity adjustment of buckling-restrained braces

NAKAMURA Makoto, YAMASHITA Tetsuo MURAI Masatoshi, IWATA Mamoru

表	2 載	试荷方法	£	2.0 P/Py
	載荷:	方法		1.0
歪	回数	歪	回数	
εy/3	1	1.0	5	0.0
2εy/3	1	1.5	2	-1.0
0.25	1	2.0	2	
0.5	2	2.5	2	-2.0 -2.0 0.0 2.
0.75	2	3.0		(1)R56N16-55 試騎

表3 実験結果

試験体名	P _t (kN)	P _c (kN)	耐力低下	芯材の最終状況
R56N16-55	1148.5	1298.2	3.0%	引張破断
R40D17-93	690.2	737.5	3.0%	引張破断
R40D45-135	698.9	863.8	3.0%	引張破断

P_t:引張側最大耐力 P_c: 圧縮側最大耐力

R40D45-135 試験体で約 1/66 となる。

3. 実験結果

3.1 実験結果

各試験体の最大耐力、及び最終状況を表 3 に示す。 また P/P_y-ε 関係を図 4 に示す。 表4 性能評価指標

	主日	5 前日三十二	を		
R40D45-135	7.5	1000.7	1706.8	2540. 7	
R40D17-93	7.5	708. 2	1423.4	1759. 7	
R56N16-55	4 . 5	849.1	3461.5	2124. 3	
試験体名	P_{E}/P_{y}	η^+	Et	ω	

試験体名	α1	2 a 2	2α ₃	β1	β2	Kc	K _E	誤差
R56N16-55	0.56	0.12	0.32	1.6	5.5	354	347	1.86%
R40D17-93	0.40	0. 28	0.32	1.7	9.3	243	238	2.08%
R40D45-135	0.40	0. 28	0.32	4. 5	13.5	301	274	8.86%

 K_c : 剛性計算値(×10³N/mm) K_E : 剛性実験値(×10³N/mm)

ては要求される性能が高くなると考えられる。しかし

3.2 最終状況

実験後、ブレースを解体し芯材の状況を確認した。 R56N16-55 試験体は芯材中央部で、R40D17-93 と R40D45-135 試験体は芯材下部で破断していた。

4. 考察

4.1 復元力特性

(1) R56N16-55 試験体: 3.0% 歪を 18 回繰り返した。3.0% 歪時には載荷が進むにつれ、圧縮耐力が若干高くなった が、引張側と圧縮側でほぼ同様のループを描き安定した 復元力特性を示した。

(2) R40D17-93 試験体: 3.0% 歪を 18 回繰り返した。引張 破断する直前まで引張側、圧縮側ほぼ変わらないループ を描き安定した復元力特性を示した。

(3) R40D45-135 試験体: 3.0% 歪を 22 回繰り返した。圧 縮における 3.0% 歪時の耐力上昇は、増厚板とモルタルと の間のクッション材がすり切れたことにより、両者が接 触して起こったと考える。しかしその後は、芯材の破断 まで安定した復元力特性を示した。

4.2 性能評価

各試験体の P_E/P_y 、累積塑性変形倍率 n^+ と累積塑性歪エ ネルギー E_t 及び累積塑性歪エネルギー率 ω を算出して表 4 に示す。 ω は E_t を降伏荷重 P_y と弾性限界変形量 δ_y で除 したものである。 **R56N16-55** 試験体で要求性能のηに対して 2.9 倍、ωに対して 6.8 倍、R40D17-93 試験体、R40D45-135 試験体についてもηで 2.4 倍、3.4 倍、ωについて 5.6 倍、8.2 倍といった値を有することから、その性能は満足できるものであると考える。

4.3 軸剛性

実験で得られた履歴ループの弾性部を線形近似して求めた実験値の軸剛性、ならびに計算値の詳細なパラメータと軸剛性を表5に示す。

増厚板を用いた R40D45-135 試験体は、R40D17-93 試験 体と比較すると剛性が 15%高くなる。これは R40D17-93 試験体が芯材塑性化部長さを芯材長さに対してさらに 17%短くするのと同等の剛性向上効果となり、端部増厚 板溶接といった手法での軸剛性向上が確認できた。

5. 結

芯材断面積を変化させた座屈拘束ブレースを製作して 軸方向繰り返し載荷実験を行い、以下の知見を得た。 (1)芯材端部に増厚板を溶接した座屈拘束ブレースは、同 形の増厚板がない芯材と比較し、15%の軸剛性向上が 確認できた。

(2) 座屈拘束ブレースの芯材の軸剛性は、(1)式により増厚

既往の研究で、レベル 2(地動最大速度 0.5m/s 相当)以上 の入力レベルに対し、10 層 3 スパンの平面骨組みに組み 込んだダンパーの要求性能(η=291.5、ω=310.8)を求めた 例がある³⁾。解析モデルでは、α₁=0.5 と設定されていた ため、α₁=0.4 の R40D17-93、R40D45-135 試験体につい 板を溶接した場合でも誤差10%程度で計算できる。

【謝辞】

本研究の試験体製作にあたり(株) 巴コーポレーションのご協力を得ました。ここに記して深く感謝いたします。

【参考文献】

(1)前田、中村、竹内、中田、岩田、和田:実大アンボンドブレースの疲労性能(その1、2)、日本建築学会大会学術講演梗概集、pp813~816、1999.9
(2)日本免震構造協会:パッシブ制振構造設計・施工マニュアル第2版、2005.9

(3)加藤、岩田、和田:損傷制御構造における座屈拘束ブレースの性能評価、 日本建築学会構造系論文集第552号、2000.2

- * 神奈川大学大学院博士前期課程
- ** 工学院大学工学部建築学科 准教授 博士(工)
- *** 神奈川大学工学部建築学科 主任技術員
- **** 神奈川大学工学部建築学科 教授 工学博士
- Graduate school, Kanagawa University
- ** Assoc. prof, Dept. of Architecture and Building Engineering, Kogakuin Univercity, Dr ENG.
- *** Technician, Dept. of Architecture and Building Engineering, Kanagawa Univercity
- **** prof,Dept.of Architecture and Building Engineering, Kanagawa Univercity,Dr ENG.