21157

RC造柱の地震後の残存軸耐力に関する研究 (その2)繰り返し載荷とせん断スパン比の影響

鉄筋コンクリート構造 柱 損傷レベル せん断スパン比 残存軸耐力

1 はじめに

前報1)では、近年東京などの首都圏に起こるであろう と言われている首都直下地震における既存建物の倒壊リ スク評価のため、地震時に損傷を受けた柱部材の鉛直支 持能力を評価することを目的とした。本研究では、せん 断スパン比と損傷レベルをパラメータとした繰り返し荷 重を受けた場合の地震直後に有する鉛直支持能力に着目 した実験を行い、構造物の倒壊リスクに関する基礎資料 を提供するものとする。

2 実験概要

 ①試験体 試験体は旧基準で設計された既存RC構造物 の中柱を想定し、実建物の 1/3 程度のサイズとし、荒川終 局せん断耐力式によるせん断余裕度が 0.35~0.89 となる ように計画した。コンクリート強度(Fc=18N/mm²)、主 筋本数(12-D10)、柱断面寸法(b×D=200mm×200mm) は共通である。パラメータは、せん断スパン比、せん断 補強筋比、損傷レベルとして、今年度は No. 7~No. 14 の 8 体の試験体を作成した。せん断スパン比は、M/Qd=1,2 の2種、せん断補強筋比は0.1%、0.3%の2種、損傷レ ベルは、水平力を受けた時の層間変形角で定義し、 R=1/100、1/50の2種とした。図1に主な試験体の配筋図 を、表1に試験体一覧を、表2に材料試験結果を示す。 ②加力方法 前報と同様に、はじめに地震時に受ける損 傷を再現するため、図2に示すように試験体を水平に倒 し 1MN 油圧ジャッキにより PC 鋼棒を用いて定軸力 0.15bDFc(N)を作用させながら、 5 MN 圧縮試験機により、 大野式加力で逆対称モーメントを作用させた。首都直下 地震を想定し、所定の損傷を目指した変形で3回繰り返 し加力する。次に所定の損傷を受けた後の残存軸耐力を 求めるため、試験体を鉛直にして回転を拘束した加圧盤

11	1.3				
11		Т			
11					
			T	100	

図 1 試験体配筋図

材料試験結果 表 2

\$	鋼材	降伏強度 (N/m ²)	引張強度 (N/mm ²)	コンクリート強度 (N/mm ²)	圧縮強度 (N/mm ²)	引張強度 (N/mm ²)	ヤング係数 (N/mm ²)	
D10	SD295	375	523	水平加力時 Fc=18	22	2.26	2. 15×10^4	
D4	SD295	410	625	軸力加力時 Fc=18	22.2		2.15 \times 10 ⁴	

図2 水平加力装置

を取り付けた 5 MN 圧縮試験機により鉛直加力を行った。

試験体一覧 表 1

試験体	設計基準 強度Fc	柱内法高 h ₀ (mm)	柱断面 b×D	主筋 (上·下端筋)	せん断 補強筋	破壞形式	層変形角 (損傷レベル)	繰り返す 回数
No. 7		$\begin{array}{c c} 800 \\ 200 \text{mm} \\ 12-D10 \\ \times \\ 400 \\ 200 \text{mm} \\ \end{array}$	200mm × 200mm	12-D10 (SD295)	2-D4@124	せん断型	1/100	3
No. 8							1/50	2
No. 9	18				2-D4@42	曲げ型	1/100	3
No. 10							1/50	4
No. 11	(N/mm2)				2-D4@124	せん断型	1/200	3
No. 12							1/50	3
No. 13					0.04040	出いな田川	1/100	3
No. 14			2-04842	画り空	1/50	4		

Experimental Study on Residual Axis Load Capacity of Reinforced Concrete Column

Part2.Influence of Repeated Road and Shear Span to Depth Ratio

IWAMASTU, IGARASHI Izumi, SHIMAZAKI Kazushi

3 ひび割れ状況

水平加力時は、M/Qd=2 の No.7~No.10 では、曲げひび 割れ、曲げせん断ひび割れ、せん断ひび割れの順にひび 割れが入った。R=1/50 まで損傷させた No.8(せん断型) にはヒンジ部に大きなせん断ひび割れが入り、せん断補 強筋の降伏後、主筋が座屈した。M/Qd=1 の No.11~No.14 では、柱端部付近に曲げひび割れが入り、その後全ての 試験体で、対角せん断ひび割れが生じた。

鉛直加力時は、M/Qd=2の No.7~No.10 では、せん断型 試験体で主筋の座屈が見られ、曲げ型で端部にひび割れ が発生した。No.8 ではせん断ひび割れ面でずれていった。 M/Qd=1の No.11~No.14の試験体では、対角線ひび割れ が広がり、圧壊、剥離した。写真1に水平加力時のひび 割れ状況を、写真2に鉛直加力後のひび割れ状況を示す。 4 実験結果・考察

表3に実験結果一覧を、図3に水平カー水平変形関係、

表3 実験結果一覧

曲げ		長期	終局強度計算値		荷重P _{max} (KN)			最大水平荷重時残存+		残存せん	せん 軸耐力/	
試験体	ひび割れ	軸力	曲げ	せん断	せん断	水平	荷重	軸力	せん断力	ち (KN)	断耐力	残存せん
	(KN)	$N_{L}(KN)$	(KN)	(KN)	余裕度	(+)	(-)	Nmux	(+)	(-)	(KN)	断耐力
lo. 7	68		70. 2 140. 5	48.6	0.69	210	201	953	72	69	58	16.30
lo. 8	80					223	170	250	76	58	7	35.57
lo. 9	38.4			59.8	0. 85	210.3	207.8	1058	72	71	64	16.57
lo. 10	82.5	108				234	229.7	942	80	79	69	13.68
lo. 11	98.5	100		47.4	0. 34	149.5	114.7	469.3	85	65	41	11.42
lo. 12	80					146.4	76.2	199.7	83	43	9	22.30
lo. 13	96			00 4	0. 59	183	150.5	475	104	85	42	11.40
lo. 14	93			04.4		172.3	129.2	220	98	73	26	8.33

図4に軸力一鉛直縮み関係を示す。No8、No.12、No.14の 試験体では、繰り返しの影響で軸耐力の低下が見られた。 No.8 では、主筋の座屈が進み、耐力が上がらず軸歪が増 加していった、その後ひび割れが閉じ耐力が多少上がっ た。

図 5 に残存軸耐力率〜層間変形角、軸耐力/残存せん断 耐力〜層間変形角関係を示す。損傷レベルの高いせん断 型試験体 No. 8、クリアスパン比の小さい No. 12、No. 14 は 残存軸耐力の低下が著しい。

M/Qd=2の試験体で、水平加力時の繰り返しを1回とし た昨年度と比較すると、損傷レベルが R=1/100の試験体 での残存軸耐力率は 0.9 程度と低下した。これは繰り返 し加力により、クラックの増加で損傷が多くなったこと が要因と思われる。損傷レベルが R=1/50の No8 せん断型 試験体は、せん断破壊を起こした No.3 とほぼ同じ値を示 し、破壊により著しく水平耐力低下するが、破壊後は繰 り返しによる軸耐力の低下は少ないと言える。

M/Qd=2 の長柱に比べ M/Qd=1 の短柱の軸耐力が著しく 低下している。原因として挙げられるのは、せん断スパ ンを小さくしたことで、表3に示したようにせん断余裕 度が小さくなり、柱部分に対角せん断破壊が生じ、鉛直 加力時軸力負担にコンクリートが働かず、残存軸耐力率 が低い値を示したのだと考えられる。 No.3 試験体以外のせん断破壊した試験体においても、 軸耐力/残存せん断耐力は 10 以上の値を示している。こ の値は、せん断力〜軸力の相関曲面におけるせん断耐力 を超えた後の破壊曲面のせん断力 0 の時の値であり、せ ん断耐力が算定出来ればこの破壊曲面を推定することが 可能となる。この破壊曲面により、せん断力が作用する 時の軸耐力が決定され、建物の倒壊危険度を評価できる。

繰り返し加力によりひび割れの増加がみられた。 残存軸耐力は、繰り返し加力することで低下がみられ た。しかし、せん断破壊した No8 以外は、著しい低下は みられず、十分に鉛直支持能力があるといえる。 M/Qd=1 の試験体では軸耐力を保持できた試験体でも 1/3 程度にまで耐力低下がみられた。 M/Qd の小さい場合には、多量のせん断補強をしても対 角せん断破壊を起こし、軸耐力が低下する。 参考文献: その3にまとめて記す。

*1	神奈川大学	工学研究科	建築学専攻
-	11/20/ 12 4 4		

- *2 神奈川大学 工学部 建築学科 主任技術員
- *3 神奈川大学 工学部 建築学科 教授 博士 (工学)

Graduate Student, Kanagawa University Chief Technician, Kanagawa University Professor, Kanagawa University, Dr. Eng.