○綿貫 裕基*1

五十嵐 泉*2

島崎 和司*3

正会員 同

同

デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究 --その5 スラブ幅の違いによる相違について--

RC 構造	耐震壁	損傷低減
X型配筋	付着	スラブ幅

1. はじめに

近年、RC 構造における大地震時の損傷低減や地震後の 修復性向上を目的とした研究が増えている。前報¹⁾⁻³⁾では、耐 震壁にデボンドX型配筋を用いることでせん断クラックを大幅 に減少し、損傷低減効果が得られること、修復性の観点から 端部縦筋をデボンドし、パネル化することで水平クラックを集 中させ、本数を減少できることを報告した。しかし、実際の耐 震壁周囲にはスラブがあり、曲げ戻しと捩りの影響を受ける。

本研究は、分割型耐震壁²に周辺スラブを設け、スラブ幅 の違いによる壁への影響とスラブの挙動について検討する。

2. 実験概要

試験体は、プロトタイプ建物の予備解析より反曲点位置を求 め、下部 2.5 層分を取り出した。縮尺は約 1/5 で壁断面 900mm×120mm、高さ 1800mm とし、上下に主筋定着用スタ ブを有する。試験体概要を図1、試験体一覧を表1に示す。 試験体は前報^{2),3)}と同様に端部縦筋、X型主筋をデボンドし、 各層高さで分割し、グラウト材を充填した。端部縦筋はパネル 毎に定着を取るため、パネル分割位置に定着板を設置した。 X型主筋は、両試験体ともに 2.5 層で配筋した。中央縦筋は 閉鎖型とし、パネル毎に完全に分かれている。WX5 には 400mm×100mmのスラブを、WX6 には 1200mmx100mmのス ラブを設け、スラブ端部を反曲点位置とし、軸受け材にクレビ ス支柱を設けた。

図3に想定されるスラブの応力伝達機構を示す。壁からス ラブへ伝達する曲げモーメントのうち、壁前後面スラブ はせん断力で、側面スラブの端部は壁側面の捩りモーメ ントにより行なわれる。側面スラブ中間部は壁前後面の せん断力と壁側面の捩れ力で伝達される。このため、ス ラブ中間部には斜め方向のクラック(捩れクラック)が 入ると想定される。また、中間部の曲げモーメントによ る壁前後面のせん断力の増大により、パンチングシアー 破壊が起こる事が想定される。

加力は、図4に示す加力装置を用いて試験体に一定軸力 392kN(σ₀=0.1σ_B)を与え、耐震壁頂部に水平力を正負交互 に繰り返し作用させた。加力サイクルは、部材角 R=1/700 を1 回、1/400と1/200を3回、1/100を6回、1/67を3回、1/40を 1回とし、最後に1/33まで一方向に加力した。

3. 実験結果

図5に両試験体の R=1/100 でのクラック状況を示す。 両試

験体とも R=1/700 のサイクルで壁部に曲げクラックが発生し、 WX5 は R=1/200 で、WX6 は R=1/100 でせん断クラックが発 生した。壁部の曲げクラックに関して、WX5 は前報²⁰WX1 と比 較すると1・2 層目分割部のクラックは減ったが、3 層目では多 く見られた。WX6 は WX5 よりも進展が速く、特に、2 層目分割

Study on Reinforced Concrete Shear Walls with De-bonded Diagonal ReinforcementsWATANUKI Hiroki , SHIMAZAKI Kazushi ,-Part5, Effect on the difference of slab width-IGARASHI Izumi

387

00

400890

部のクラックが増大していた。せん断クラックに関して比較す るとWX1 は壁全体の中央部に多く見られたが、WX5 は 1 層 目にのみ見られ、本数は減少した。WX6 は 1・2 層目に見られ 1 層目のクラックの本数は減少している。スラブに関して比較 すると、WX5 は曲げクラックが支配的であったのに対し、WX6 は壁前後面で曲げクラック、壁側面で捩れクラックが見られた。 また、WX6 は R=1/67 で壁前後面にパンチングシアー破壊が 発生した。

水平力一変位関係を図6に示す。2つのグラフを比べると WX6 のほうが端部縦筋・X型主筋の降伏時水平力が大きく、 履歴ループも大きいことから、スラブ幅が広いほど壁へのスラ ブによる曲げ戻しモーメントが大きく、同一の降伏モーメントで、 せん断力が大きくなっていると考えられる。また、スラブを設け たことによる大変形時の耐力低下はほとんど見られなかった。

図7に R=1/200 時の2Fスラブ筋ひずみ分布を示す。長辺 方向は両試験体とも壁に近いほどひずみは大きくなっており、 スラブ幅が広い WX6 のほうが大きい。また、WX5 の Y3、Y4 通りは同程度の値なのに対し、WX6 は壁付近ほど大きい。よ って、WX6 は壁から斜め方向に外へ向かってひずみが小さく なっていき危険断面が図2のようになり捩れクラッククラックが 発生したと考えられる。

以上のことより、スラブを設けることで、曲げ戻しモーメント が発生し、壁部の曲げクラックが減少、せん断クラックの増大 が確認された。また、スラブ幅を広くとることで、捩れ力が大き くなり、捩りモーメントが発生した。さらに、その捩れ力が壁前 後面へせん断力として伝わり、スラブにパンチングシアー破壊 が発生したと考えられる。

図8に FEM 解析(ADINA Ver.8.6)の結果を示す。スラブ幅 の狭い WX5 は壁前後のスラブが曲げ変形し、壁側面のスラ ブ全体も壁の回転と同様の変形となっている。しかし、スラブ 幅の広い WX6 は壁前後のスラブの変形が WX5 より小さく、 壁側面のスラブも全体が回転したというのではなく、壁に近い 部分に鉛直方向の変形が集中し、端部にいくほど変形が小さ いという結果となった。

4. まとめ

スラブ幅を広くとることで試験体全体の耐力が上昇し、スラ ブの変形が拘束され、側面スラブの鉛直方向に変形する領 域が狭くなるという結果となった。スラブ幅を広くとると、捩りモ ーメントが大きくなり、壁の前後面でパンチングシアー破壊が 起こりやすくなるので、考慮する必要がある。

【謝辞】

本研究を進めるにあたり、神奈川大学 2008 年度卒論生前川氏、 2009 年度卒論生飯窪氏ならびに関係者各位に多くの協力を得たこと を心より感謝いたします。

*1	神奈川大学大学院	工学研究科	建築学専攻
*2	神奈川大学 工学部	建築学科	主任技術員
*3	神奈川大学 工学部	建築学科	教授 博士(工学)

【参考文献】

1)島崎和司:デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究 日本建築学会学術講演梗概集 2006.9

- 2)島崎和司他:デボンドX型配筋を用いた損傷低減型耐震壁の実験 的研究(その2,その3) 日本建築学会学術講演梗概集 2007.8 3)平田寛治他:デボンドX型配筋を用いた損傷低減型耐震壁の実験
- 的研究(その4) 日本建築学会学術講演梗概集 2008.9
 - *1 Graduate Student, Kanagawa University
 - *2 Chief technician, kanagawa University
 - *3 Professor, Kanagawa University, Dr. Eng.