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1. INTRODUCTION

To reduce computer storage requirement in numerical analysis of a sound
field, we introduce higher-order element into our BE computer program which
contains a sub-region frontal technique and a partial Gauss-Jordan
elimination for the nodal state variables of the target regions [1]. We will give
some test results on numerical attenuation in a loss-free stiff-wall- duct and on
the sound absorption of a slit resonator with wall visco-thermal dissipation [2].
We describe here on two dimensional cases.

2. NUMERICAL ANALYSIS METHOD

BE for Acoustic-wave Mode. Dividing a given field into sub-regions and
each sub-region surface S into N surface patches, we denote the surface of a
patch .e by St. As field valuables of the acoustic-wave mode we employ sound

pressure P and its outward normal gradient q on the surface and introduce a
discontinuous cubic element with 4 nodes, as shown in Fig.1, to approximate
the distribution of the field variables over each suriace patch St in terms of

their nodal values Pk =p(~ = ~k) and qk =q(~ = ~k) in which k = 1,2,3,4, as
4 4

p(~)=LVlk(~)Pk' q(~)=LVlk(~)qk (1)
k=1 k=1

where ~ is the natural coordinate taken along a surface patch St and

Vll(~)} = .::!. (1- 4~)(1+ 4~)(3 =+ 4~), Vl2(~)} = _1 (1 =+ 4~)(3 - 4~)(3 + 4~)
1jI4(~) 48 lfI3(~) 16

~1}==+3. ~2}==+~. (2)
~4 4 ~3 4

For each sub-region, applying the Kirchhoff-Helmholtz integral theorem, we
have a linear equation system (3), as
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(4)

(3)

(6)

(5)

N N 4

o= -ajpj + L J(-q * P + P * q)ds = I I (HjjPj + Gijqj)
(=1 5, l=1 k=l

where i=1,2,.··,4N, j=k+4(l-1), p·=-(jI4)H~2)(0iOJlc)standsforthefree

space Green's function of the two dimensional inhomogeneous Helmholtz
equation, in which H~2)() is the Hankel function of the second kind and of zero

order, q* is the ouward normal gradient of p'" on the surface patch Si' OJ is

the angular. frequency, c is the speed 'of sound, 'ij is the distance between

points i and j. a j = 112 since we take the point i on a smooth part of the
surface S. The integrals along the surface patch S( is written as

, 1

Hjj =-ajOij - Jq * (~)vrj(~)A(~)d~, Gij =Jp * (~)1jIJ(~)A(~)d~
-1 -1

in which A(~) =ds 1d~, and 8q is the Kronecker delta. To represent the shape

of each surface patch, we employ a quadrilateral element with 3 nodes.
Boundary Conditions with Visco-Thermal Admittance. We assume
that acoustic properties of the original boundary are described locally by the
driving pressure f and the admittance f3 which contains the effective visco­
thermal admittance to match the acoustic-wave mode to the thermal- and
shear-wave modes as well as the wall admittance [2], as

q =- j(j)pf3(p - f) I f3 = .:!. + (1 +j){~ _ R/.j~n}
z p2C 2 p2(j)2

where q1(- jevp) is the outvJard normal velocity of the acoustic mode. z is the
specific acoustic impedance of the wall. Rv / pc = mdv /2c, Rh 1pc CJJ(y -1)dh

/ 2c I where dv = ~2J1 / (j)p and dn = ~2]( / mpcp I J1 and K are the viscosity and

the thermal conductivity of the air. cp and r are the specific-heat coefficient at

constant pressure and the specific-heat ratio of the air. respectively. The
tangential Laplacian V~n stands for the second derivatives with respect to the

coordinate tangential to the boundary surface, and V~anP is given as

V 2 d
2
p 1 ~ al(~)} _ cr2(~)}

lanP = ds2 = A2 6ak(~)Pkl a4(~) =+8~+2, a3(~) =±24~-2
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with 4 npp (4 nodes per patch) with 4 npp (4 nodes per patch)

Fig.1 Surface patches of cubic and constant elements
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3. NUMERICAL TESTS

To investigate numerical
attenuation caused by coarse
discretization, tests were
conducted on the sound field of
a loss-free stiff-wall duct as
shown in Fig.2(a). The duct is
O.2m width and 2m long with
sound source at one end and
anechoic termination 'at the
opposite end so that only a
plane wave in the positive axial
direction exists below cross­
mode cut-on frequency (850
Hz). The sound pressure
distribution (normalized by
values at x=O.5 m) of the target
section at 400 Hz are shown in
Fig..2(b). Numerical error in
amplitude and phase by cubic
element of 4 npp (which stands
for nodes per patch) are about -

In case of the constant element, V~nP of a nodal point was approximated in a

finite difference expression by using the neighboring nodal pressures in a
surface patch [2].
Reduction Methods of Computer Storage. We have employed the frontal
technique of equation assembly and reduction to solve for the interface
variables combining the set of equations (3) for each sub-region together with
compatibility and equilibrium
conditions between their
common interfaces., This
technique contributes to
minimize core storage as well
as present introduction of the
higher order element. In
addition, restricting the target
to the partial regions of interest
instead of whole field, we have
introduced the Gauss-Jordan
elimination for the target
unknowns in the Gauss
elimination process to omit
buck-up storage for the buck­
substitution process.
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(b) Sound absorption

Fig.3 Sound absorption of a slit resonator
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the duct axis is modeled)
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-0.003 dB/m and 0.02 deg/m,
respectively. Those by constant
element fluctuate large, and
about 0.003 dB/m and 0.08
deg/m when 40 npp is used,
while about 0.003 x40 dB/m
and 0.07 x40 deg/m when 4
npp is used. Cubic el~mentof 4
npp and constant element of 40
npp is similar in precis'ion for
amplitude. This indicates that
cubic element requires less
computer storage by about
1/1 00 compare to constant
element at a given .order of
precision, though the frequency
dependence must be
investigated further.
To confirm the effectiveness of
introduction of cubic element to
the evaluation of the tangential
Laplacian for wall visco-thermal
dissipation, a test was carried
out on a slit resonator as
illustrated in Fig. 3(a). Fig.3(b)
shows the results on sound
absorption. Here again, cubic
element of 4 npp gives similar
precision to constant element of
40 npp.

4. CONCLUSION

To reduce computer storage in numerical prediction of a sound field, cubic
element has introduced. Tests has been carried out on numerical attenuation
in a loss-free stiff-wall duct and on sound absorption of a slit resonator with
wall visco-thermal dissipation. Consequently cubic element has reduced
computer memory requirement by roughly 1/100 compare to constant element
at a given order of precision in these two dimensional cases.
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