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INTRODUCTION

The reactance and the resistance of a Helmholtz resonator govern its resonance frequency and absorption. The
theoretical predictions of these acoustic properties had been reached the limit until 1950s. These theories give
primarily the reactance of resonators with simple geometries. To predict both the reactance and the resistance of
resonators with intricate geomeuies, we made an attempt to introduce a numerical approach to couple the acoustic­
wave mode field with the thermal- and shear-wave mode fields in the close vicinity of the resonator wall. To confinn
the effectiveness of this boundary element approach, we conducted experiments on a slit resonator attached to an
impedance tube.

ACOUSTIC PROPERTIES OF A HELMHOlTZ RESONATOR

A Helmholtz resonator is represented fully its acoustic
properties by the specific acoustic impedance as a
function of frequency, ZHR, which is defined as

where PF and Uo denote the sound pressure and the fluid
velocity at the entrance of the aperture channel as shown
in Fig. 1, j2 =-1, and the real part R and imaginary part
X of ZHR are respectively the resistance and reactance of
the resonator. The absorption coefficient of the resonator
a is related to these as

Fig. 1 Slit resonator used in the test.
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in which R=R/(pccr), X=X/(pccr) and 0'= Ao/An.
Here p and c denote the density and sound velocity of the air, and Ao and An are the sectional area of the opening and
the duct respectively. The absorption coefficient has been defined as the quotient between the power lost in the
resonator and the power of the incident plane wave per unit area of the resonator front surface [1].

Experimental Method. Experiments were conducted on a slit resonator as shown in Fig. 1. To decompose the
incident and reflected plane waves in the far field, the two-microphone method with impedance tube [2] was
employed. From the far field pressures PI and P2, the entrance pressure PF and velocity Uo are derived in terms of the
plane wave propagation model for the test duct, and then R and X of eq. (1) are given.

Conventional Prediction Method. The models for the reactance X and resistance R of a Helmholtz resonator
are respectively given as

x = roM - KB/ro (3) (4)
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where M and KB are the apparent mass per unit area and the stiffness of the air cavity, respectively, and are
represented as

KB = { pcO'w cot(wlB/c )

pc2AoNB

for distribution of plane waves in the cavity

for distribution of uniform pressure in the cavity.

(5)

(6a)

(6b)

In these equations, (j) is the angular frequency, 10 and ro denote the length and the ,width of the slit aperture, VB and IB
represent the volume and the depth of the back cavity as shown in Fig. 1, Rv is the resistance factor which will be
described in the subsequent section, ~lM is the mass end corr~ction for both sides of the aperture, and ~IM has been
analytically given for the periodical slit [3] as shown in Fig. I, as

L\lM I r
o

== {0.95 for distribution of constant pressure in aperture cross-section

1.0 for distribution of constant velocity in aperture cross-section.

For the resistance end correction ~lR we have L\IR/ro = 2 which was given empirically for circular holes [4].

NUMERICAL ANALYSIS METHOD

(7a)

(7b)

To predict the far field pressures Pl and P2 and then R and X of a resonator, we employed a boundary element method
for the acoustic-wave mode field and tried to give an appropriate boundary condition to take the wall viscosity and
thennal effects into account.

BE for Acoustic-wave Mode. For the acoustic-wave mode field, discretizing the boundary surface into N
boundary elements and exploiting the constant frequency version of the Kirchhoff-Helmholtz integral theorem, we
have the relationships between the pressures and normal pressure gradients of all the boundary elements as,

N
L (Gijqj - HijPj) = - fi, for i=l, 2, ... , N.
j=l

(8)

In this equation set, Pj and qj denotes the pressure and its normal gradient, respectively, of the boundary element j,
and are assumed to be constant over each element, and Gi j , Hij and fi are defmed as

(9a), &. I. ago 0Hij=-J + _1_Jdr
2 r o an

J

(9b),
NS

fi= L Sjgij (9c)
j=l

in which gij stands for the free space Green's function of the inhomogeneous Helmholtz equation. Specifically for a
two dimensional case, it is given as

(10)

Here ffif) is the Hankel function of the second kind and of zero order, k is the wave number for the acoustic mode,
Le., k = ro/c, rij is the distance between the centroid point of the surface ri and an arbitrary point on the surface rj,
Oi j is the Kronecker delta, and Sj denotes the strength of point source j in the region, though no sound source of this
kind was posed in the present work. The dimension of each boundary element taken here was 1 mm.

Boundary Conditions for Thermal- and Shear-wave Modes. For simplicity, we assume that each surface
element has the prescribed acoustic property described as eq. (11a). For the acoustic admittance to match the acoustic­
wave mode to the thermal- and shear-wave modes, we have an expression which contains the effective viscothermal
admittance [5] which is written as the second term in eq. (lIb):

(1Ia) (lIb)



Terao and Sekine 443

where q/(- jrop) is the outward normal velocity of the acoustic mode, ~ and fware the acoustic admittance and driving
force of the surface element, and Zw denotes the specific acoustic impedance of the solid wall. We assumed every
surface as fw= 0 and Zw = 0 except the surface of the test sound source. Rv and Rh are defined as

Rv/pc == rodv/2c ::= 2.00x10-5 (12a) (12b)

in which dv=V2J..1./rop and dh =V2K/ropCp are the boundary layer thickness of the thermal- and shear-wave modes
respectively, J..1. and K denote the viscosity and the thermal conductivity of the air, cp and 'Y are the specific-heat
coefficient at constant pressure and the specific-heat ratio of the air, and f denotes the frequency. The tangential

Lapracian V'~an stands for the sum of the second derivatives with respect to the two coordinates tangential to the
2

boundary surface, and V'tanp of each surface element was approximated in a finite difference expression by using the
neighboring element pressures.

(13a)

Implicit Method. Substituting qj of the eq. (8) by pj+l, pj-l and
Pi - fwj, for each j by using the boundary conditions described by eq.
(11), we can reconstruct eq. (8) into a set of N linear algebraic
equations for N unknown pressures. Solving this equation system for
these unknown pressures that involve the far field pressures at PI and
P2, R and X are given in the same way as was in the experiment.

Explicit Method. We studied also on possibility to utilize
commercial numerical software as an alternative to the above implicit
method. Under assumption of q=O, Le., Zw = 00, Rh = 0 and Rv = 0 in
eq. (11), one can solve the equation system (8) for every p j, but one
can get only reactance X from the pressures PI and P2. To obtain the
resistance R by exploiting this pressure distribution, we have the
expression [6] as

R = ( Indr/(lual'/2I2A o)

JnlR
(13b)
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Fig. 2 Pressure and velocity distribution around the slit resonator (Zw = 00) by the numerical methods.
Half side of the region about the axis of symmetry at resonance frequency 450 Hz is shown.
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TEST RESULTS

CONCLUSIONS

We developed BE approach to predict the acoustic
properties of a Helmholtz resonator by coupling the
acoustic-wave mode field with the thermal- and
shear-wave mode fields. This prediction method was
tested on a slit resonator and gave reasonable
prediction for the absorption coefficient due to the
viscothermalloss at the resonator wall.

Fig. 2 compares the effect of the wall viscothermal
loss on the pressure and velocity distributions in the
numerical prediction. The discrepancies between (a)
and (b) are not noticeable in this case of the small
absorption coefficient. The pressure and velocity
distributions in the cavity and at the aperture
entrance are, strictly speaking, neither of plane
waves nor uniform. This reduces slightly the
effectiveness of the eq. (6) for KB and eq. (7) for
~lM. However in the conventional prediction method
in the subsequent comparison we employed eq. (6a)
for KB. Fig. 3 compares the methods for the mass
end correction ~IM. For measurement, the velocities
are so small and tend to be erroneous that the results
in the frequency region below the resonant frequency
450 Hz are not reliable. Except this frequency
region, the discrepancies among the methods are not
considerable. Fig. 4 shows each wall contribution,
0.0, aBP, aFP, aB and aD as indicated in Fig. 1, to
the absorption coefficient obtained by the implicit
numerical method. The absorption of the test duct,
aD, is not negligible for a resonator with small
absorption. Fig. 5 compares the methods on the
absorption coefficient. For the mea"surement results,
the contribution of the test duct absorption was
excluded by aD illustrated in Fig. 4. The
measurement tends to give overestimation for such a
resonator with small absorption coefficient less than
about 0.06. The explicit numerical prediction gave
somewhat underestimation of the absorption
coefficient at the resonance frequency region in this
case. By contrast, The implicit numerical prediction
is thought to give reasonable absorption coefficient.
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where In indicates the net intensi ty towards the
resonator wall rHR, Le., the energy dissipation from
the acoustic-wave mode to the thermal- and shear­
wave modes, and Utan denotes velocity tangential to
the wall surface, which is given by taking the
tangential gradient of the pressure. Eq. (13) is derived
by approximating eq. (11), and an approximation of
eq. (13) yields eq. (4) in turn.
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