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Abstract
The outer orifice correction for Helmholtz resonators attached to the sidewall ofcircular ducts was
studied. For the outer orifice correction when the axis direction ofthe orifice coincides with that of
the duct, .explicit expressions were given by Ingard and Rschevkin. But their application to duct
sections with duct-sidewall resonators is beyond their premise. An explicit expression ofthe outer
orifice correction for duct-sidewall resonators was derived by conducting three-dimensional
boundary-element analyses. Application ofthis outer orifice correction improves significantly the
accuracy of the one-dimensional wave analysis for the acoustic properties of duct sections which
have sidewall resonators.

1. Introduction
In designing Helmholtz resonators for a duct network, acoustical simulations are indispensable
because the resonators introduce acoustically abrupt discontinuities at their apertures in the duct
field. To obtain one transmission-loss curve of a resonator-attached duct-section of several meters
long, the three-dimensional boundary element analysis takes half a day while one-dimensional
plane-wave analysis perform in a minute. The latter analysis is preferable at the stage of trial and
error optimization ofthe resonator design parameters.
However the one-dimensional wave analysis requires estimation of the radiation impedance for
the outside field ofeach resonator aperture. In this study, for simplicity, estimation ofthe radiation
reactance is focused on in terms of the outer orifice correction A/out. For A/out explicit expressions

were given by Ingard and Rschevkin [1]. But this correction may vary with the angle BA between

the duct axis and the resonator aperture axis. Ingard and Rschevkin's expression are A/out for



BA = 0° . In this paper an explicit expression of ~/out for side-branch resonators attached to duct

walls (BA =90°) is derived by conducting three-dimensional boundary-element analyses.

Application of this correction ~/out for BA =90° improves significantly the effectiveness of the

one-dimensional analysis in the transmission loss prediction of duct sections containing sidewall
resonators.

2. Acoustic Impedance of Helmholtz Resonator
We consider a straight duct section (of cross-sectional area So) that has a Helmholtz resonator

attached to the duct sidewall as shown in Figure 1.
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Figure 1 .A plane wave model for a Helmholtz resonator as a side branch ofa straight duct section.

The full wave analyses use the inner acoustic impedance ZF defined as ZF =PF / UHR where UHR

denotes the complex amplitude of the volume velocity flowing into the resonator, PF is the

complex pressure amplitude just outside of the aperture of the resonator, and

Zp = Rp + j{(lA +~/inn)OJP / SA - pc2
/ OJVcav } (1)

where Rp stands for the acoustic resistance of the resonator, OJ is the radian frequency, p is the

density of the air, c is sound speed in the air, SA and IA are the sectional area and the length,

respectively, of the aperture, ~av is the volume of the cavity, and ~/inn is the inner

orifice-correction, i.e., the mass end correction for the cavity side ofthe aperture.
On the other hand, one-dimensional wave analyses use the total acoustic impedance of a resonator
ZHR =PHR /UHR where PHR denotes the complex pressure amplitude at the junction with the

resonator, and is defined as P HR =PF +ZradUHR where Zntd denotes the acoustic radiation

impedance composed of the radiation resistance and reactance, ~ and X rad respectively, i.e.,

Zntd =Rrad + jXntd • Incidentally for a circular pipe end of a baffled opening (of radius a, and for

ka « 1), they are represented as

1\00 =pck2 (1-k2a2 /6)/21C, X rad =8pck(1-4k2a2 /15)/31C2a. (2a, b)



Denoting ~lout as the outer orifice-correction, and using the relationships

X md =OJp~lout ISA' (3)

ZHR =ZF +Zmd and RHR =RF +Rrad , we have

ZHR =RHR + j {(lA + illout + illinn)(J)P / SA - pc2 I (J)~av}. (4)

When an acoustic field containing a resonator has no frequency dependence except the resonator,
the resonant frequency can be written as

fre.~ =(c I 21r)~r--SA-1-V-cav-(lA-+-l1-l-out-+-l1-linn-) • (5)

For a resonator (with a circular aperture of radius a) embedded in a large plane wall and opening

to a half space, the outer orifice-correction ~lout is given as (~lout)halfspace::: O.82a . For this

particular case, we write the resonant frequency le: instead of /res.

3. One-dimensional wave simulation
In the one-dimensional simulation by the plane wave model for a duct section with a Helmholtz
resonator, ports (interfaces) 1, 2 and 3 are taken as shown in Fig. 1. For every port i, the sound
pressure amplitude and the volume velocity amplitude Pi and Ui, respectively, are related by the

acoustic impedance Zi as Pi =ZiUi ·

On the port 1, the sound pressure amplitude Pi' the volume velocity amplitude Ui , the incident

wave pressure amplitude P;, and the reflected wave pressure amplitude P; are related as

Pi = P; +P;, ZcUi = P; - P;, Zc = pcl SD (6a, b, c)

where Zc denotes the characteristic acoustic impedance. These yield a relationship

2p; = Pi +ZcUi and, taking Pi =ZiUi into consideration, we have

2P; =(Zi +Zc)Ui . (7)

Between the ports 1 and 2, the pressure and volume-velocity amplitudes are related as

Pi =P2 =PHR =ZHRUHR' Ui =UHR +U2 (8a, b)

and, taking Pi = ZiUi and P2 = Z2U2 into account, we have

ZiUi =Z2U2=ZHRUHR (9)

For a two-port element 2-3 between the ports 2 and 3, the pressure and volume-velocity amplitudes

are related in terms of the fundamental matrix, for instance, as

P2=Ap3+ BU3' U2=CP3+DU3 (lOa, b)

where A, B, C and D are the four terminal constants. In case of a straight duct of length 1, for

instance, they are represented as A = D = cos kl, B = jZc sin kl , C = jZ;i sin kl .

Taking P3 = Z3U3 into account, Eq. (8) and (10) yield

IIZi =IIZHR +IIZ2, Z2=(AZ3+B)/(CZ3+D). (IIa,b)



(I5a, b)

4. Dissipation and Transmission factors
The dissipation factor of a Helmholtz resonator is defined as the ratio of the dissipated sound

power PHR =RHR luHR I2 /2 to the incident sound power J:+ =Ip;12
/2Zc, i.e.,

0HR = ZcRmt IUHR / p;12
• (12)

For a duct section between the ports 1 and i, the transmission factor is defmed as the ratio of the

transmitted sound power J: = Ri IUi 1
2

12 to the incident sound power, i.e.,

1'il = ZCRj IUj / ptr· (13)

Eq. (11) can be applied to general tree-type-network ducts. As a special case for a N resonator

chain, as seen in Fig. 3, made up with N sections which each are similar to the element 1-3, and

are numbered n =1,2,···, N with the ports 2n -1 through 2n +1 , we apply Eq. (11) in the form

11 Z2n-l =11 z~i +11 Z2ntl.; Z2n =(A (n)Z2n+l + B(n») I(c(n) Z2n+l +D(n») (I4a, b)

where the superscript (n) denoted the n th resonator or the n th duct section. When the

termination impedance Z2N+l of Nth (the last) resonator is given, the impedances Z2n and Z2n-l

ofthe duct section for nth resonator can be detennined by using Eq. (I,4b) for n =N, N -1,··· ,2,1

in tern. For a N resonator chain between the ports 1 and 2N +1, the dissipation factor of i th

resonator t5;, and the transmission factor between the ports 1 and 2i +1, 1'2i+l,1 are written as

~ (i) 1 (i) 1 +1
2

4 (i) I 12 +1
2

1 (i) 1 1
2 rri

-

1 I 1 12Vi =ZcRHR. UHR. PI = ZcRHR U I PI UHR U2i- I U2n+1 U2n- I ,
n=l

i

1'2j+I,1 = ZC~j+IIU2j+1 / p;12

= 4Zc~j+IIUI / 2p;rrrlU 2n+1 / U2n-l·
n=l

These can be determined by using Eq. (7), Le., 2p;1U1 =Zc +Zl and Eq. (14), and the following

relationships derived from Eqs. (9) and (lOb);

u::i 1 U2i- I = z::i 1 Z2i-I and U2n- I 1 U 2n+I = (z::i +Z2n)(c(n)Z2n+I +D(n»)1 z::i. (16a, b)

The acoustic impedance ZIiR of a resonator is identical to the combined impedance of M

resonators of the acoustic impedance MZHR attached along the same circumferential line of the

duct wall. This implies that the resonator chain corresponds substantially to the sidewall resonators

of M x N individual resonators.

5. Outer orifice Corrections
To determine the mass end correction J1.1out for a resonator attached to the sidewall of a circular

duct ( (JA =90°), a series of full wave simulations by the 3-D BEM (the 3-dimensional boundary

element method [2]) was conducted. As shown in Fig. 2, two methods, Le., Eq. (5) and Eq. (4)

were used to determine J1.1out ; fres for Eq. (5) and X rad for Eq. (4), respectively, were given by the

BE simulation. In case of a resonator attached to the plate of a duct end «(JA =0°), J1.1out



determined by hes agrees excellently, while that by X rad has some discrepancy, compared to the

Rschevl{in's expression. The correction Jilout for (JA =90° is far greater than that for (JA =0° .

b'V1res

by Zrad

0.30.20.1 0.4 0.5
a=SA/Sn

Figure 2 Dependence of outer orifice correction Jilout on aperture directions relative to duct axis.

6. Application of End-Correction for sidewall resonators
To confirm the effectiveness of the correction Jilout for (JA = 90°, several simulations are carried

out. Fig. 3 shows the dissipation and transmission factors of a duct section with a resonator array

(when the total number ofresonator is 5, and for the section between the ports 1 and 11). Here 81- 11

was given as the difference between the absorption factor and the transmission factor.
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Figure 3 Comparison of I-D and 3-D model in terms of sound dissipation factors ~-ll and
transmission factors 'flltl , for a duct section containing sidewall resonators.



When the correction ~lout for (JA =90° is used, the results of 81- 11 and 'i11,1' respectively, by I-D

model approaches to that by 3-D BEM. Fig. 4 shows the dissipation factor ofeach resonator given

by Eq. (15a) for the same duct section as shown in Fig. 3. They each play different roles in the

dissipation of the sound.
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Figure 4 Each resonator contribution to sound dissipation (ID model).

7. Conclusion
It is found that, for a given ratio ofthe resonator aperture area and the duct cross-sectional area, the

outer orifice correction ~lout for resonators attached to the sidewall of ducts is far larger than that

attached to the end plates of ducts. Use ofthe correction ~lout for side-branch resonators improves

remarkably the prediction accuracy of the one-dimensional wave simulation for duct sections

which have sidewall resonators.
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