ダクト系透過音低減用共鳴器の最適取付位置について*

◎鈴木誠人,寺尾道仁,関根秀久,佐々木悠哉(神奈川大・工)

1 はじめに

ヘルムホルツ共鳴器をダクト系において使 用する上で共鳴器パラメータのチューニング が不可欠である。前報[1]では共鳴器チューナ (共鳴器パラメータの調整機能をもつ共鳴 器)列による透過音制御について実験を行い その有効性を示した。その際,特定位置に取 付けられた特定共鳴周波数域担当の共鳴器チ ューナは,透過音制御に全く役立たない(不 感不能周波数ゾーンが存在)現象が生じた。 そこで共鳴器の取付位置とダクト内の音圧分 布の関係について物理実験および数値解析に より検討した。

2 共鳴器の制御パラメータ

共鳴器の共鳴周波数 f_{res} および共鳴の鋭さ Qは, 共鳴器の容積 V_{cav} , ネック開口面積 S_A , 比音響抵抗 r_{HR} , 等価ネック長 l_e の4つの幾何 的パラメータにより決定される。すなわち,

$$f_{\rm res} = (c/2\pi)\sqrt{S_{\rm A}/l_{\rm e}V_{\rm cav}}$$
(1)

$$Q = 2\pi f_{\rm res} \rho l_{\rm e} / r_{\rm HR} \tag{2}$$

一方,音響消散率 δ_{HR} はダクト断面積を S_{D} , $Z_{c} = \rho c/S_{D}$ として,

$$r_{\rm HR}^* = r_{\rm HR} / S_{\rm A} Z_{\rm c} \tag{3}$$

に依存する。ここではネック開口面積 S_A を 660 mm²に固定した。

3 音圧と音響透過損失の測定

図1に実験対象としたダクトを示す。ダクトの終端は自由開口とし、その透過音制御のための共鳴器列のチューニングを想定して共

鳴器チューナ列(6 台)をサイドブランチ型 として取外し可能とした。各共鳴器位置にお いてマイクロホンを設置して音圧を観測する とともに共鳴器列の音源側と透過側にそれぞ れペアマイクロホンを設置してその進行波お よび反射波を観測した。音源信号は平坦な周 波数振幅の多重正弦波とした。

図2に共鳴器を取付ける前の共鳴器接続点 Iの音圧スペクトル(実線)を示す。音源が 平坦なスペクトルの駆動力であるにもかかわ らず,進行波と開口端からの反射波との干渉 のため周波数によって音圧スペクトルは40 dBに達する山谷を生じている。これに対し, 共鳴器接続点Iに共鳴器チューナを取付け, 100Hzから250 Hzの範囲で10 Hz刻みにその 共鳴周波数を変化させたときの音源側・透過 側検査面間の音響透過損失を〇印により示す。 共鳴器の共鳴周波数に対し,その周波数で取 付け位置の音圧が大きいときには共鳴器は有 劾に働き,その結果,大きな音響透過損失が

^{*}On optimum position of resonators to suppress sound transmission of a duct by SUZUKI Masato, TERAO Michihito, SEKINE Hidehisa and SASAKI Yuya (Kanagawa University) 得られ,これと逆のときにはこの共鳴周波数 の共鳴器は働きが悪いこと,すなわち,共鳴 器はその共鳴周波数で音圧が高い位置に設置 することが重要であることが確認される。

4 数値解析によるダクト内音圧分布

ダクト内の詳細な音圧分布については数値 解析(3次元境界要素法)により調べた。そ の境界条件として音源側についてはレーザド プラ速度計によりスピーカ膜面速度,ダクト 終端側については音響インピーダンスを測定 して与えた。その結果を図3に示す。実験と 数値解析の音圧スペクトルは概ね一致してい る。図4に共鳴器無しで周波数が120 Hzの場 合のダクト内音圧分布を示す。この場合,共 鳴周波数120 Hz の共鳴器の配置は音圧が小 さい取付位置Ⅲを避け,音圧が大きい取付位 置Vを選択するのが効果的といえる。

5 共鳴器の最適配置

図5は6つの卓越ピークを持つ透過音スペ クトルについて、その卓越ピーク低減を目的 とした共鳴器配置に関する実験結果を示す。 試行1は単純に音源側から透過側に向けて共 鳴周波数の低い順に共鳴器チューナを配置し た場合、試行2は前項4.2のダクト内音圧分 布を考慮して共鳴器チューナを配置した場合 である。各共鳴器の共鳴周波数に一致する周 波数においては配置変更により大きな透過音 低減効果が得られることが確認される。

5.1 複数の共鳴器相互の干渉性

図5には各共鳴器の共鳴周波数に一致する 周波数のみに注目しその周波数のみ抽出して 示した。しかし、各共鳴器の共鳴周波数以外 の周波数では各共鳴器のそれぞれの役割は必 ずしも明確ではない。これは共鳴器相互の音 響的干渉によるものと考えられる。

図6は各共鳴器取付時の音源側検査面の音 圧反射率を示す。試行1は共鳴器接続点Iに 共鳴周波数100 Hzの共鳴器チューナ1台を取 り付けた場合である。試行2,試行3はそれ ぞれ共鳴器接続点IIおよび共鳴器接続点IIIに 共鳴周波数150 Hzおよび200 Hzの共鳴器を 取り付けた場合である。図5で設定した共鳴 器パラメータでは各共鳴器の半値幅が広く共 鳴周波数が近接する共鳴器間の相互干渉が無 視できないものと考えられ,それについては さらに検討が必要である。

図3 音圧スペクトルの比較(共鳴器接続点])

	120 Hz		I ¦	п 	ш ¦	rv 	v 	VI 	自	由開口端
₹	80 <u>60</u> 80	82	80		50	80	82	80	60 80	80dB
Ī	1650		<u> </u> 300	2 30	0130	013	00/30	QĹ	1650	mm

図 4 ダクト内の音圧分布(120 Hz)

<u>و</u>70 230Hz 95Hz 120Hz 150Hz -175Hz]イシイヨ 50 200Hz 8 「 是 の 40 試行 記号 +⁴ 30 iπ 0 120 150 175 200 齨 230 95 150 200 120 Δ 迥 20 旁 100 120 140 160 180 200 220 240 周波数 [Hz] 共鳴器の取付位置による透過音 図 5 1.0 樹 0.8 $f_{\rm res}$ [Hz] 試行 共鳴器 0 無し 100 150 3 詚 200 0 240 100 120 140 160 180 200 220 80 周波数 [Hz] 図6 共鳴器による音圧反射率の変化

6 おわりに

ダクト系騒音制御における共鳴器の効果的 な取付位置について実験および数値解析を行 い、ダクト内音圧分布と密接な関係があるこ とを確認した。また、共鳴器列の配置に当た っては複数の共鳴器相互の音響的干渉も考慮 を要することが示唆された。

参考文献

[1] 鈴木ほか, 音講論(秋), 973-974, 2009.