## デボンド異形鉄筋を用いたブレース型制振部材に関する研究 その3 芯鉄筋の相違による影響

| 正会員 | ○ 二宮 誠司*1           |
|-----|---------------------|
| 同   | 五十嵐 泉*2             |
| 同   | 島崎 和司 <sup>*3</sup> |

| RC 構造 | デボンド | 芯鉄筋 |
|-------|------|-----|
| ブレース  | 制振部材 |     |

#### 1. はじめに

履歴型制振部材の役割は、引張・圧縮力の 作用下においてエネルギー吸収能力を発揮し、 躯体への損傷を低減させることである。前報<sup>1)</sup> <sup>2)</sup>では、芯鉄筋のクリアランスを小さくするこ とで大きな減衰性能を発揮し、ブレース型制

振部材として有効であることがわかった。本報では、異 形鉄筋の優位性の確認のために芯鉄筋の種類や形状、デ ボンド材を変えて実験を行い、芯鉄筋の相違が部材に及 ぼす影響の把握を目的とする。

# 2. 実験概要

## 2.1 試験体

試験体は計 8 体で、概要を図 1 に示す。コンクリート 部分は前報と同様に、断面 240×210mm で長さ 1500mm とした。加力装置(図 2)と計測項目も前報と同じとした。 表 1 に材料の性質を示す。表 2 に試験体一覧と中央部芯 鉄筋のデボンド処理方法、クリアランスを示す。クリア ランスの定義はデボンド材の厚みとした。ただし No.9 の 鋼板の厚みはクリアランスとみなさない。鉄筋は両端部 を D25 のねじ鉄筋とし、D16 の中央部芯鉄筋と摩擦溶接 で接合した。芯鉄筋溶接部には緩衝材を設置することで、 圧縮力がコンクリートに伝達しないようにした。

#### 2.2 載荷方法

試験体芯鉄筋 4 本の合計降伏荷重(ΣPy)のΣPy/3、Σ 2Py/3、ΣPy を各 1 回、その後は載荷柱の水平移動角で 1/200、1/133、1/100、1/67、1/40rad を目標として各 3 回繰 り返し載荷し、1/33、1/20rad の引張側を各 1 回載荷した。 圧縮側で試験体に座屈が生じた場合は加力を中止した。

#### 3. 実験結果及び考察

#### 3.1 実験経過

表3に各試験体の実験経過を示す。前報に比べ端部芯 鉄筋を太くしたために端部芯鉄筋の座屈は起きなかった が、中央部芯鉄筋の変形が大きかったと考えられるリブ 部分を除去したNo.7や、クリアランスを0としたNo.9は 1/40rad 圧縮側途中にコンクリートのクラックの増加とと もに耐力が低下した。芯鉄筋に丸鋼(SNR490B)を用いた No.10、11は1/33rad 引張載荷中に芯鉄筋が破断した。

### 3.2 軸荷重-軸変位関係

図 3 に代表的な試験体の軸荷重-軸変位関係を示す。 デボンド材に熱収縮チューブを用いた No.5 と No.6 は 1/40rad 圧縮側を終えても座屈せず、その後引張側 1/20rad

Experimental Study on RC Brace Type Dampers Using Debonded Deformed Bars Part3. Influence of difference of axial bars





#### 表1 材料の性質

|         | コンクリート     |                        | 鉄筋    |                    |            |            |  |
|---------|------------|------------------------|-------|--------------------|------------|------------|--|
| 試験体     | 圧縮強度       | ヤング係数                  | 括粘    | 11175              | 降伏強度       | 引張強度       |  |
|         | $(N/mm^2)$ | $(N/mm^2)$             | 性稅    | 中の石                | $(N/mm^2)$ | $(N/mm^2)$ |  |
| No.5~12 | 45.2       | 2.95 × 10 <sup>4</sup> | 補強筋   | D6(SD345)          | 366        | 656        |  |
|         |            |                        | 主筋    | D13(SD345)         | 380        | 575        |  |
|         |            |                        | 芯鉄筋   | D16(SD345)         | 390        | 578        |  |
|         |            |                        | 芯鉄筋   | $\phi$ 16(SNR490B) | 391        | 563        |  |
|         |            |                        | 芯鉄筋   | $\phi$ 16(SNR400B) | 323        | 463        |  |
|         |            |                        | 端部芯鉄筋 | D25(SD345)         | 386        | 546        |  |

## 表 2 試験体一覧

| 試験体   | 中央部<br>芯鉄筋           | 中央部芯鉄筋 端部 端部芯鉄筋<br>の表面処理 芯鉄筋 の表面処理 |         | クリアランス<br>(mm) |     |
|-------|----------------------|------------------------------------|---------|----------------|-----|
| No.5  | D16                  | 粘土+熱収縮チューブ                         |         |                | 0.7 |
| No.6  | (SD345)              | 熱収縮チューブ                            |         |                | 0.7 |
| No.7  | D16(SD345)<br>リブ部分除去 | ワックス+デボンドテープ                       |         |                | 1.0 |
| No.8  | D16                  | ビニールチューブホース                        | D25     | ワックス+          | 0.6 |
| No.9  | (SD345)              | 溶融亜鉛めっき鋼板                          | (SD345) | デボンドテープ        | 0   |
| No.10 | ¢16                  | 処理なし                               |         |                | 0   |
| No.11 | (SNR490B)            | 熱収縮チューブ                            |         |                | 0.7 |
| No.12 | φ16<br>(SNR400B)     | 熱収縮チューブ                            |         |                | 0.7 |

NINOMIYA Seiji, IGARASHI Izumi, and SHIMAZAKI Kazushi

まで加力を行った。端部芯鉄筋を太くしたことで圧縮側 での端部芯鉄筋の座屈を防ぐことができた。節間に粘土 を充填しないほうが圧縮側の耐力は高かった。溶融亜鉛 めっき鋼板を用いた No.9 は 1/40rad 圧縮側到達直前に耐 力低下を起こしたために、その後は引張側に切り換え 1/20rad まで加力した。異形鉄筋の周りに鋼板を巻くこと で、圧縮時の変形を節間に集中させた。概ね安定したル ープを描いている。処理なしの丸鋼を用いた No.10 は 1/40rad 圧縮側を終えても座屈しなかったが、その後の引 張側で鉄筋が一本破断したので試験を終了した。丸鋼を そのまま用いた場合でも履歴は安定している。しかしデ ボンド処理をしていないために、圧縮側での体積膨張を 吸収することができず拘束材への負担が大きくなり、ク ラック増加の要因になると考えられる。クリアランスの 小さな試験体の圧縮側の最大軸耐力が大きくなっている ことからも、拘束材のコンクリートが荷重を負担してい ることがわかる。

#### **3.3 鉄筋の歪分布**

図4に芯鉄筋の歪分布を示す。付着のある丸鋼の No.10 を除き、降伏までほぼ均一な歪分布となっており、デボ ンドにより全長に渡り均等に引張・圧縮されていると言 える。No.9 は鉄筋降伏時の歪にばらつきが見られる。ク リアランスを0とすると芯鉄筋が均一に引張・圧縮され ない可能性がある。

#### 4. 累積吸収エネルギー量

図 5 に累積吸収エネルギー量を示す。端部芯鉄筋の座 屈を防止できたため、前報と比較すると吸収エネルギー 量が大きくなっている。特に熱収縮チューブを用いた No.5、6、12 は高い数値を示しており、熱収縮チューブが 有効なデボンド処理方法であるといえる。リブ部分を除 去した No.7 は耐力低下が起き、エネルギー吸収量も比較 的小さかった。このことから、安定した軸方向変形を繰 り返すために異形鉄筋のリブは必要なものであるといえ る。

#### 5. まとめ

熱収縮チューブを用いた簡易的なデボンド処理方法で も制振部材として優れた性能を発揮する。芯鉄筋の種類 に限らず、クリアランスを小さくしすぎると拘束材へか かる負担が大きくなり耐力低下や損傷拡大の原因となる 可能性があるため、0.7~1.0mm 程度のクリアランスが最 適である。異形鉄筋のリブ部分は、芯鉄筋の塑性座屈後 の変形性状や耐力に重要な影響を及ぼす。芯鉄筋に丸鋼 を用いた場合、圧縮側での鉄筋の体積膨張の吸収や破断 の防止が課題となる。

#### <参考文献>

- 五十嵐ほか:デボンド異形鉄筋を用いたブレース型制振部材に関する研究、その1、日本建築学会大会学術講演梗概集、C-2、2008年
- 二宮ほか:デボンド異形鉄筋を用いたブレース型制振部材に関する研究、 その2、日本建築学会大会学術講演梗概集、C-2、2008年

\*1 株式会社 フジタ

- \*2 神奈川大学 工学部 建築学科 主任技術員
- \*3 神奈川大学 工学部 建築学科 教授 博士 (工学)

### 表 3 実験経過

| =+ 昨全/★        |                             |       | 最大軸耐力(kN) |  |  |
|----------------|-----------------------------|-------|-----------|--|--|
| 武贵(平) 武贵(平)人/元 |                             | 引張    | 圧縮        |  |  |
| No.5           | 1/20radの引張側まで終了             | 461.9 | 554.1     |  |  |
| No.6           | 1/20radの引張側まで終了             | 469.3 | 624.1     |  |  |
| No.7           | 1/40radの圧縮側の途中にクラックの増加、耐力低下 | 450.9 | 523.2     |  |  |
| No.8           | 1/20radの引張側まで終了             | 458.0 | 607.2     |  |  |
| No.9           | 1/40radの圧縮側の途中にクラックの増加、耐力低下 | 456.2 | 604.8     |  |  |
| No.10          | 1/33radの引張側の途中で、φ16が1本破断    | 441.1 | 692.5     |  |  |
| No.11          | 1/33radの引張側の途中で、φ16が1本破断    | 428.1 | 611.3     |  |  |
| No.12          | 1/20radの引張側まで終了             | 380.1 | 538.4     |  |  |



図3 軸荷重一軸変位関係



図 5

Fujita Corporation.Chief Technician, Kanagawa University.Professor, Kanagawa University, Dr. Eng.

量

累積吸収エネルギ・