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Abstract

It has long been recognized that site effects should be considered in the seismic design of structures.
Generally, there are two categories of methods for estimating site effects for design purpose, namely:
empirical and theoretical. The empirical methods are developed based on site classification and
statistical analysis of seismic records. In most seismic codes throughout the world, such as the
Eurocode 8 and the International Building Code, the empirical methods are adopted for estimating
site effects. But, for some regions such as Japan, site conditions are known to vary significantly, site
effects can hardly be represented using several site classes. For such regions, it has been suggested
that site effects be evaluated using theoretical methods according to specific sites instead of rough
site classifications, by some codes including the Japanese Seismic Code.

A number of simple theoretical methods have been developed to estimate site effects of specific
sites. Almost all of these methods are developed theoretically based on a simple soil model, a single-
layer soil profile on bedrock. And, for multi-layer soil profiles, the multiple soil layers are
approximated as an equivalent single layer by roughly weighted averaging the soil shear wave
velocity and density. However, the weighted averaging ignores the layer sequence and can’t properly
consider properties of every soil layers. It can be easily inferred that, the error of estimated site effects
will increase as variation degree of the soil properties along the depth increases. What's worse, the
method using the weighted averaging is found to significantly underestimate site effects, when the
impedance contrast of the soil layers is large, which is dangerous for the seismic design of structures.

The main objective of the present research is to develop a new simple site-specific method for
estimating site effects of multi-layer soil profiles. This dissertation consists of six chapters. The
contents of each chapter are briefly described as follows.

In Chapter 1, the background, objective and organization of this study are described.

In Chapter 2, a function for estimating site effects characterized as response spectral ratio (RSR) is
developed. To develop this function, the RSR and Fourier spectral ratio (FSR) are compared, based
on ground-motion records in Section 2.2 and random vibration theory in Section 2.3.

The developed function for RSR in Chapter 2 consists of two basic parameters, namely the
fundamental period and first resonance peak. In Chapter 3, three simple methods for estimation of
the first resonance peak of layered soil profiles are developed.

In Chapter 4, a simple procedure to consider the soil nonlinear behavior in estimation of the site
effects is developed. During the application of this method, the first mode shape is necessary; a simple
method for estimating the first mode shape of layered soil profiles is proposed, in Section 4.3.

In Chapter 5, the consideration of estimating site eftects in Chapter 3 is extended to calculate the
fundamental period of a multiple-degree-of-freedom system.

In Chapter 6, conclusions obtained by this study are summarized.

3]






Chapter 1

Introduction

1.1 Background

Recent earthquakes (Mexico City (1985), Armenia (1988), Loma Prieta, California (1989),
Northridge, California (1994), Kobe (l9§5), Taiwan (1999), Central-Western India (2001),
Wenchuan, China (2008), Tokoku, Japan (2011), Kumamoto, Japan (2016) etc.) [1-10] have
repeatedly shown the pronounced effect of local site conditions on the level of ground shaking and
damage at a site. The earthquake ground motions can be significantly modified whilst travelling
from the bedrock to the soil surface. In certain soil conditions, the ground motion at bedrock level is
amplified by several times though the overlying soil, thereby inducing greater damage in buildings
and other structures. It is clearly that, site effects should be incorporated into the seismic design of
structures.

Generally, there are two categories of methods of estimating site effects for design purpose,
namely: empirical and theoretical. The empirical methods are developed based on site classification
and statistical analysis of seismic records. In most seismic codes throughout the world, the
empirical methods are adopted for estimating site effects. For example, in UBC 1997 [11], IBC
2003 [12], IBC 2012 [13], IBC 2015 [14], ASCE/SEI 7-05 [15] and ASCE/SEI 7-10 [16], site
effects are reflected by site coefficients of five site classes; and the site coefficients are developed
based on regression of seismic records of the Loma Prieta earthquake in 1989 [2,17,18]. The
empirical methods are appropriate for regions that, (1) site conditions don’t vary significantly, and
thus can be represented by several representative classes, (2) adequate recorded ground-motion data
are available for conduction of the statistical analysis.

But, for regions like Japan, geological feature is known to vary significantly through the country,
site effects can hardly be reflected accurately by several classes of sites. In reality, many important
site-specific characteristics can be masked by the site classifications. For example, for a site
consisting of soft soil on stiffer rock, soil resonance caused by multiple reflections within the soil
medium can cause significant amplification of seismic motion with a frequency near the site’s
fundamental frequency; however, the resonance effect of a specific site is ‘averaged’ by the site
classification and typically cannot be accurately accounted for by a specific site class. Moreover, for

regions such as Hongkong, there are few recorded strong-motion data, reliable site coefficients can
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hardly be obtained based on the statistical analysis. For such regions, the theoretical methods based
on wave propagation theory are more appropriate be used to estimate site effects. It has been
suggested that site effects be evaluated theoretically according to specific sites, by some codes
including the 2000 Japanese Seismic Code [19, 20] and Mexico’s seismic code [21].

A number of simple methods have been developed theoretically to estimate site effects of specific
sites. In Japanese seismic code, a site-specific method developed based on a single-layer soil profile
on bedrock is adopted [19, 20 and 22]. The method uses two response spectral ratios corresponding
to the site’s first and second natural periods to represent site effects. In Mexico seismic code, a
different site-specific method is adopted, which is also developed based on a single-layer soil
profile on bedrock [21]. This method uses amplification ratio of peak acceleration to approximate
site effects. In addition, many simple methods for site effects of specific sites have been developed
by several studies including those by Lam [23] and Hing-hong [24-26]. Similarly, all of these
methods are developed based on a single-layer soil p.roﬁle on bedrock. And, these methods use a
single response spectral ratio corresponding to the site’s first natural period to reflect site effects.

It is noted that, all of these methods are developed based on a simplest soil model, ie. a
single-layer soil profile on bedrock. And, for multi-layer soil profiles, the multiple soil layers are
approximated as an equivalent single layer by roughly weighted averaging the soil shear wave
velocity and density. However, as the weighted averaging ignores the layer sequence and can’t
properly consider properties of every soil layers. It can be easily inferred that, the error in
estimation of the site effects will increase as the variation degree of soil properties along the depth
increases. What's worse, the method using the weighted averaging is found to significantly
underestimate site effects, when the impedance contrast of the soil layers is large [27-29], which is

dangerous for seismic design of structures.



1.2 Objective

In this study, a new simple site-specific method for estimating site effects of layered soil profiles is
developed. Instead of by roughly weighted averaging the soil properties of each layer, the proposed
method properly takes into account layer sequence and properties of every soil layers. In addition,
the proposed method also takes account of, (1) frequency dependent properties of the site effects,
(2) effect of the soil nonlinear behavior on site effects.



1.3 Organization

Background and objective
(Chapter 1)

Method for site effects

Site amplification function | | First resonance peak Gsi Soil nonlinear behavior
(Chapter 2) (Chapter 3) (Chapter 4)

Fundamental period of MDOF structures
(Chapter 5)

Conclusions
(Chapter 6)

Fig.1-3-1 Relationship between chapters

This dissertation consists of six chapters and Fig.1-3-1 shows the organization. Chapter 1 is the
background of this study, and Chapter 6 is the summary and conclusions. Chapters 2 to 4, show the
new. proposed method for estimating site effects of layered soil profiles. In Chapter 5, the
consideration of estimating site effects in Chapter 3 is extended to calculate the fundamental period
of a multiple-degree-of-freedom (MDOF) system. Chapters 2 to 5 constitute the main part of the
dissertation. The contents of the four chapters are summarized as follows.

As the seismic motion for structural design is usually given in the form of response spectrum, the
site effects are typically characterized as ratio of response spectrum at ground surface against the
one specified at outcrop bedrock in seismic codes. In Chapter 2, a function for estimating the
response spectral ratio (RSR) is developed. To develop this function, the response spectral ratio
(RSR) and Fourier spectral ratio (FSR) are compared based on ground-motion records in Section
2.2, and random vibration theory (RVT) in Section 2.3.

The developed function for RSR in Chapter 2 consists of two basic parameters, namely the
fundamental period and first resonance peak. In Chapter 3, three simple methods for estimation of
the first resonance peak of layered soil profiles are developed. And, the validity of the proposed

methods are investigated using a lot of actual soil profiles.
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As the soil nonlinear behavior significantly influences the site response, a simple procedure to
consider the soil nonlinear behavior in estimation of the site effects is developed in Chapter 4.
During the application of this method, as the first mode shape is necessary, and a simple method for
estimating the first mode shape of layered soil profiles is proposed, in Section 4.3. The validity of
both the proposed method for soil nonlinear behavior and the method for the first mode shape are
investigated using many actual soil profiles. In addition, the validity of the total proposed method
for site effects are also demonstrated by estimating response spectra of several actual reprehensive
soil profiles.

. In Chapter 5, the consideration of estimating site effects in Chapter 3 is extended to calculate the
fundamental period of a multiple-degree-of-freedom (MDOF) system. The accuracy of the proposed
method is investigated by estimating the fundamental periods of many designed MDOF models and
actual MDOF structures.






Chapter 2

Site amplification function for site effects

2.1 Introduction

As the seismic motion for structural design is usually given in the form of response spectrum, the site
effects are typically characterized as ratio of response spectrum at ground surface against the one
specified at outcrop bedrock in seismic codes. In this chapter, an equation for estimation of the
response spectral ratio (RSR) is developed, and the developed equation is called site amplification
function.

This chapter is organized as follows. Firstly, to develop the site amplification function, response
spectral ratio (RSR) and Fourier spectral ratio (FSR) are compared, based on ground-motion records
and random vibration theory, in Sections 2.2 and 2.3, respectively. Then, based on the conclusions

derived from sections 2.2 and 2.3, a site amplification function is constructed in Section 2.4.



2.2 Comparison of Fourier and response spectral ratio based on ground-motion records
2.2.1 Introduction

Most analytical methods for estimating the RSR are developed based on a very simple soil model, a
single-layer soil profile on bedrock, with seismic waves propagating vertically [20-26]. But even for
such a simple soil model, there is not a closed form equation for the RSR in theory. To obtain the
RSR, site response analysis has to be conducted in frequency or time-history domain. Moreover,
values of the RSR depend on not only material properties of analyzed soil profiles but also properties
of input rock motions even for linear analysis; the dependence of the RSR on rock motions are found
may be significant [30, 31]. This means that, for a certain linear soil model, a unique RSR can’t been
determined even by means of site response analysis. Properties of input rock motions also have to be
properly taken into account in determination of the RSR. Therefore, directly developing a reasonable
analytical method for RSR 1s very difficult.

Fourier spectral ratio (FSR), known as transfer function, is also often used to characterize site
effects. For the simple soil model introduced above, a closed form equation for FSR can be easily
obtained without any site response analysis. In addition, if soil responds elastically, values of FSR
totally depend on properties of estimated soil profiles; thus for a certain soil profile the FSR is unique.
It is clear that, determination of the FSR is much easy than that of the RSR. If some systemic
relationships between RSR and FSR are known, the RSR can be simply estimated based on the FRS.

Many studies have compared the FSR with the RSR statistically using actual ground-motion
records [32-34]. Maximum value of FSRs and RSRs are found occur at about the same frequency, by
analyses of soft clay sites on much stiffer rock or soil [32]. Moreover, FSRs are found to
systematically exceed RSRs in the neighborhood of the main spectral peaks, through analyses of
several sites on the valley of Mexico [33]. In addition, average spectral ratios at several period bands
are compared for alluvial and bay mud sites, and found that, estimates based on RSR were consistent
with similar estimates based on FSR for similar period bands computed, with some discrepancies
observed at longer-period bands [34].

This section statistically investigates the relationship between RSRs and FSRs not only about the
main peaks discussed previously but also the values for a wide range of periods. Moreover, this
section examines, the dependence of the relationship on magnitude and epicentral distance. For the
purpose above, horizontal accelerations recorded on nearby soil-rock pairs in Japan are used, and
detail information about these sites and ground-motion records are introduced in section 2.2.2 and
2.2.3, respectively. Then, in section 2.2.4, relationship between RSR and FSR along with its
dependence on magnitude and epicentral distance are investigated, using these selected ground

motion records. Finally, the conclusions are presented in section 2.2.5.

2.2.2 Soil-rock pairs



To investigate the relationship between RSRs and FSRs, 10 actual nearby soil-rock pairs are selected
from Strong-motion Seismograph Networks (K-NET, KIK-net) of Japan [13]. The rock sites are
selected to have shear wave velocity of surface layer larger than 400 m/s to meet the definition of
engineering bedrock in the Japanese Seismic Code. And, to reduce the path effect on spectral ratios,
soil sites are selected as close as possible to the rock sites, and the maximum distance of the selected
soil-rock pairs is 4.16 km. These selected soil-rock pairs are numbered from 1 to 10, and information
of each pair, including station code, coordinates, distance between rock and soil site, shear wave
velocity of surface layer, and average shear wave velocity in the upper 30 m (Vs30) are listed in Table

2-2-1. In the table, for each soil-rock pairs, the upper one is rock site and the lower one is soil site.

Table 2-2-1 Information of used soil-rock pairs

Station ID Coordinates - Site Conditions
Name Code Long. Lat. Distance (km) | S velocity (m/s) | V30 (m/s)
1 AOMHO03 | 140.9896 41.234 4.10 530 653.7

AOMO006 140.9972 | 41.1976 100 264.8

2 CHBH20 140.0997 | 35.0882 3.04 1800 1909.1
CHBO020 140.1022 35.1155 150 134.4

3 ISKHO04, 136.7176 | 37.1902 4.16 440 443.5
ISK006 136.6897 | 37.1602 260 344.0

4 YMGHO1 131.5618 34.0494 3.22 1000 1387.7
YMGO13 131.5348 34.031 70 185.4

5 NGSHO06 129.8625 32.6999 4.15 900 1421.1
NGS010 129.8763 32.7353 150 371.6

6 GIFH20 137.2531 35.7991 0.84 460 809.9
GIF010 137.245 35.8029 150 440.9

7 GIFH14 137.5174 | 36.2493 0.01 440 627.4
GIF004 137.5174 | 36.2492 230 452.7

8 ISKHO07 136.6357 36.515 3.07 440 440.0
ISKO010 136.6431 36.5419 110 388.2

9 SRCH10 142.0085 42.993 0.03 480 1026.8
HKD123 142.0085 42.9933 110 627.1

10 MIEO14 136.1687 | 34.0638 0.02 880 1009.4
MIEHO05 136.1689 | 34.0637 170 590.1

2.2.3 Ground-motion database




8- o o
®
o o @ @
o o
o T e T8 ey P @ g
o] , ®H g0 @ o
3 6. o o o @ w ]
£ | MFe % o =
% 51— m:n%m go%n o _
O 5 g0y 0B @ o
PEERY & . L o
4_0%0 °°°%
g g &
3—63'(’)“ o -
] L ! | [

2
0 50 100 150 200 250 300
Epicentral distance (km)

Fig.2-2-1 Magnitude versus epicentral distance

In order to obtain more general conclusions, all ground motions until May 2016, recorded on the 10
soil-rock pairs and also meeting the following characteristics, are selected from the K-NET, KiK-net.
(1) Ground motions from same earthquake are recorded at both rock and nearby soil sites. (2) Ground
motions with peak acceleration greéter than 5gal. (3) Ground motions with Epicentral distance larger
than 10 times of the distance between rock and nearby soil site (to reduce the path effect), and less
than 300 km. Finally, a total of 1,020 earthquake time histories are selected. Fig.2-2-1 shows the
distribution of magnitude and epicentral distance of the earthquake used in this study. It can be
observed that, ground motion records with a wide range of magnitude and epicentral distance are
selected. As earthquake with small magnitude can hardly be recorded at large epicentral distance, few
such records are selected. Generally speaking, selected ground motion records are with reasonably
balanced distribution with respect to magnitude and epicentral distance.

In addition, to remove long-period noise, baseline adjustment is applied to all records, and to
eliminate effect of low-period noise, only the spectral ratios lager than 0.1s are used.

Moreover, as introduced above, for a linear soil profile subjected to vertically propagating shear
waves, the FSR is constant, but RSRs are variable depending on the frequency content of rock site
excitation [30,31]. Therefore, the relationship between RSR and FSR is also dependent on frequency
content of rock site excitation, which is originally affected by magnitude and epicentral distance. To

investigate the dependence on magnitude and epicentral distance, selected ground motions are

Table 2-2-2 Classification of accelerograms

Group | Magnitude | Epicentral distance
1 2.8~5.0 7~150
2 5.1~8.0 7~150
3 5.1~8.0 151~300
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classified into three groups as shown Table 2-2-2. In the table, Group 1, 2 and 3, respectively,
represent small earthquake with short distance, large earthquake with short distance, and large
earthquake with long distance.

2.2.4 Results of statistical study

To compute spectral ratios, Fourier spectra and 5% damped response spectra for each earthquake at
each site are computed. Fourier amplitudes are smoothed using the Parzen window function with
band width equal to 0.3. And, the geometric mean of the two components, in EW and NS direction,
of each earthquake are computed. Then, spectral ratios are computed for each earthquake at each
nearby soil-rock pairs. To investigate the general relationship between RSRs and FSRs, the ratios for
all earthquakes are averaged for each period at each soil-rock pairs, and mean value of RSRs and
FSRs are compared. In addition, to explore the influence of magnitude and epricentral distance, the
ratios for earthquakes in each group are averaged for each period at each soil-rock pairs.

Mean values of RSRs and FSRs, for period band from 0.1s to 10s, at the 10 soil-rock pairs are
computed. For 6 of these soil-rock pairs, fundamental period can be observed obviously from spectral
ratios, results for these soil-rock pairs are shown in Fig.2-2-2, and results for other 4 soil-rock pairs
are shown in Fig.2-2-3. In these figures, horizontal coordinate is period, longitudinal coordinates is
spectral ratio; and the thick line represents value of RSR, thin line represents value of FSR. From Fig.
2-2-2, the shape of RSR is found nearly consistent with the one of FSR. And, maximum value of
FSRs and RSRs occur at about the same period, and the one of FSRs systematically exceed that of
RSRs. These conclusions are consistent with those of previous studies [32, 33]. Moreover, values of
RSR and FSR at periods larger and smaller than fundamental period are compared. Figs. 2-2-2 (a)-
(e) shows that, at fundamental period, value of FSR systematically exceed that of RSR, but, as the
period increase or decrease, value of RSR will exceed that of FSR at some period, and the shape of
RSR is relatively gentler than that of FSR. In Fig. 2-2-2 (f), values of FSRs at any period are nearly
equal with those of RSRs.

In addition, fundamental period obtained from RSR, Tk, and FSR, TF, along with representative
values of RSRs and FRSs at 0.1s, 2s and fundamental period are listed in Table 2-2-3. Fundamental
periods obtained from RSRs can be seen nearly equal with those from FSRs. And the values of FSR
at fundamental period exceed those of RSR for all sites. For most of the sites, values RSRs at 0.1s

and 2s exceed those of FSR. All of these results support above conclusions.
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Table 2-2-3 Results of the 6 soil-rock pairs shown in Fig.2-2-2

Name | Group | 1z Tr RSR | FSR | Ratio; RSR | FSR | Ratio | RSR | FSR | Ratio
(s) | (s) | (peak) | (peak) (0.1s) | (0.1s) 2s)y | @2s)

1 1 0221022] 528 6.18 | 085 | 1.82 | 1.52 | 120 | 1.36 | 095 | 1.43

2 020 023 | 3.69 445 | 083 | 1.77 | 145 { 122 | 1.05 | 099 | 1.06

3 0231023 | 342 461 | 074 | 193 | 153 | 126 | 1.11 1.01 | 1.10

Average | 0.22 | 0.22 | 4.08 493 1 083 | 1.84 | 1.50 | 123 | 1.17 | 099 | 1.18

2 2 0271027 11.00 | 21.81 | 0.50 | 732 | 537 | 136 | 2.34 | 129 | 1.81

3 0261028 | 9.82 177 1 055 | 513 | 336 | 1.53 | 1.59 | 139 | 1.14

Average | 0.28 | 0.27 | 1033 | 1898 | 0.54 | 622 | 436 | 143 | 196 | 134 | 1.46

3 1 0.16 | 0.16 | 3.25 466 | 070 | 1.78 | 130 | 1.37 { 0.83 | 1.02 | 0.81

3 0.151 014 | 1.97 375 1 053 | 099 | 1.11 | 0.89 | 1.10 | 1.14 | 0.96

Average | 0.16 | 0.15 | 2.50 393 1 064 | 139 | 1.20 | 1.16 | 096 | 1.09 | 0.88

4 | 0381036 | 1224 | 19.02 | 0.64 | 3.66 | 320 | 1.14 | 338 | 1.18 | 2.86

2 0381037 | 1246 | 1847 | 0.67 | 478 | 3.24 | 148 | 1.86 | 125 | 149

3 039|038 1358 | 1850 | 0.73 | 444 | 334 | 1.33 | 1.67 | 1.07 | 1.56

Average | 039 | 037 | 1268 | 1796 | 0.71 | 429 | 326 | 1.32 | 231 1.17 | 1.97

5 1 0.11 | 0.11 | 6.16 9.04 | 0.68 | 434 | 417 | 1.04 | 192 | 146 | 1.32

2 0.10| 0.11 | 5.11 1025 | 0.50 | 483 | 415 | 1.16 | 1.84 | 1.66 | 1.11

Average | 0.11 | 0.11 | 5.61 959 | 058 | 459 | 416 | 1.10 | 1.88 | 1.56 | 1.21

6 1 046 | 0.46 | 1.20 140 } 086 | 0.75 | 0.73 | 1.03 | 0.96 | 099 | 0.97

2 0401050 | 1.33 145 1 092 | 0.80 | 094 | 0.85 | 1.04 | 092 | 1.13

3 0481047 | 147 1.66 | 0.89 | 097 | 090 | 1.08 | 0.83 | 0.84 | 099

Average | 047 | 047 | 1.33 147 |1 090 | 0.84 | 0.86 | 098 | 0.94 | 091 | 1.03

Fig. 2-2-3 shows the spectral ratios without obvious fundamental peak. To investigate the reason

why fundamental peak is not observed, shear wave velocity of surface layer and V30 of the 4 soil sites

listed in Table 2-2-1 are analyzed. It is found that, although shear wave velocity of surface layer is

small, 730 is large. This indicates, depth of soft surface layer is small and share wave velocity of lower

soil layers are large, which lead the fundamental period of soil site smaller than 0.1s and can’t be

observed in the period band 0.1-10s.

Values of RSRs and FSRs at these 4 sites are also compared. Figs. 2-2-3 (a)-(c) shows that, values

of RSRs and FSRs are nearly the same at any period and about equal to 1. The small value of spectral

ratios is considered to be related with small contrast of V30 between soil and rock site. And, In Fig. 2-

2-3 (d), as period increases, values of RSRs exceed those of FSRs, which is consistent with results
shown in Figs.2-2-2 (a)-(e).

As introduced above, the relationship between RSR and FSR is dependent on frequency content of
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rock site excitation. Frequency content of ground motion is affected by magnitude and distance. Thus,
the relationship between RSR and FSR is dependent on magnitude and epicentral distance. To explore
the dependence of the relationship on magnitude and epicentral distance, the ratios for earthquakes in
each group shown in Table 2-2-2 are averaged for each period at each soil-rock pairs. Spectral ratios
at number 1 rock-soil pair as representative results are shown in Fig. 2-2-4. Figs. 2-2-4 (a), (b) and
(c) show, respectively, results for group 1, 2 and 3. It can be found that, at period much longer than
fundamental period of soil site, difference between RSRs and FSRs decreases with increasing
magnitude and epicentral distance. Besides, same with the observations above, the shape of RSR is
nearly consistent with the one of FSR for each group.

In addition, values of RSRs and FRSs at 0.1s, 2s and fundamental period for each group, at the 6
soil-rock pairs in Fig.2-2-5, are computed and listed in Table 2-2-3; then, ratios between values of
RSR against those of FSR are computed and shown in Fig. 2-2-5. Fig. 2-2-5 (a) indicates that, the
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ratios at period equal to 2s approach 1 with increasing magnitude and epicentral distance, and the
dependence on magnitude is more prominent. Dependence of ratios at period equal to fundamental:
period or 0.1s on magnitude and epicentral distance is not observed obviously, from Figs. 2-2-5 (b)
and (c).

7 : ; | 7 :
.96 o 1 o5k _
;‘35 'g 5 | ES
g 54 g4
g? &3 2
a2 =2 =W
El g g
< &1 <1

0 | 0 l 0

0.1 1 10 0.1 1 10 0.

T(s) T (s)
(a) (b) (©)

Fig.2-2-4 Comparison of spectral ratios at number 1 rock-soil pair for earthquake ground motions,
(a) in group 1, (b) in group 2, (¢) in group 3
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2.2.5 Conclusion

The Section 2.2 statistically investigates the relationship between RSR and FSR, using 1020 actual

ground motions recorded on 10 nearby soil-rock pairs. The content of this section and the main

conclusions are summarized as follows:

(1) Mean values of FSR and RSR for each soil-rock pairs are compared. It is found that, (1) the shape
of RSR is nearly consistent with the one of FSR, the shape of RSR is relatively gentler; (2)
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maximum value of FSRs and RSRs occur at about the same period, and the one of FSRs
systematically exceed that of RSRs. ,

(2) The dependence of the relationship on magnitude and epicentral distance is examined. It is found
that, at period band longer than the site fundamental period, difference between RSRs and FSRs
decreases as magnitude and epicentral distance increase; and at period band equaling or shorter
than the site fundamental period, dependence of the relationship on magnitude and epicentral
distance is not obvious.
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2.3 Comparison of Fourier and response spectral ratio based on RVT
2.3.1 Introduction

For the statistical analysis in Section 2.2, Fourier amplitude is smoothed using window functions for
clear observation of frequency characteristic, as the Fourier amplitude varies according to used
window function and it’s band width, amplitude relationship between RSR and FSR also varies
according to used window function and it’s band width. Therefore, it is difficult to compare
amplitudes of RSR and FSR by the statistical analysis of recorded ground motions.

In this section, theoretical analysis based on random vibration theory (RVT) is applied to
investigate the physical relationships existing between RSR and FSR. This section is organized as
follows. Firstly, the RVT is introduced briefly in section 2.3.2. In section 2.3.3, an equation expressing
relationship between the RSR and FSR is derived based on the RVT. Subsequently, according to the
derived equation, some systemic relationship between RSR and FSR are clarified. In addition, as the
RSR vary depending on bedrock motion and FSR do not, the relationship between the RSR and FSR
is inferred also dependent on rock motion. The dependence of the relationship on bedrock motion is

investigated, in section 2.3 .4.
2.3.2 Random vibration theory

The basis of the RVT is that the peak of a signal is the product of its root mean square (rms) value
and an estimated peak factor (pf). Applying the RVT to an acceleration-time history results in:

Tmax = pfarms (2-3-1)

in which amax is peak acceleration. arms is rms acceleration computed using Parseval’s theorem which
states that the integral of the square of a motion in the time domain is equal to the integral of its square
in the frequency domain [36].

1 1 ' 2
Apms = \/Ek? laar = \/—D—;JO |4(0)} do = /’;’)_0 (2-3-2)

in which 4(w) is Fourier amplitude spectrum (FAS) at frequency w and m o is the zeroth-order spectral
moment of the FAS. The nth order spectral moment of the FAS is defined by

m, = 112 ()| d(0) do (2-3-3)

T
D represents duration of the signal. For an RVT analysis where the goal is to predict peak ground
acceleration, D is taken as the duration of the ground motion, Dgm; when the goal is to predict response
spectrum acceleration, D is taken as the duration of the oscillator response, Drs. As the duration is
increased due to the response of the oscillator, Dis is larger than Dgm. And, many equations have been
developed to predict Drs according to Dem [37-40].
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The expected value of the peak factor (ﬁ) is commonly used in RVT analysis. Many equations

forp_f have been proposed [41-43]. Among these equations, the one by Cartwright and Longuet-

Higgins (1956) has been used commonly in engineering seismology and site-response applications.
Following the assumption that the peaks of a signal are independent and follow a Poisson process,
Cartwright and Longuet-Higgins (1956) [41] proposed that the expected value of the peak factor can
be estimated using '

Ff=%=ﬁfg"{1—u——§e*”2]% b (2-3-4)

where & is a parameter to measure the bandwidth of the Fourier spectrum, expressed as:
"

E=
N

N, represents the number of extrema, estimated by:

N,=2fD="1 L) (2-3-6)
T \my

and fe represents rates of extrema.
Eq. (3-3-4) has been incorporated into most RVT procedure in engineering seismology [44] and site

(2-3-5)

response [45]. For large values of Ne, Eq. (3-3-4) can be simplified as [41]:
0.5772

of =[2In(& e N,)]"* + -3-
pf =[2In(fe N,)] [2ln(§0Ne)]1/2 (2-3-7)
Eq. (3-3-4) can also be rewritten as:
— 0.5772
pf =[2In(V,)]"? AT (2-3-8)
where N: represents number of zero crossings, estimated by:
N, =2£D =% Z? D (2-3-9)
0

and f: represents rates of zero crossings.
Davenport [42] also derived an equation forﬁ , which is same iwith the Eq. (2-3-8). Actually, this

equation is a good approximation to Eq. (2-3-4) even for small values of N: [36], thus it is widely
used in engineering seismologpgx [47-49]. For simplify, the Eq. (2-3-8) is also used for estimation of
peak factor in this section. In addition, many other studies [50, 51] also proposed other peak factor
models, and every peak factor models have its strong point and available range. This study doesn’t

intent to argue which one is better, and just applies a generally used one to investigate the
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relationship between RSR and FSR.
2.3.3 Relationship between RSR and FSR

Equation for relationship between RSR and FSR

To investigate the relationship between RSR and FSR, equation for RSR expressed in term of FSR is
derived based on the RVT in this section. For this purpose, a soil site subjecting to a seismic motion
at outcrop bedrock is considered, and FAS of the bedrock motion equals to 4z (w). Then, the FAS of
seismic motion at ground surface, 4s(w), can be obtained as:

As(0) = A5 (0)T (@) (2-3-10)
where T(w) is the site transfer function representing Fourier spectral ratios of ground motions at
ground surface and outcrop bedrock.

Then, to calculate the ratio of response spectrum at ground surface against the one on bedrock, the
response spectra should be calculated firstly. Based on the RVT, response spectrum (peak value of

the oscillator response) at bedrock, Rg (@, ) , can be calculated by:

—_— A 1 0 —
RB(a)ahO): pr\/_—__!() lARB(a)aa)ahO)|2dw (2-3-11)
Dygm
where ;D?B and Dg, respectively, are peak factor and duration of the oscillator response corresponding

to the bedrock motion. And, ARg(w,®,hy)is FAS of the oscillator response of the bedrock motion

given by:
AR g (@, @, hy) = Ag(@)e Hy(@,@ ,hy) (2-3-12)

where Hy(w,w,hy) is the transfer function of the oscillator that has fundamental frequency and

damping ratio equaling to @ and h, respectively. The transfer function of acceleration can be

expressed as:

2h0m) + o'
Hy(@,3,hy) = Vo)’ o (2-3-13)
JChoB) +(0* - 5%
Similarly, response spectrum at ground surface can be calculated by:
—_ A 1 00 —_
RS(a)ahO) = Pfs\/‘b;;jo IARs(C(),Q),hO)|2da) (2-3-14)

where pfgand Ds, respectively, are peak factor and duration of the oscillator response corresponding

to the surface ground motion. And, ARg(@,@,hy) is FAS of the oscillator response of the ground
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surface motion given by:
ARS (CO, o, h()) = AS ((L))Ho(a), o, hO) (2-3'15)

Then, using Egs. (2-3-11) and (2-3-14), the RSR can be calculated as:

pfs/[Ds \/TABZ(w)HOZ(m, @, h)T* ()dw
_ 0

RSR(@, hy) = ifSE“j ZO; _ (2-3-16)
@ s -~ @ —
BYTT0 of 5/[Ds \/ [ 4,7 (0)H (0,3, hy)do
0
By defining

W(0.®)=Ag (0)Hy (0,8, hy) (2-3-17)

Eq. (2-3-16) can be rewritten as:

— W (0,37 (0)do

RSR*(@,hy) = o/ s/Ds x (2-3-18)

o /D W (0,@)do
0

Eq. (2-3-18) expresses the relationship between RSR and FSR. In essence, Eq. (2-3-18) also
represents RVT site-response analysis, which has been introduced in many studies [45]. The accuracy
of the RVT site-response analysis has been discussed in many studies [52, 53], and is found affected
by neglecting duration change of the oscillator response generated by the site response as well as
choice of peak factor models. In Eq. (2-3-18), the duration change is taken into account. And, if ideal
peak factor model is used, Eq. (2-3-18) is theoretically exact.

Systemic relationships based on Eq. (2-3-18)
According to Eq. (2-3-18), the relationship between RSR and FSR is discussed in this section. Eq.

(2-3-18) consists of two terms, which will be discussed in the following two subsections respectively.

The first term
The first term in Eq. (2-3-18) represents change rate about peak factor and duration of oscillator
response generated by site response. The duration of oscillator response has been found is extended

by site response [52, 53], i.e. Ds is longer than Ds. To further investigate change regulation of the

whole Ez / D by the site response; according to Eq. (2-3-8), the first term is obtained as:

1
— (2In(Ng,)+1.1544 +————)D
pfs/Ds= ° 2In(Ns,)” (2-3-19)
pfg/D 2In(N, )+1.1544 + ————)D

/D5 @IV, T
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where Ns: and Np: represent the number of zero crossings of the oscillator response corresponding to
the surface ground motion and bedrock motion, respectively. Then, submitting Eq. (2-3-9) into Eq.
(2-3-19) result in:

1
— 2In(2 f,Dg)+1.1544 + —————)D
pfi‘/DS — ( n( fSZ S)+ i 2h1(2szDS)) ’ (2_3_20)
—2 1

D N
s / 5 (2In(2 f5,Dp) +1.1544 + 21n(2fBzDB))DS

where f5: and f: represent rates of zero crossings of the oscillator response corresponding to the
surface ground motion and bedrock motion, respectively. Here, change of the rates of zero crossings
by the site response is considered has little effect on values of the first term in Eq.(2-3-18) , thus fs: =
fBzis assumed,

‘ 1
—2 2In(rNg,)+1.1544 + ———
w/bs T 2N ) N
— / = I (2-3-21)
of5/D 2In(Np, ) +1.1544 + —————
8/Pp  r(2In(Nyg,) 2ln(NBz))
where r =D, /D, . .
If only the first item of Eq. (2-3-8) is considered, Eq. (2-3-21) can be further simplified as:
—2
pfS/DS . llogxgir (2_3_22)

#a/Ds T

Fig. 2-3-1 plots values calculated by Egs. (2-3-21) and (2-3-22) versus Na: for five values of r. An

r value of 1.1 represents that the duration of the oscillator response is extended by 110% generated
by the site response. It can be seen that for each considered value of r, results by Eq. (2-3-21) agree
very well with those by Eq.( 2-3-22) for Np: value larger than 40. In addition, the Fig. 2-3-1 also
indicates that, whichever equation is used, values of the first term in Eq. (2-3-18) are always less than

1. Therefore, it can be known that, as duration of the oscillator response is extended by the site

response, the whole 1_972 / Dis decreased, which leads the values of first term in Eq. (2-3-18) be always

smaller than 1. It can also be found values of the first term decrease along with increasing of » and
- are not affected obviously by Nz..

Recent studies [53] find that the use of the Vanmarcke (1975) peak factor model [50] rather than
the Cartwright and Longuet-Higgins (1956) peak factor model predicts RSR in better agreement with
those predicted by time-history analysis. Eq. (2-3-18) indicates that the peak factor only affect the
first term. Thus, it may be doubted that if the Vanmarcke peak factor model is used the conclusions
about values of the first term in Eq. (2-3-18) derived above will not be true. Actually, values of RSR
using either Cartwright and Longuet-Higgins (1956) peak factor model or Vanmarcke peak factor
model agree very well with those by time-history analysis at most period band except near site
fundamental period [52,53]. Even, near the site fundamental period, the use of the Vanmarcke (1975)
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peak factor mode predicts smaller values of RSR and thus smaller values of the first term than by
using the Cartwright and Longuet-Higgins (1956) peak factor model [53]. Therefore, whichever peak

factor model is used, the conclusion that values of first term are always less than 1 will not change.
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Fig.2-3-1 Values of the first term in Eq. (2-3-18)

The second term

The second term in Eq. (2-3-18) represents a weighted average of the square of FSR, 72 (w), and the
square of FAS of the oscillator response corresponding to bedrock motion, W (w, @) , acts as a weight
function. This means that value of the second term at any frequency @ equals to the weighted average
of all values of 7% (w) at frequencies from 0 to o (Hz). As weighted average of some values can never
larger than their maximum value, and smaller than their minimum value. Thus, every values of the
second term are smaller than the maximum value of 72 (w), and larger than the minimum value of 7°
(w).

For value of the second term at frequency @ , the weight function is product of the square of an

oscillator transfer function, H 02 (w,@,hy) with the square of FAS of the bedrock motion, A32 ().

It should be noted that the fundamental frequency of the oscillator also equals to @ . As the oscillator
transfer function acting as a narrow-band filter has a peak at fundamental frequency. Thus, generally
the weighted function W (w,®) is also narrow-band and has a peak at fundamental frequency @ .
Fig.2-3-2 shows three examples of the weighted function. Here, FAS of the bedrock motion is
generated based on the theoretical seismological model by Boore [36]. The key model parameters are
presented in Table 2-3-1. The magnitude, M, and closest distance, R, are hypothesized equal 5 and 10
(km), respectively. Two oscillator frequencies, 10 Hz and 20 Hz, and two oscillator damping, 0.05
and 0.01, are considered in these examples. It is found, in every cases, weighted function is narrow-

band and has a peak at the oscillator frequency. This means that, for estimation of value of the second
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term at frequency @ , the value equals to the weighted average of all values of 7%(w) at frequencies
from 0 to oo (Hz); and the weight for value of T*(w) at frequency @ is generally much bigger than that
of other values. Thus, value of the second term at frequency @ is mostly dominated by values of T?(w)
at frequency @ , and is always near the value of 7%(w) at frequency @ . Therefore, shape of second
term is typically also similar with that of T *(®). In addition, as shown in Fig.2-3-2, the smaller the
oscillator damping is, the weight for value of T2 (w) at frequency @ is bigger, thus the value of the
second term at frequency @ will agree better with value of 72 (w) at frequency @ . Theoretically, when
the oscillator damping approaches 0, values of the second term and 72 (o) will be exactly the same.

Fig.2-3-3 shows two examples about comparison of FSR with root of the second term in Eq. (2-3-
' 18). Here, a simple soil model, a single-layer soil profile on bedrock, is considered. The fundamental
, period of the soil profile equals to 0.2s. The soil damping ratio equals to 0.1. And, the impedance
ratio of the soil against the bedrock equals 0.2. The oscillator damping in Figs.2-3-3 (a) and (b) equal
to 0.05 and 0.01, respectively. It is found, for both the two cases, the shape of FSR is similar with that
of root of the second term, and their maximum value occur at same period, site fundamental period.
In addition, as shown in Fig.2-3-3 (b), for the case that oscillator damping is smaller, values of root
of the second term agree better with value of FSR. It also can be noted that, for the both two cases,
value of FSR at fundamental period are bigger than that of root of the second term, which support the
conclusion in the first paragraph of this section.

For a single-layer soil profile on bedrock, maximum value of FSR occurs at site fundamental period.
Generally, even for multi-layer soil profiles on bedrock, maximum value of FSR also occurs at site
fundamental period. Therefore, for multi-layer soil profiles on bedrock, maximum values of the
second term in Eq. (2-3-18) and the 7? () also generally occur at site fundamental period. As
introduced above, every values of the second term are smaller than the maximum value of T *(w),

thus, value of second term at fundamental period is smaller than that of 7%(w).

Table 2-3-1 Parameters used in development of FAS of rock motion

Parameter Value
Source spectrum Brune w-squared point source
Stress drop Ao (bar) 100
Site diminution £ (s) 0.04
Density of crust p (g/ cm?) 2.8
Shear wave velocity of 37
crust £ (kmy/s)
Crust amplification Boor and Joyner 1997
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Fig. 2-3-3 Comparison of site transfer function with root of the second term in Eq. (2-3-18)

Systemic relationships between RSR and FSR
According to conclusions summarized in the above two sections, systemic relationships between RSR
and FSR are discussed in this section.

Firstly, relationship about global shape between RSR and FSR is discussed. The shape of the
second term in Eq. (2-3-18) is kwon similar with that of square of FSR. In addition, values of the first
term in Eq. (2-3-18) are not affected obviously by Na.. According to Eq. (2-3-9), the Na: is determined

by spectral moments and duration of oscillator response corresponding to bedrock motion. Although

for values of RSR at different frequencies, the oscillator transfer function, H, 02((0, @, hy), in turn,
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Np: are different; values of the first term don’t vary appreciably with frequency. Therefore, global
shape of RSR also should be similar with that of FSR. And, maximum values of FSR and RSR
typically happened at same frequency.

In addition, it is indicated previously that maximum values of the second term in Eq. (2-3-18) and
the T? () generally occur at site fundamental period, and value of second term at fundamental period
is smaller than that of 7% (w). And, values of the first term in Eq. (2-3-18) are always less than 1.
Therefore, maximum values of RSR and FSR always occur at same period, i.e. site fundamental
period, and the one of RSR is smaller.

Fig.2-3-4 shows an example of comparison between RSR and FSR. The input bedrock motion used

previously is used here. And the ground motion duration, Dgm, is calculated by Dy, =1/ fc+0.05R

[45], where fc is the corner frequency for the source spectrum [44]. The simple soil model, a single-
layer soil profile on bedrock, is used. It can be noted that, results in Fig. 2-3-4 support all conclusions

summarized above.

N
N (9
! I

o
I

Amplification ratio

Period (s)

Fig. 2-3-4 Comparison between RSR with FSR

2.3.4 The dependence of the relationship on bedrock motion

For a linear certain site, FSR known as site transfer function is totally dependent on the material
properties. But, as shown in Eq.(2-3-18), RSR depends on not only the material properties represented

by the site transfer function, 7(w), but also input motion at bedrock reflected in the weight function,
W(w,®) , the peak factor, E , and the duration, D. Thus, for a certain site, relationship between RSR

and FSR also must be dependent on the bedrock motion. In this section, the dependence of the
relationship on bedrock motion is discussed.
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Although the bedrock motion can affect the first term in Eq. (2-3-18) by affecting Na: according to
Egs. (2-3-21), (2-3-12) and (2-3-9), values of the first term do not vary obviously along with Ng: as

introduced above. Thus, bedrock motion has little influence on the ﬁljst term. As to the second term

in Eq. (2-3-18), bedrock motion affect it by changing the weight funcfion, W (w,@) according to Eq.

(2-3-17). As results of weighted average are strongly dependent on the weight function, thus value of

the second term can be significantly affected by bedrock motion. Based on the two reasons, the

dependence of RSR on bedrock motion can be known is mainly dominated by the second term.
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Fig. 2-3-5 Variation of the second term in Eq. (2-3-18) depending on the magnitude

In order to investigate change rule of relationship between RSR and FSR according to bedrock

motion, some example calculation are conducted. Here, the simple soil model, single-layer soil profile

on bedrock, is used. And, four sites with different fundamental periods, 71, and impedance ratio
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between soil and bedrock, a, are considered. Six bedrock motions with different magnitude and
distance are generated based on the theoretical seismological model introduced above. In order to
investigate the effects of magnitude, three levels of bedrock motion with magnitude equaling to 3, 5
and 7, and the closest distance, R, equaling 10 km are generated. And to investigate the effects of
closest distance, R, three levels of bedrock motion with the distance equaling to 10km, 40km and
160km, and the magnitude equaling 10 km are generated. As the dependence of RSR on rock motion
is mainly dominated by the second term, thus only the second term is considered here. For every
considered sites under the three levels of bedrock motions, values of root of the second term are
calculated using Eq. (2-3-18), and results are presented in Figs. 2-3-5 and 2-3-6. For the purpose of
comparison with the FSR, FSRs of every considered sites are also presented in Figs. 2-3-5 and 2-3-
6.

It can be noted that, for all the four sites, values of root of the second term vary depending on
bedrock motion, the variation law is dependent on periods and estimated sites. Around the period
band smaller than site fundamental period, the values of root of the second term for every levels of
input bedrock motions are all lager than those of FSR, and tend to increase along with increasing of
magnitude. Around the period band lager than site fundamental period, the values of root of the
second term may be larger or smaller than that of FRS depending on input bedrock motion, but the
values approach to those of FSR along with increasing of magnitude. Near the site fundamental period,
values of root of the second term are smaller than those of FSR for all sites and every levels of input
motions, which agree with the conclusion in section 2.3.3. And the variation degree depending on
input motion is smaller for sites with small fundamental period, like Site-1 and Site-3, than those of
sites with long fundamental period, like Site-2 and Site-4. The variation degree of root of the second
term depending on closet distance (Fig.2-3-6) is obviously smaller than that depending on the
magnitude (Fig.2-3-5).
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Fig. 2-3-6 Variation of the second term in Eq. (2-3-18) depending on the closest distance
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In order to investigate the reason for dependence of the second term on input motions, values of
the weight function W (w,®) corresponding to the three levels of input motions used in Fig.2-3-5
are calculated, and some represented results are shown in Fig.2-3-7. It can be noted that, the values
at large period band increase as the magnitude increase; contrary, the values at small period band
decrease as the magnitude increase. The reason is because that, long-period contents of the input
motion increases with increasing of magnitude. As the second term is calculated by weighted
averaging the FSR, and the weight function is affected by input motions, thus the second term is
dependent on input motions.
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Fig. 2-3-7 Dependence of the weight function on bedrock motion

2.3.5 Conclusion

This section theoretically investigates the relationship between RSR and FSR based on the RVT. The

content of this section and the main conclusions are summarized as follows:

(1) An equation expressing the relationship between the RSR and the FSR is derived based on the
RVT.

(2) According to the derived equation, the relationship between the RSR and the FSR is investigated.
It is found that, the shape of RSR is nearly consistent with the one of FSR, and maximum value
of FSRs and RSRs occur at about the same period; the maximum value of FSRs is found
systematically exceed that of RSRs, and the shape of RSR is relatively gentler.

(3) The dependence of the relationship on magnitude and epicentral distance is examined using
several examples. It is found that, at period band longer than the site’s fundamental period,

difference between RSRs and FSRs decreases with increasing magnitude and epicentral distance.
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2.4 Construction of site amplification function

As the seismic load for structural design is commonly given in the form of response spectrum, site
effects are typically characterized as ratio of response spectrum at ground surface against the one
specified at outcrop bedrock in seismic codes. In this section, a simple function for estimation of the
response spectral ratio (RSR) is proposed. The equation for RSR is called site amplification function
in this study. '

In order to construct the function for the RSR, a single-layer soil profile on bedrock, is considered.
But as introduced in section 2.2, even for such a simple soil model, there is not a closed form equation
for the RSR in theory. To obtain the RSR, site response analysis has to be conducted in frequency or
time-history domain. Analyses in sections 2.2 and 2.3 suggest that, (1) the shape of RSR is nearly
consistent with the one of Fourier spectral ratio (FSR), (2) maximum value of FSRs and RSRs occur
at about the same period, and the one of FSRs systematically exceed that of RSRs, (3) values of RSRs
are nearly same with those of FSRs at period band longer than the site’s fundamental period,
especially for earthquake with large magnitude and long epicentral distance. Therefore, it is
conservative to construct the function for the RSR using the FSR for most period bands.

The simple function for the RSR is constructed to envelope the transfer function of the simple soil
model. Three critical point: first peak value at fundamental period, second peak value at second
natural period, and the minimum value between the two peaks are used to control the function, as
depicted in Fig.2-4-1. The equation for the RSR is expressed as:

Gy +Z2 =550 1 T<T,
2
Gs, I, <T <1y,
Gs;—Gs
Gs={—1—"2 (T ~T;,,) +Gs T,,, <T <097, 2-4-1

1097 ""Tl/z( 1/2) +Gs; 1/2 1 (2-4-1)
Gs, 0.97; < T <1.17;

lel"l G- yias 11T, <T

_oq T L%

117,

where 72 (=71/3) and Gs: are, respectively, the second natural period and corresponding peak value.
G2 can be estimated approximately by:

1

=— 2-4-2
4.71h+ag (2-4-2)

Gs,

T2 is the period corresponding to minimum value between first and second peak, as shown in Fig.
2-4-1. To obtain an equation for the 71/, the transfer function of the linear single-layer soil profile on
bedrock is calculated and expressed as:
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1
T = 2-4-3
(@) cos A+iasin A ( )

where

_or
4

4 (2-4-4)

It can be noted from Eq. (2-4-4), when A=nn, value of the transfer function is minimum, thus 712 can
be obtained as:
1

L), = By (2-4-5)

As maximum values of FSRs and RSRs occur at about the same period, and the one of FSRs
systematically exceed that of RSRs, thus using the peaks at natural periods to construct the
amplification function Gs, is conservative for seismic design. In addition, for conservation in seismic
design, the values of Gs are defined equal Gs2 at period 712 and not less than 1 at periods band, 7<
1.

Simple functions for estimation of the RSR have also been developed in the Japanese seismic code
[20] and many studies [54]. The biggest difference between these functions with the proposed one is
that, the value of Gs between Gs1 and Gs2 are approximated by a straight line by connecting Gs1 and
Gs2 in the code method as shown in Fig.2-4-2, which is found overestimates the RSR significantly
[54]. The proposed function introduces a new parameter 71-2, and uses a fold line to estimate the value

of Gs between Gs1 and Gsz as shown in Fig. 2-4-2, which is clearly more reasonable.
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Fig. 2-4-1 Illustration of the proposed site amplification function
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Chapter 3

First resonance peak of layered soil profiles

3.1 Introduction

According to Chapter 2, there are five parameters affecting the site amplification function Gs. They
are, respectively, the fundamental period 71, the first resonance peak Gsi, the second natural period
1>, the second resonance peak G2 and the period Ti2. As the parameters 72, Gs2 and T12 can be
expressed by 71 and Gsi; thus, once 71 and Gsi are obtained, the site amplification function Gs can
be determined. This chapter focuses on methods for estimation of the first resonance peak Gsi.

Many studies have focused on assessment of Gisi1 of layered soil profiles [27, 28]. In theory, the Gs1
can be accurately obtained by calculating the site transfer function using matrix method proposed by
Thomson WT [55] and Haskell NA [56] or directly using the program SHAKE [57], although this
procedure is cumbersome. To avoid the complicated procedure of the direct method, a simple method
for practical engineering is included in the Japanese Seismic Code. In this method, Gs: is evaluated
by approximating a multi-layer soil profile as an equivalent single-layer profile by weighted
averaging the soil shear wave velocity and density. However, this method significantly underestimates
Gs1 when the impedance contrast of the soil layers is large [27- 29]. Although some improvements
have been proposed by Kehji K ef al. [28], the accuracy of this methods remains unacceptable for
engineering design [29]. Therefore, new methods for evaluating the Gsi of layered soil profiles that
is both simple and highly accurate needs to be developed for practical engineering.

This chapter tries to develop new simple methods for estimations of the first resonance peak Gsi.
This chapter is organized as follows. First, in Section 3.2, the current methods for estimating Gs) are
reviewed. Next, three simple methods for estimating the Gs1 of layered soil profiles are, respectively,
presented in Sections 3.3, 3.4 and 3.5. The method developed in Section 3.3 calculates the Gsi, by
replacing the layered shear wave velocity profile with an equivalent linearly varying profile. The
method in Section 3.4 calculates the Gisi, by replacing the multiple soil layers with equivalent two
layers. The method in Section 3.5 calculates the Gsi, by successively replacing the top two layers

with an equivalent single layer.
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3.2 Review of current methods for calculating G's

Many studies have focused on determining the first resonance peak, Gsi, of layered soil profiles. For
the simplest soil model (i.e., a single-layer soil profile on bedrock), simple equations for Gs1 and

fundamental period, 71, are given by:

1
Gs| = ——— (3-2-1)
1.57h+ag
AH
n=5F (3-2-2)

where H is the soil thickness, V' is the soil shear wave velocity, 4 is the soil damping ratio, and ac 1s

the impedance ratio of the soil layer with respect to the bedrock, which is defined as:

_ PV
PeVs

e (3-2-3)
where Vp and ps are the shear wave velocity and density of the bedrock, respectively.

For a multi-layer soil profile on bedrock, the most widely used method for determining the Gs1 and
fundamental period, 71, is to replace multiple soil layers with an equivalent single layer by calculating
the weighted averages of soil shear wave velocity and density as:

N
ZVuHy,
V=r (3-2-4)
> H,
m=1

N
Y Pty

p= m=1

n
 H,

m=1

(3-2-5)

where m is soil layer number, each soil layer has finite thickness Hw, shear wave velocity Vm, and
density pm, and N is the number of soil layers. And, the damping ratio 4 is also calculated as the
weighted average of all soil layers [58, 59] as follows:
N
Yh,E,
_ m=l
h= Tm (3-2-6)
> E,
i=1
where En is the energy stored in mth layer [20, 58]. For linear analysis, the soil damping ratio of each
layer, /im, is constant, and is generally considered equal to 0.02. For nonlinear analysis, the damping
ratio of each layer is dependent on the shaking level, and can be approximately estimated using the

equivalent-linear method.
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It should be noted that replacing a multi-layer soil profile with an equivalent single-layer soil profile
using Egs. (3-2-4) and (3-2-5) does not guarantee that the 71 and Gs1 of the equivalent single-layer
soil profile are equal to those of the original multi-layer soil profile. As mentioned earlier, this method
1s known to underestimate Gsi, especially when the impedance contrast of the soil layers is large [27-
29].

Then, another approximate method for estimating Gs: of a multi-layer soil profile on bedrock is
proposed by Kehji K er al. [28], and the equation is expressed as:
o

m=11 .57]’1,'” +a,,
where h'm is the equivalent damping ratio of the mth soil layer, an is the impedance ratio of mth soil
layer with respect to the (m+1) th soil layer. Kehji K ef al. [28] assumes that, for a multi-layer soil
profile, Gis1 of each soil layer can be calculated by Eq. (3-2-1), and Gs1 of the total soil profile is equal

to the product of that of each soil layer. However, even for the same soil profile, the Gs: calculated

Gs, (3-2-7)

by this method differs depending on how the soil profile is discretized [28]. Therefore, a practical
method that is both simple and highly accurate is required.
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3.3 linear equivalence
3.3.1 Introduction

As introduced in 3.2, most simple methods estimate the Gis1 of multi-layer soil proﬁleé by replacing
the multiple soil layers with an equivalent single layer. And the shear wave velocity for the equivalent
single layer is calculated by weighted averaging those of each soil layer. But, for actual soil profiles,
shear wave velocity generally increases along with the depth. Thus, it is more reasonable to replace
the layered shear wave velocity with one varying linearly than with the one being constant. Based on
this consideration, a method for estimation of the Gsi is developed in section 3.3 by replacing the
multiple soil layers with an equivalent single layer with shear wave velocity varying linearly.

The section 3.3 is organized as follows. Firstly, for a single layer soil with shear wave velocity
varying linearly on bedrock, an equation for Gsi is derived, in section 3.3.2. Then, for multi-layer soil
profiles, a method to replace multiple soil layers with an equivalent single layer soil with shear wave
velocity varying linearly is developed, in section 3.3.3. Then, 67 representative soil profiles are used

to investigate the accuracy of the proposed method.

3.3.2 Gs of a single layer soil profile on bedrock with shear wave velocity varying linearly

Vo

» H V(z)

z

W%M?B. W%

Fig.3-3-1 Single layer soil on bedrock with linearly varying shear wave velocity profile

A single layer soil on bedrock with shear wave velocity varying linearly, as shown in Fig. 3-3-1, is

considered. The equation for soil shear wave velocity, V' (z), is expressed as:
, Z
V() =Vo(l+ k) (3-3-1)

where, Vois value of the soil shear wave velocity at ground surface, H is height of the soil layer, and
k' represents variation degree of the soil shear wave velocity along with depth.
To obtain the equation for Gsi, the transfer function of the soil profiles shown in Fig.3-3-1 needs
be derived. For vertically propagating shear waves, the equilibrium equation can be written as:
2
gt—? = gz— (G(2) %) (3-3-2)
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where p is soil density,  is soil displacement, and G(z) is soil shear modular defined as:

G(z)=pV(z)° (3-3-3)
For harmonic seismic waves, Eq. (3-3-2) can be solved, the transfer function can be obtained as [60]:
Ir(w) = ! (3-3-4)

2mcos@+sinf iawHN1+k

+ ———sin @
2m1+k' kVym
where
—_ oH 2 \
= [(—)—-0.25 3-3-5
m=_|( k'Vo) ( )
6 =mn(l+k") (3-3-6)
V.
a=2L" (3-3-7)
PsVs

pB, VB respectively, are density and shear wave velocity of bedrock.

First peak of the transfer function corresponding to the fundamental period, i.e. Gsi, can be
obtained by submitting value of the fundamental period into Eq. (3-3-4). For the soil profile shown
in Fig.3-3-1, on rigid bedrock, the fundamental period, 7o can be obtained by [60]:

2mycosby +sinfy =0 (3-3-8)
where
_ Q)()H >
= ()" -0.25 3-3-9
iy \/ ( K7, ) (3-3-9)
6y =myIn(1+ k") (3-3-10)

o 1s the fundamental frequency.

As the effect of bedrock rigidity on site fundamental period is considered negligible [61, 62], Eq.
(3-3-8) is also available to calculate the fundamental period for soil profiles on elastic bedrock.
Substituting Eq. (3-3-8) into Eq. (3-3-4), the real part of the denominator in Eq. (3-3-4) becomes zero,
and the first resonance peak, Gsi, can be given by:

1
1= aonmsin & G310
k'Vym,

Equation (3-3-11) is derived by disregarding the soil damping. However, soil damping has been
shown to significantly affect the site amplification; thus, the soil damping ratio should be
parameterized in the equation for Gsi. For a single-layer soil profile on bedrock, the soil damping
ratio is considered approximately by the term 1.574 in Eq. (3-2-1). Based on this consideration, the

equation for Gs1 considering soil damping for the soil profile shown in Fig. 3-3-1 is approximated as:
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1
awyHAN1+ k' sin 0,
KV, i,

Gs, = (3-3-12)

1.57h+

For a uniform soil profile, i.e. k=0, Eq. (3-3-12) identically reverts to Eq. (3-2-1).

Accuracy of the derived equation

In order to invesﬁgate the accuracy of the derived Egs. (3-3-11) and (3-3-12), a wide range of values
for the parameters affecting the amplification ratio are considered. According to Eq. (3-3-4), there are
five parameters, namely H, Vo, k, a and A, that control the amplification ratio. As H and Vo always
appear in form of H/Vo in Eq. (3-3-4), thus the //Vo can be considered as a single parameter. In
addition, as shear wave velocity of bedrock is generally larger than that of soil, thus only soil profiles
meeting the condition Vp>Vs (1+k), are considered.

Firstly, to investigate the accuracy of Eq. (3-3-11), results estimated by Eq. (3-3-11) are compared
with accurate results obtained by Eq. (3-3-4). The comparison are shown in Fig.3-3-2, the real line
represents the results by Eq. (3-3-4), and the dotted line represents the results by Eq. (3-3-11). Fig. 3-
3-2 indicates that results by proposed equation agree very well with those accurate results. Accuracy

of Eq. (3-3-12) is also investigated in Fig. 3-3-3. To consider the soil damping, theoretical results are
calculated by replacing the shear wave velocity, V' (z), with V(z)+v1+2hi . It can be found that, error

in results by Eq. (3-3-12) increases as soil damping ratio increases; however, the maximum relative
error is approximately 4.5% when the damping ratio is as much as16%. Thus, the accuracies of the

two equation are considered excellent for engineering use.
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Fig. 3-3-2 Verification of the Eq. (3-3-11) for undamped Gs:1 of the soil profile of Fig.3-3-1
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Fig. 3-3-3 Verification of the Eq. (3-3-12) for damped Gs1 of the soil profile of Fig.3-3-1

3.3.3 Gs1 of multi-layer soil profiles on bedrock

Many studies estimate the Gs1 by replacing the layered shear wave velocity with constant one, as
introduced in section 3.2. But, for actual soil profiles, shear wave velocity generally increases along
with the depth. Thus, it is more reasonable to replace the layered shear wave velocity with the one
varying linearly, as shown in Fig. 3-3-4 (b). In this section, a method to replace the layered shear
wave velocity with one varying linearly is \developed.
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Fig. 3-3-4 Illustration of the concept of replacing layered shear wave velocity profile, (a) with an
equivalent constant profile, (b) with an equivalent lineally varying profile.
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To replace the layered shear wave velocity with one varying linearly, regression analysis is used
here. Specifically, values of depth and shear wave velocity at midpoint of each soil layer, (zi, Vi) are
considered as regression point, and the function for shear wave velocity expressed as Eq. (3-3-1) is
considered as regression function. Based on the least squares method, the coefficient £ and Voin Eq.
(3-3-1) can be obtained by minimizing the sum of squared residuals between an observed value, (zi,

Vi), and the fitted value (zi, V (zi)). The residual of ith regression point is expressed as:
D; =V; =Vo(+k’z;) (3-3-13)

and, the sum of squared residuals is calculated by:
D=3p? (3-3-14)
i=1
To minimize the sum of squared residuals, the gradient respect to k and Vo are set to 0, expressed as:
9D (3-3-15)
ok v,

According to Eq. (3-3-15) equation for k and Vo can be given by:

iy — iy ) H
g = = mim)H (3-3-16)
Myt — My

nty

3 3-3-17
O m +m, kH ( )

where
iy = glz,« /N iy = gln /N iy = glzilf,» /N iy = glz,.z /N .
Using Egs. (3-3-1), (3-3-16) and (3-3-17), layered shear wave velocity can be replaced with one
varying linearly.
The density pey and damping ratio seq of the equivalent single layer soil can be simply estimated
by Egs. (3-2-5) and (3-2-6).

3.3.4 Numerical examples using the proposed method

In order to investigate the accuracy of the proposed method, 67 representative soil profiles selected
from Strong-motion Seismograph Networks (K-NET, KIK-net) are used. According to JARA [63],
these soil profiles are divided into three site classes, and the shear wave velocity profiles above the
engineering bedrock of each site classification are presented in Fig. 3-3-5. According to Japanese
Seismic Code, engineering bedrock is defined as the layer where the shear wave velocity is greater

than approximately 400 m/s [59]. The unit weights are not given for some sites; these weights are
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Fig. 3-3-5 Shear wave velocity profiles above engineering bedrock used for analyses: (a) first site

class, (b) second site class, and (c) third site class.
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Fig. 3-3-6 Verification of the proposed method for Gs1 of multi-layer soil profile on bedrock

empirically determined according to Yuki S et al. [64] as 15.68 KN/m? for clay, 18.62 KN/m? for sand,
19.60 KN/m?® for engineering bedrock with shear wave velocity in the range of 400~800 m/s, and
21.56 KN/m® for engineering bedrock with shear wave velocity greater than 800 m/s. The initial
fundamental periods of the selected soil profiles are calculated by the SHAKE program, and the
results vary widely from 0.05 to 1.72 s.

The Gs1 of the 67 soil profiles are estimated by the proposed procedure and compared with those
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obtained using the SHAKE program. Fig. 3-3-6 (a) shows that, the Gsi obtained by the proposed
method are remarkably accurate; 91% of estimated values for the linear analysis are within 20% of
the SHAKE results. The average error in Gsi is only 9.7%, which is considered sufficient for
engineering calculation. In addition, the Gsi is also estimated using the method in the Japanese
Seismic Code and compared with those obtained using the proposed method and the SHAKE program.
Fig. 3-3-6 (b) shows that most of the Gs1 estimated by the code method are underestimated by over
20% compared to the SHAKE results, which is consistent with previous studies [27- 29]. The average
error in Gs1 estimated by the code method is as large as 17.2%, which is much greater than that for
the proposed method. Generally speaking, the proposed procedure produces accurate estimates of Gsi
and is much more accurate than the method used in the Japanese Seismic C(;de.

3.3.5 Conclusions

The section 3.3 proposes a simple method for estimation of the Gs1 of multi-layer soil profiles. The
main conclusions are summarized as follows:

(a) An equation for the Gs1 of a single layer soil profile on bedrock with the shear wave velocity
varying linearly, is derived. Accuracy of the derived equation is found be very good by
investing a wide range of values for the parameters affecting the Gsi.

(b) For multi-layer soil profiles, a method to replace the layered shear wave velocity with one
varying linearly is developed. By further using the derived equation for the Gsi, results for
multi-layer soil profiles can be obtained.

(c) To investigate the accuracy of the proposed method, 67 actual sites are used. It is found that,
the proposed procedure produces accurate estimates of (rs1, and results by the proposed method

are more accurate than those by the method used in Japanese Seismic Code.
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3.4 Two-layer equivalence
3.4.1 Introduction

As ntroduced in section 3.2, the method used in the Japanese code estimates the Gsi of multi-layer
soil profiles by replacing the multiple soil layers with an equivalent single layer. The shear wave
velocity and density for the equivalent single layer are calculated by weighted averaging those of
every soil layers. As weighted average ignores distribution of soil impedance alohg depth; it can be
easily infer that, the larger the variation degree of soil impedance are, the larger the error in estimation
of the Gs1 will be. Many studies [27-29] have pointed out that, this method underestimates Gsi1
significantly, when the impedance contrast of the soil layers is large.

In this section, in order to avoid averaging the soil layers with large impedance contrast and obtain
more accurate results; the multiple soil layers are divided into two parts at the interface where
impedance contrast of the soil layers is largest, and the two parts are, respectively, replaced by two
equivalent soil layers. Then, the Gsiis estimated by an equation for two-layer soil profiles on bedrock.

The section 3.4 is organized as follows. Firstly, an equation for Gs1 of two-layer soil profiles on
bedrock, is derived in section 3.4.2. Then, for multi-layer soil profiles, a method to replace multiple
soil layers with an equivalent two soil layers is developed, in section 3.4.3. Then, the 67 representative

soil profiles selected in section 3.3.4 are used to investigate the accuracy of the proposed method.

3.4.2 Gsy of a two-layer soil profile on bedrock

/N Hy

p2 V2 Hp

ol %

Fig. 3-4-1 Two-layer soil profile on bedrock

To derive the expression for Gsi, a two-layer soil profile on bedrock, as shown in Fig. 3-4-1, is

~ considered. For vertically propagating shear waves, the equilibrium equation can be written as:

, CIm g CIm 3-4-1
or? ox? G-41)
where

Gy, =G (1+2iRy,) (3-4-2)
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m is the layer number (m = 1, 2, 3); pm, hm, Gmo, and ym are the density, damping ratio, shear modulus
and displacement of mth layer, respectively; x is the depth below the surface of each layer; ¢ is time;
and 7 is the complex number (= —1).

For harmonic seismic waves, Eq. (3-4-1) can be solved, and the displacement y» and shear strength

m of the mth layer can be respectively given by:

i1+ Vi 0(t=x1 Vi,
y, (x,1)=U, ") o D o0t=5/Vm) (3-4-3)
r (%0 =iop,V, (Um SO V) _ Dmeia)(t—x/Vm)) (3-4-4)

where  is the angular frequency of the harmonic wave; Un and Dm are the amplitudes of waves
traveling upwards and downwards in the mth layer, respectively; and Vi is the shear wave velocity
of the mth layer, which is defined as:

vo= [n (3-4-5)

According to the boundary condition that shear stress at the ground surface is equal to 0 [i.e., 71(0,¢)
= ()], the amplitudes of waves traveling upwards and downwards at the ground surface are equal,
U= D1 (3-4-6)
According to two additional boundary conditions, (1) relative displacement at the interface between
two adjacent layers is zero and (2) shear stress at the interface between two adjacent layers is
continuous, expressed as:
{ym(HmJ) = Ym+1(0:1)
7, (H,,,1) =7,,.1(0,1)

the amplitudes of waves traveling upwards and downward (Un and Dm, respectively) in each layer

(3-4-7)

are given by:
1 ioH —ioH
Upa =510 +a,)Ue 'm+(l-a,)D,e /']
. inV ~ioH,, (3-4-8)
Dm+l = E[(l —day, )Umé Vm 4 a+ a, )Dme Vm ]

where Hn is the thickness of the mth soil layer.
Using Egs. (3-4-6) and (3-4-8), the wave amplitude traveling upwards at the bedrock, Us, can be
given by:

Uz =U ((cosCj cosCy —ay sinC; sinCy ) +i(aja, sin Gy cosC, +a, cosCysinCy)), (3-4-9)

where
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2T 1+ 2ih,

m

and am is the impedance ratio between adjacent layers, which is defined as:

.
a =—Lnm_ (3-4-10)
pm+1Vm+l

Then, the transfer function for the seismic motions at outcrop bedrock can be obtained as:

Hyw)= L0 1

3-4-11
2xU;  (cosC cosC, —a sinC; sinC,) +i(aa, sinC, cosC, + a, cosC, sinC,) ( )

Using Eq. (3-4-11), the first peak of the transfer function corresponding to the fundamental period
can be obtained by making the period 7' equal to the fundamental period of the two-layer soil profile.
For two undamped soil layers (hn= 0) on rigid bedrock (Vs = ), the equation for T1-2; has been
derived by Madera GA [65] and is given by:

A o oy P2
2Ny 2L oI
As the effect of bedrock rigidity on site fundamental period is considered negligible [61, 62], Eq. (3-
4-21) is also available to calculate the fundamental period for the two-layer soil profile on elastic
bedrock. Soil damping is first disregarded. Substituting Eq. (3-4-12) into Eq. (3-4-11), the real part

of the denominator in Eq. (3-4-11) becomes zero, and the undamped first resonance peak (h»= 0) of

tan (3-4-12)

the two-layer soil profile can be given by:

1

Gs;= (3-4-13)

T, T, K7
D cos + a, cos D ip -2
2h-ar 25y 2o 2Ly

e

aya, sin

Equation (3-4-13) is derived by disregarding the soil damping. However, soil damping has been
shown to significantly affect the site amplification; thus, the soil damping ratio should be
parameterized in the equation for Gsi-1. For a single-layer soil profile on bedrock, the soil damping
ratio is considered approximately by the term 1.574 in Eq. (3-2-1). Based on this consideration, the
equation for Gsi-2L considering soil damping for the two-layer soil profile is approximated as:

1

Gs, = (3-4-14)

7T 7l 7T 7T
aya, sin D cos——2) + a, cos D gjp —2) +1.57h,,

251 274 200y 2D,

where /4 is the equivalent damping ratio calculated by Eq. (3-2-6).
It should be noted that Eq. (3-4-14) is consistent with Eq. (3-2-1) when V1= V2, p1=p2 and I =
ha.

Validity of the derived equation
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To investigate the accuracy of Eq. (3-4-14), a series of two-layer soil profiles on bedrock are
considered. It can be known from Eq. (3-4-11), parameters including: impedance ratio am, damping
ratio h» and fundamental period Tm, affect the results of Gsi. A wide range of values for these
parameters are considered as shown in Figs. 3-4-2 and 3-4-3. For simplity, damping ratios of the two
soil layers are considered equal, and the one of bedrock is considered equals 0. Then, Gs:1 of all
considered two-layer soil profiles are calculated by the derived equation, obtained results are
compared with those obtained by wave propagation theory (Eq. (3-4-11)) in Figs. 3-4-2 and 3-4-3.
Fig. 3-4-2 shows the results obtained by disregarding the soil damping ratio, and Fig. 3-4-3 shows

those obtained considering a wide range of soil damping ratios. In Figs. 3-4-2 and 3-4-3, the results

60

I I [ I

Theoretical results
--------- TTS results

(¢) (d)

Fig. 3-4-2 Comparison of undamped Gs: calculated using the developed TTS procedure and wave
propagation theory: (a) impedance ratio a2 = 0.05, (b) a2= 0.1, (¢) a2= 0.2, and (d) a2=0.4.
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N — TTS results ] 4.5 h=0.04

h=0.08 h=0.16

() (d)
Fig. 3-4-3 Comparison of damped Gs) calculated using the developed TTS procedure and wave
propagation theory: (a) damping ratio 2 = 0.02, (b) 2= 0.04, (¢) = 0.08, and (d) 47 = 0.16.

obtained by wave propagation theory, referred to as theoretical results, are represented by thin solid
lines, and the results by the derived equation are shown by thick dotted lines.

Fig. 3-4-2 indicates good agreement between the results by the derived equation and wave
propagation theory. The maximum relative error in the analyzed soil profiles is approximately 1%.
Fig. 3-4-3 indicates that the error by the derived equation increases as soil damping ratio increases;
bhowever, the maximum relative error is approximately 5% when the damping ratio is as much as16%.

Thus, the accuracy of the derived equation is considered excellent for engineering use.
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3.4.3 Gs1 of multi-layer soil profiles on bedrock
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Fig. 3-4-4 Illustration of the concept of replacing a multi-layer soil profile on bedrock by an

equivalent two-layer soil profile.

In this section, a method to replace multiple soil layers with an equivalent two soil layers is developed.

In order to avoid averaging the soil layers with large impedance contrast; the multiple soil layers are

divided into two parts at the interface where impedance contrast of the soil layers is largest as shown

in Fig.3-4-4. Then the two parts are, respectively, replaced by two equivalent soil layers using

following equations

k
szHm

€ k
S H,

m=1

VI:-—-m:

(3-4-15)

(3-4-16)

(3-4-17)

(3-4-18)

where Ve1 and pe1 are, respectively, shear wave velocity and density of the upper equivalent soil layer,

Ve2 and pe2 are, respectively, shear wave velocity and density of the lower equivalent soil layer.
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3.4.4 Numerical examples using the proposed method

In order to investigate the accuracy of the proposed method, the 67 representative soil profiles
selected in section 3.3.4 are used. The Gs1 of the 67 soil profiles are estimated by the proposed
procedure and compared with those obtained using the SHAKE program. Fig. 3-4-5 (a) shows that,
the Gs1 obtained by the proposed method are remarkably accurate; 94% of estimated values for the
linear analysis are within 20% of the SHAKE results. The average error in Gs1 is only 5.7%, which
is considered sufficient for engineering calculation. In addition, the Gs: is also estimated using the
method in the Japanese Seismic Code and compared with those obtained using the proposed method
and the SHAKE program. Fig. 3-4-5 (b) shows that most of the Gsi estimated by the code method are
underestimated by over 20% compared to the SHAKE results, which is consistent with previous
studies [27-29]. The average error in Gsi estimated by the code method is as large as 17.2%, which
i1s much greater than that for the proposed method. Generally speaking, the proposed procedure

produces accurate estimates of Gs1 and is much more accurate than the method used in the Japanese
Seismic Code.
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Fig. 3-4-5 Verification of proposed method of Gsl1 for multi-layer soil profiles on bedrock

3.4.5 Conclusions

The section 3.4 proposes a simple method for estimation of Gsi1 of multi-layer soil profiles. The main
conclusions are summarized as follows:
(a) Anequation for Gs1 of a two-layer soil profile on bedrock is developed, according to the derived
transfer function. Accuracy of the derived equation is found be very good by investing a wide
range of values for the parameters affecting the Gsi.

(b) For multi-layer soil profiles, a method to replace the multiple soil layers with two equivalent
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soil layers is developed. By further using the derived equation for the Gsi, results for multi-
layer soil profiles can be obtained.

(¢) To investigate the accuracy of the proposed method, 67 actual sites are used. It is found that,
the proposed procedure produces accurate estimates of Gs1, and results by the proposed method

are more accurate than those by the method used in Japanese Seismic Code.
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3.5 Successive use of two-layer equivalence
3.5.1 Introduction

As introduced in section 3.2, replacing a multi-layer soil profile with an equivalent single-layer soil
profile by roughly weighted averaging the shear wave velocity and density can’t guarantee that the
fundamental period and the first resonance peak, Gsi, of the equivalent single-layer soil profile are
equal to those of the original multi-layer soil profile.

In this section, another simple method for determining the Gs) of layered soil profiles is developed.
This method tries to replace the multi-layer soil profile with an equivalent one-layer soil profile, and
make the two soil profiles have same fundamental period and Gsi.Then the Gsi along with the
fundamental period can be ecasily obtained. To realize this one-layer equivalence, a procedure to
replace a two-layer soil profile on bedrock by an equivalent single-layer soil profile, which is called
the two-to-single (TTS) procedure, is derived in section 3.5.2. Then, by successively applying the
TTS procedure, a multi-layer soil profile on bedrock can be replaced by an equivalent single-layer
profile. In this procedure, the top two layers are assumed overlie bedrock and are replaced by an
equivalent single layer using the derived TTS procedure. The equivalent single layer and the third
layer can be treated as a new two-layer soil, which is also replaced by an equivalent single layer. By
applying the TTS procedure successively to the remaining lower layers, the multiple soil layers are
finally replaced by an equivalent single layer. The fundamental period and Gsi can then be easily
obtained. In section 3.5.4, to demonstrate the validity of the proposed method, Gs1 of 67 representative
soil profiles are evaluated by the proposed method, and the results are shown to agree well with those

obtained by the wave propagation method.
3.5.2 Development of the TTS procedure

Fig. 3-5-1 schematically shows the procedure developed to replace a two-layer soil profile on bedrock
(a) with an equivalent single-layer soil profile (b) with the same fundamental period and Gsi. To
develop this procedure, the fundamental parameters including shear wave velocity Vegq, thickness Heg,
density peq and damping ratio kg of the equivalent single-layer soil profile should be expressed in

terms of those of the two-layer soil profile based on the following two equivalence equations:

71——2L = ]i—-eq (3-5-1)

GS1—2L = Gsl——eq ‘ (3-5-2)

where 7122 and Gs1-2z represent the fundamental period and first resonance peak of the two-layer soil
profile, respectively; T1-eq and Gsi-eq represent the fundamental period and first resonance peak of the

equivalent single-layer soil profile, respectively.
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Fig. 3-5-1 Illustration of the concept of replacing a two-layer soil profile on bedrock with an

equivalent single-layer soil profile.

However, it is theoretically impossible to solve two equations containing four unknown parameters.
For this reason, additional two equivalence equations are introduced: (1) as soil destiny generally
does not exhibit large variations, the destiny of the equivalent single-layer soil, peg, is considered
approximately equal to the weighted-average density calculated by Eq. (3-2-5); and (2) the damping
ratio of the equivalent single-layer soil, %eq, is considered approximately equal to the weighted-
average damping ratio calculated by Eq. (3-2-6). Thus, the remaining two parameters (shear wave
velocity Veq and thickness Heq) of the equivalent single layer can be determined using Eqgs. (3-5-1)
and (3-5-2).

Substituting Egs. (3-2-1) and (3-4-14) into Eq. (3-5-2), the shear wave velocity Veq of the equivalent
single layer can be obtained as:

7l 7l 7l 7l
Veq— ha sin W cos 2 +VZ’D 2 cos @ sin (2)‘

Peq 211 2Liap Py 2111 271—2L'

(3-5-3)

Next, according to Eq. (3-5-1) [i.e., Ti12L = 4Heq/ Veq], the thickness Heq of the equivalent single-
layer soil can be given by:

_ T1—2LVeq

eq 4 (3'5 '4)

As introduced above, the fundamental period T1-22 in the Egs. (3-5-3) and (3-5-4), can be obtained

using the charts given by Madera GA [65] or using the following approximated equations by Hadjian
AH [66]:

2 T,
Boar 7710754 G214 22080y | for HER > 1 (3-5-5)
Ty Ty Hyp
Ty 1o 5, . HA %
N =[l+ﬁ(T ) (14 7 YT for B < 1 (3-5-6)
Y Y

where
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Hence, using Egs. (3-2-5), (3-2-6), (3-5-3) and (3-5-4), an equivalent single-layer soil profile that
has the same fundamental period and first resonance peak as the two-layer soil profile can be obtained.

3.5.3 Gs1 of multi-layer soil profiles on bedrock

Method for calculating Gs,
This section presents a simple procedure for determining the Gsi of multi-layer soil profiles on
bedrock by successively applying the TTS procedure developed in section 3.5.2. Specifically, for a
multi-layer soil on bedrock [Fig. 3-5-2 (a)], the top two layers are assumed to overlie bedrock and are
replaced by an equivalent single layer using the TTS procedure. Subsequently, the equivalent single
layer and the third layer can be treated as a new top two-layer soil and can also be replaced by an
equivalent single layer. By applying the TTS procedure successively to the remaining lower layers of
the soil profile, the multiple soil layers can finally be replaced by an equivalent single layer, and the
fundamental period and Gs:1 of the total soil profile can be obtained. The concept of this procedure is
illustrated in Fig. 3-5-2 and involves the following steps: _

(a) For a multi-layer soil on bedrock [Fig. 3-5-2 (a)], the top two soil layers are assumed to overlie
bedrock and can be replaced with an equivalent soil layer using the TTS procedure [i.e., Egs. (3-
2-5), (3-2-6), (3-5-3) and (3-5-4)]. Next, a new multi-layer soil [Fig. 3-5-2 (b)] is formed.

(b) For the new multi-layer soil shown in Fig. 3-5-2 (b), the top two layers are again assumed to
overlie bedrock and are replaced by another equivalent single layer using the TTS procedure.
Another new multi-layer soil [Fig. 3-5-2 (¢)] is then formed.

(¢) By successively applying the TTS procedure until the last soil layer is considered, a final
equivalent single-layer soil is obtained, as shown in Fig. 3-5-2 (d).

(d) Finally, the Gs1 and fundamental period for the final single-layer soil can be readily obtained
using Eqs. (3-2-1) and (3-2-2), respectively.

The proposed procedure seems more complicated than the current methods introduced in Section
3.2 at first glance. In reality, comparing with the simplest weighted-average method, the proposed
procedure just replaces Eq. (3-2-4) by Eq. (3-5-3), adds a simple Eq. (3-5-4), and uses these equations
more times. As these equations can be easily implemented in a spreadsheet, the proposed method can
be simply used in practical engineering.

In addition, it should be noted that, the developed procedure for Gsi is applicable for not only linear
analysis but also the equivalent-linear analysis considering soil nonlinearity. For the equivalent-linear
analysis, the proposed procedure is applied just using the final strain-compatible shear modulus and
damping ratios after the iteration. Many simple equivalent-linear methods have been developed for

estimation of soil nonlinearity (i.e. strain-compatible shear modulus and damping ratio) using bedrock
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Fig. 3-5-2 Illustration of the concept of replacing a multi-layer soil profile on bedrock with an

equivalent single-layer soil profile.

response spectrum directly [29, 67]. The method by Kenji M ef al. [67] has been introduced in the
Japanese seismic code. Here, any one of these simple methods can be used to consider soil nonlinear
in estimation of Gsi.

Application of the proposed method

This section presents an example calculation in which the proposed procedure is applied to a multi-

layer soil profile selected from the Strong-motion Seismograph Networks (K-NET, KIK-net) of Japan.

The shear wave velocity of this soil profile is shown in Fig. 3-5-3, and the soil data for each layer are

listed in Table 3-5-1. For simplicity, nonlinear behavior is not considered here, and the damping ratios

of all layers are set to 2%. Each step of the calculation is detailed below, and the results of each step

are given in Table 3-5-2.

Step 1: Assuming that the top two soil layers overlie bedrock and since the thickness of the first layer
(2 m) is smaller than that of the second layer (3 m), the fundamental period 712 can be
calculated using Eq. (3-5-6) as T1-2z= 0.102 s. Using Egs. (3-2-5), (3-5-3) and (3-5-4), the
destiny, shear wave velocity, and thickness of the equivalent single layer can then be obtained
as peq = 1.724 tf/m>, Veqg= 181.2 m/s, and Hey= 4.616 m, respectively.

Step 2: The top two layers are replaced by the new layer obtained in Step 1, and the new layer and
the third layer are considered as a new two-layer soil profile. As Hi < H2 (4.616 m <7 m), T1-
21 can again be calculated using Eq. (3-5-6) as 0.350 s. The destiny, shear wave velocity, and
thickness of the new equivalent single layer can then be obtained using Egs. (3-2-5), (3-5-3)
and (3-5-4) as peg= 1.685 tf/m>, Ve = 141.0 m/s, and Heq = 12.34 m, respectively.

Step 3: The new top two layers are replaced by the single layer obtained in Step 2, and the new layer
and the fourth layer are considered as a new two-layer soil profile. This time, as H1> H> (12.34
m > 5 m), T121 can be calculated using Eq. (3-5-5) as T1-22.= 0.385 s. The destiny, shear wave
velocity, and thickness of the final single layer can then be calculated using by Egs. (3-2-5),
(3-5-3) and (3-5-4) as peg= 1.707 tH/m?>, Veg= 144.2 m/s, and Heg= 13.88 m, respectively.

Step 4: As nonlinear soil behavior is not considered in this calculation, the equivalent damping ratio

is considered to be equal to 2%. Finally, the Gs1 of the multi-layer soil profile can be calculated
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from the Gs1 of the final equivalent single layer obtained in Step 3 using Eq. (3-2-1). For this
example, Gs1 = 5.353.
Using the proposed procedure, the calculations in each step can be easily implemented using
spreadsheet software. To verify the accuracy of the Gis1 obtained above by the new procedure, the
transfer function of the example soil profile is calculated by the SHAKE program, and the resulting

bedrock

-30 | |
0 300 600 900

Shear wave velocity V (m/s)

Fig. 3-5-3 Shear wave velocity of the example soil profile.

Table 3-5-1 Soil data for the example soil profile

Layer No. | Hy (m) | Vin (m/s) | pm (t/m3) |
1 2 160 1.82 2%
2 3 200 1.66 2%
3 7 130 1.66 2%
4 5 290 1.76 2%
5 10 660 2.40 2%

Table 3-5-2 Results of the example soil profile at each step by the proposed procedure

Step Ti21(S)  Peg (tf/m3) Veg (m/s)  Heg(m) Gsi

1. 0.102 1.724 181.2 4.616 -

2. 0.350 1.685 141.0 1234 -

3. 0.385 1.707 144.2 13.88 -

4. 0.385 - - - 5.353
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Table 3-5-3 Comparison of results obtained using different methods

Method Estimated fundamental period Estimated Gs;
1. Code Method 0.352 4.176
2. Proposed Method 0.385 5.353
3. SHAKE 0.394 5.354
8 I
7L mmmees Transfer function of the
- equivalent single-layer soil |
Transfer function of
o 6 - the original soil profile ~ —
€ s
g
£ 4
=
=3
%,

Period(s)

Fig. 3-5-4 Comparison of the transfer function of the equivalent single-layer soil profile with that of
the original soil profile.

Gss1 and fundamental period are listed in Table 3-5-2. The results obtained using the proposed method
show good agreement with those obtained using the SHAKE program. The results produced by the
method in the Japanese Seismic Code are also listed in Table 3-5-3. Compared to the SHAKE program,
the Japanese Seismic Code method underestimates the Gsi. In addition, the transfer function of the
equivalent single-layer soil profile generated using the proposed procedure is compared with that of
the original soil profile in Fig. 3-5-4. Fig. 3-5-4 also indicates good agreement in the first resonance

peak. The proposed method is further verified in the next section.
3.5.4 Numerical examples using the proposed method

In order to investigate the accuracy of the proposed method, the 67 representative soil profiles
selected in section 3.3.4 are used.

The fundamental periods and Gsi of the 67 soil profiles are estimated by the proposed procedure
and compared with those obtained using the SHAKE program, in Fig.3-5-5. The Gsi obtained by the
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proposed method are remarkably accurate; 94% of estimated values are within 15% of the SHAKE
results. The average error in Gsi is only 4.6%, which is considered sufficient for engineering
calculation. The accuracy in fundamental period is also remarkably good; 85% of the estimates are
within 15% of SHAKE results.

In addition, the fundamental periods and Gs: are also estimated using the method in the Japanese
Seismic Code and compared with those obtained using the proposed method and the SHAKE program,
in Fig.3-5-6. In Figs.3-5-6 (b), most of the Gs1 estimated by the code method are underestimated by
over 15% compared to the SHAKE results, which is consistent with previous studies [27-29]. The
average etror in Gs1 estimated by the code method is as large as 17.2%, which is much greater than

that for the proposed method. Fig.3-5-6 (b) shows that the errors in fundamental period obtained by
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Fig. 3-5-6 Comparisons of fundamental period and Gsicalculated by the code method and SHAKE

program.
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the code method are also large, 37% of the results having errors greater than 15%. Generally speaking,
the proposed procedure produces accurate estimates of both fundamental period and Gs1 and is much
more accurate than the method used in the Japanese Seismic Code.

3.5.5 Conclusion

The section 3.5 proposes a simple method for estimation of Gsi of multi-layer soil profiles. The main
conclusions are summarized as follows:

(a) A procedure to replace a two-layer soil profile on bedrock with an equivalent single-layer soil
profile with the same Gs1 and fundamental period is developed.

(b) Based on the developed TTS procedure, a simple procedure for estimating the Gs1 of a multi-
layer soil profile is proposed. The proposed procedure is applied in an example calculation. It
is found that the procedure can be easily implemented in a spreadsheet, and the estimated results
are highly accurate.

(c) To investigate the validity of the proposed method, the Gsi1 and fundamental periods of 67
representative soil profiles are estimated. The proposed method shows remarkably good
accuracy in estimating both the Gs1 and fundamental period and is clearly more accurate than
the current code method.
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Chapter 4

Evaluation of soil nonlinear behavior in estimation of site effects

4.1 Introduction

In chapter 3, the methods for estimation of the first resonance peak are developed without considering
soil nonlinear behavior. Actually, soil behaves nonlinearly even at small shear-strain level, and the
soil nonlinearity can significantly influence the site response. Thus, it is necessary to take into account
the nonlinear effect in estimation of site effects.

In this chapter, a simple procedure is developed to consider the soil nonlinear behavior in
estimation of site effects. This chapter is organized as follows. Firstly, a response spectrum method
is developed to estimate the soil nonlinear behavior, in Section 4.2. During the application of this
method, as the first mode shape is necessary; in Section 4.3, a simple method for estimating the first
mode shape of layered soil profiles is proposed,. Then, the validity of the proposed method for soil
nonlinear behavior is investigated using many actual soil profiles, in Section 4.4. In addition, in
Section 4.5, the validity of the total proposed method for site effects are demonstrated by estimating
response spectra of several actual reprehensive soil profiles.
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4.2 Estimation of soil nonlinear behavior
4.2.1 Soil shear modulus degradation and damping

Nonlinear behavior of soil is often characterized as shear modulus degradation and energy dissipation
(damping) depending on the shear strains. And, the soil shear strain is in turn dependent on intensity
of bedrock motion that is generally represented by a design response spectrum in seismic codes. In
this section, a simple procedure is developed to estimate the soil shear modulus degradation and
damping according to the bedrock response spectrum.

To incorporate the strain-dependent soil properties in site response analysis, the equivalent-linear
approach implemented in the popular SHAKE program [57] is used in this study. The equivalent-
linear approach is based on the assumption that the nonlinear soil response can be simulated by a
linear elastic mode with damping, provided that its constants are assigned according to the average
strain level achieved. The average shear strain, yeq, is assumed to be constant throughout the excitation

and is typically taken to be 0.65 times the maximum strain, ymax, €xpressed as:
yeq = 065}/max (4'2'1)

Then, to calculate the maximum shear strain of soil ymax according to the bedrock response
spectrum, the response spectrum method is adopted in this work. The method uses the bedrock
response spectrum directly instead of transforming it to time-history accelerations or power spectrum
density. Furthermore, as site response is dominated by the first vibration mode for most cases [68],
for simplify, soil response is considered approximately equal with that of the first vibration mode.

Thus, maximum soil displacement profile, u(z), can be approximately calculated as:

2
u(z)=(—2%j 810 (I E () X, | (4-2-2)

where Sa0 is 5% damped acceleration response spectrum at bedrock; p1 and X1, respectively, are the
fundamental mode shape and corresponding participation factor. And, F' is damping modification
factor (DMF) to adjust elastic response spectral values corresponding to 5% of damping to other
damping levels. Many simple equations for DMF are proposed and introduced into different seismic
codes [69]. And recently, a number of more rational empirical equations are developed using recorded
ground motion, considering the structural period-, magnitude-, site condition- and source distance-
dependent properties [70-73]. Nevertheless, for simplify, the simple equation in Japanese seismic
code [59] is used to estimate values of DMF, expressed as: |

1.5 \
F(h'y= 4-2-3
) 1+104 ( )
In this equation, 4’ is an equivalent damping estimated by:
W =h+¢& (4-2-4)
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In this study, the 4’ is defined to account for not only the soil material damping but also the radiation
damping. .The radiation damping representing the wave energy reflected back into the bedrock half-
space is converted approximately into an equivalent material damping ratio &, which will be
introduced in detail in section 4.2.2. And, the soil material damping that is different for each soil layer
is accounted for by an equivalent damping ratio for the first mode, 4. For the unclassical damped soil
system, the damping ratio / is evaluated, as suggested by [58] for system composed of elements with
different damping, by considering a weighted value of the material damming of each layer according
to the following formula:

n—-1
ShE,;
pm i 429
T E;

1
i=1
where £, is the weight that represents the normalized elastic energy stored in ith layer for a deformed

shape corresponding to first mode, and can be approximately estimated by:

E = G;(u; —u;,q)°
P 2H,

i

(4-2-6)

ui and ui+1 are, respectively, the value of maximum soil displacement at upper and lower boundary of
ith layer soil, Gi (= p:V%) is shear modulus of ith layer soil, H; is thickness of ith layer soil. And, A is
the material damping of the ith layer associated with the degradation in the shear modulus and is

represented by a strain-dependent equation [59]:
By = o (1= G; [ Gyg) (4-2-7)

where /max is the maximum damping ratio defined at the hypothetical limiting condition where the
secant shear modulus approaches zero. In Eq. (4-2-7), only the shear strain dependent hysteretic
component of material damping is considered, to simply take account of the viscous component, A is
defined not less than 0.2%. The G: / Goratio defining the strain dependent degradation of the soil
shear modulus has been generalized by the hyperbolic relationship of Eq. (4-2-8) as proposed
originally by Hardin and Drnevich [74],

G; |
GOI’ 1+7/ieq/7r

(4-2-8)

here, yieq is the average shear strain of ith soil layer. y- is reference shear strain of soil, the value can
be determined according to Japanese seismic code [59]: 0.18% for cohesive soil, and 0.1% for sandy
soil. The models of strain-dependent shear modulus and damping are shown in Fig.4-3-1.

Using Egs. (4-2-2) - (4-2-4), soil maximum displacement profile, u(z), can be obtained. Then,
maximum shear strain of ith soil layer, yimax, can be approximately calculated, by assuming values of

displacement within every soil layer approximately vary linearly,
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Fig.4-2-1 Shear modulus degradation and soil damping depending on the shear strains

Fimen =~ (429)
Then, average shear strain, yieq, of each soil layer can be obtained using Eq. (4-2-1), and in turn, soil
shear modulus degradation and damping can be calculated using the Egs. (4-2-8) and (4-2-7),
respectively.

It should be noted that the developed method is an iterative procedure, since the damping, h, (and
hence F (k")) is not known a priori. The solution start by considering the initial values at low strain
level, and the iteration will stop when the difference in the values of shear strain between two
successive iterations is less than some specified value. Finally, using the soil properties after
convergence, the fundamental period and the first resonance peak considering nonlinear behavior of
soil can be obtained by the procedure introduced in section 3.5.

4.2.2 Effect of bedrock rigidity

For layered soil profiles on rigid bedrock half-space, modal analysis (and hence response spectrum
analysis of Eq. (4-2-2)) can be used for site response analysis. But, in reality, the bedrock has finite
rigidity, energy losses known as radiation damping can be caused by refraction and reflection of
seismic waves at the soil-bedrock interface. For this case, modal analysis and thus the response
spectrum analysis of Eq. (4-2-2) cannot be used, in theory. In this study, to make the model analysis
available, the radiation damping is converged to equivalent material damping ¢1 as introduced in

section 4.2.1, so that a system of layered soil profile on a flexible half space can be replaced by an

62



equivalent layered soil profile on a rigid half space. And, the equation for the equivalent material
damping ¢ is derived, in this section.

For modal analysis, if a linear hysteretic damping mechanism can be assumed for the equivalent
modal damping, the transfer function of the layered soil system on a rigid half-space can be written
as:

Hw) :N% 1+28 (0 w,)i

Al (/) + 2@/ w,)i *

(4-2-10)

where wk is the modal frequency, & is the equivalent material modal damping ratio, P is the effective
modal participation factor at the ground surface for the kth mode and N/ is the total number of modes
used in the analysis. For simplify, assume only the first mode exist, then the transfer function can be
simplified as:

Hw)= 1+4&% (0] o) (4-2-11)
- /0y f +423 @/ 0y

In order to convert the radiation damping into equivalent modal damping ratio, value of H(w) in

Eq. (4-2-11) at the fundamental frequency is approximated by first resonance peak obtained using the

2
Gs, = f% (4-2-12)
46,

Then, the equivalent damping ratio can be solved from
1

he 2/Gs? -1

The consideration of converting the radiation damping into equivalent modal damping ratio to

procedure introduce in section 3.5, i.e.

(4-2-13)

make modal analysis available has been used by studies [60, 75], and also equations for the equivalent
material damping ratios of each mode were derived by [75]. But, obviously, the simple Eq. (4-2-13)
using result of Gs1 obtained by the procedure introduce in section 3.5, is more compatible for this
work.
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4.3 Fundamental mode shape and participation factor
4.3.1 Introduction

It is noted that, to calculate the maximum displacement using Eq. (4-2-2), the fundamental mode
shape and corresponding participation factor must be estimated firstly. In principle, the fundamental
mode shape and corresponding participation factor can be exactly obtained by solving equilibrium
equations of free vibration, or accurately estimated using an eigenvalue analysis by discretizing the
continuous soil profile into lumped-parameter multi-degree-of-freedom (MDOF) model. But,
implementation of these methods is generally too complicated for practical engineering.

Numerous studies focused on simple approaches for the fundamental period of layered soil profiles
[62, 66, 76], but there are still few studies about simple approaches for the fundamental mode shape.
Dobry et al. [76] concluded that the Simplified Version of Rayleigh Procedure [76] can give accurate
solution of both the fundamental period and mode shape. The simplified Rayleigh procedure is
iterative [66]. Subsequently, Hadjian [66] developed another direct approach to calculate the
fundamental mode shape. Using the Hadjian method, values of the fundamental mode shape are
assumed to vary linearly along with depth within each soil layer. For soil profiles with high soil layers,
to reduce the error caused by the ‘linearly vary’ assumption, the high layers are generally further
discretized into thinner layers. However, contrarily, the more layers the soil profile be discretized, the
larger the error in estimation of the fundamental mode shape will be. The reason is as follows. The
Hadjian method estimates the fundamental mode shape using results of the fundamental period
calculated by the Successive Use of Two-Layer Solution Procedure by Madera [65]. During the
application of the Madera procedure [65], at each step of replacing the top two layers with an
equivalent single layer, the top two layers are assumed to lie on a rigid rock, when in fact they lie on
a soil layer with limited stiffness. And, the times of the rigid-rock assumption be used are positively
correlated to the number of soil layers. Thus, the more layers the soil profile be discretized, the more
the assumptions used. The errors in estimation of the fundamental period can accumulate along with
the times of the assumption be used, and the accumulated error will be transmitted to the fundamental
mode shape. So, the more layers results in the larger error in estimation of the fundamental mode
shape. Therefore, for the soil profiles with high soil layers, it is difficult to use the Hadjian method to
give accurate estimation of the fundamental mode shape.

In this section, a simplé method is developed to estimate the fundamental mode shape of layered
soil profiles. The rest of this section is organized as follows. Firstly, a new equation for analysis of
the natural frequencies and mode shapes of layered soil profiles is derived, in section 4.3.2. Then, in
Section 4.3.3, by conjunctively using the derived equation and the procedure developed in section
3.5, a new approach is developed to estimate the fundamental mode shape. In Section 4.3.4, the
accuracy of the proposed procedure is investigated and compared with that of the Hadjian method,

using 67 representative layered soil profiles. It is found that, results by the proposed method agree
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very well with accurate results, and the accuracy of the proposed method is better than those of the

Hadjian method especially for soil profiles with high soil layers.
4.3.2 An equation for natural frequencies and mode shapes

To develop a method for estimation of the fundamental mode shape of layered soil profiles, an
equation for estimation of the natural frequencies and mode shapes is derived, in this section. To
derive the equation, a multi-layer soil profile on rigid bedrock as shown in Fig. 4-3-1 is considered.
The layered soil profile is considered to vibrate freely in the natural mode. Then, according to the
equilibrium between inertia force and elastic force at any ith interface, inertia force of the soil layers

above ith interface, F(zi), is equal to elastic force, T (z:), acting at the ith interface,

F(z;)=T(z;) (4-3-1)
where, z; is the depth of the ith interface. Inertia force of the soil layers above the ith interface is
calculated by:

Z aZu Z aZu 7. 82 Uu
F(z)=[2—p(2) ¥d2+ [2-p(2) ¥d2+ w7 = pl2) ?dz (4-3-2)

here, u is displacement of soil layers given by:

U(z,t) = X (z)sin(wt + @) (4-3-3)
and, o represents the natural frequency of the layered soil profile, X represents the corresponding
mode shape. Submitting Eq. (4-3-3) into Eq. (4-3-2), F (zi), can be expressed as:

F(z)=([? ()0’ X (2)dz + iy (20> X (2)dz + ...+ 2 p(2)0* X (2)dz)sin(wt + @) (4-3-4)

For simplify, value of the mode shape, X; is assumed vary linearly with depth within each soil layer,
then Eq. (4-3-4) can be simplified as:

F(z;))= %a)z sin( ot + (o)lfjllpj(X(zj)+ X(z;,)DH; (4-3-5)
e

Similarly, elastic forces acting at the ith interface is simply calculated by:
. G,
T(z;) =sin(wt + CD)F(X(Z;') - X(z;,1) (4-3-6)

where Gi is the shear modulus of ith layer soil, Gi = p:V'7, and V; is the shear wave velocity.
Then, submitting Egs. (4-3-5) and (4-3-6) into Eq. (4-3-1),

%(X@,) ~X(z) = %wi%p,» (X(z))+X(z;a)H, (4-3-7)

7

From Eq. (4-3-7), the following equation can be obtained:
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Fig.4-3-1 A multi-layer soil profile on rigid bedrock

HK,

X(zi) = X(z) ==~ (4-3-8)

K =205 p,(X(2)+ X (2,0 )H, (4-3-9)
Jj=

In Egs. (4-3-8) and (4-3-9), as both the fundamental frequency, w, and mode shape, X, are
unknown; in theory, the equation can’t be solved directly. The fundamental frequency, w, and the
mode shape, X, can be obtained by following steps:

(1) Assume a value for frequency, @, then all values of the fundamental mode shape, X (zi), can be
recursively calculated by stetting the value at surface as 1, 1.e. X (z1)=1.

(2) Asis well known that, the value of the fundamental mode shape at base, X (zx), equals 0 for natural
vibration, thus, if X (z») is equal to zero, the initial assumption of @ is the correct natural frequency
of vibration, otherwise, the assumed value of o is adjusted.

(3) Repeat the steps (1) and (2), until obtained X (z») equals 0. Then, the natural frequencies and mode
shapes can be obtained. '

To illustrate how to adjust the assumed value of frequency, e, according to the calculated value of
X (zn), an example calculation using Egs. (4-3-8) and (4-3-9) is conducted. Shear wave velocity profile
of the used example site is shown in Fig. 4-3-2. And, obtained results are shown in Fig. 4-3-3. In this
figure, horizontal ordinate represents the assumed frequency w, and longitudinal coordinates
represents the calculated value of X (zn). It can be known that, if estimated value of X (z») is positive,
the assumed w is smaller than the true frequency in the case of odd modes, or the assumed frequency

is larger than the true frequency in case of even modes. Similarly, if estimated value of X (zx) is
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negative, the assumed @ is larger than the true frequency in the case of odd modes, or the assumed
frequency is smaller than the true frequency in case of even modes. Based on this law, any natural
periods and mode shapes can be found gradually.

In principle, the developed method can give any natural frequencies and mode shapes with any
desired degree of accuracy. Since values of the fundamental mode shape between two adjacent soil
interfaces are assumed vary linearly during the derivation of Egs. (4-3-5) and (4-3-6); accuracy of the
obtained result by Eqgs. (4-3-8) and (4-3-9) totally depends on the soil-layer height be discretized.
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Shear wave velocity ¥V (m/s)

Fig.4-3-2 Shear wave velocity of an example soil profile

0 20 40 60 80 100
Frequency (Hz)

Fig.4-3-3 Relationship between estimated values of the fundamental mode shape at base with
assumed frequencies
4.3.3 A method for the fundamental mode shape and participation factor

Although the method developed in the Section 4.3.2 can give any natural frequencies and mode
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shapes with any desired degree of accuracy, the repeated assumption and judgment make this method
difficult used in practical engineering. It is noted that, if exact value of the fundamental frequency is
given, Eqgs. (4-3-8) and (4-3-9) can directly give results of the fundamental mode shape with any
desired degree of accuracy. The proposed procedure in section 3.5 was found can predict the
fundamental frequency accurately and easily [65, 66, 76]. Thus, if the proposed procedure in section
3.5 and Eqgs. (4-3-8) and (4-3-9) are conjunctively used, both the fundamental frequency and mode
shape can be calculated easily and accurately.

Estimation of the fundamental mode shape

By conjunctively using the proposed procedure in section 3.5 and Eqgs. (4-3-8) and (4-3-9), a
procedure ihcluding the following steps can be proposed to estimate the fundamental period and mode
shape of layered soil profiles.

(1) Estimate the fundamental period using the proposed procedure in section 3.5.

(2) Submit the obtained result of the fundamental period into Eqs. (4-3-8) and (4-3-9), the
fundamental mode shape can be given directly.

(3) As the fundamental period estimated by the proposed procedure in section 3.5 is not totally exact,
error of the fundamental period, in turn, error of the fundamental mode shape will be in existent. In
order to reduce the error, the obtained fundamental mode shape is further modified simply. As value
of the fundamental mode shape at base, X (z»), should equal 0 for natural vibration in theory, the
obtained values of the fundamental mode shape are modified by:

X1"(z) = Xy(z) - Xy(z,,) (4-3-10)

where X1/ is the modified value of the fundamental mode shape at ith soil interface.

In addition, a simple equation for estimation of the participation factor corresponding to the first
mode of layered soil profiles is also derived. As is well known, for a lamped-parameter system, the
participation factor, p, is estimated by:

T
=_..~¢T ) (4-3-11)
¢ 1M
where, {m } isthe vector of masses,and [sf is the associated diagonal mass matrix, ¢ isthe mode
shape. For a layered soil profile, masses are considered concentrate at the layer interface, mass m; at
ith interface is estimated by  m; =0.5(p;,_ H,; + p;H;) . Then, according to Eq. (4-3-12), an
equation for the participation factor of layered soil profiles, pz, can be derived as:

n—1
X{"(z)p Hy + %(Pi_lHi—l +p H)XT" (z)

il

P (4-3-12)

n-1 '
(le(zl))zlel+§(pi—1Hi—l+piHi)(X1m(Zi))2

4.3.4 Numerical examples and discussions
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Numerical examples
In order to investigate the accuracy of the proposed method, 4 representative soil profiles of the
selected 67 soil profiles selected from Strong-motion Seismograph Networks (K-NET, KIK-net) [35]
are used. The soil data for the four sites are listed in Table 4-3-1. Then, the fundamental mode shape
1s estimated by discretizing the soil profiles into a number of 1 m-height soil layers. The results
obtained by the proposed method are compared with those obtained using the exact Rayleigh
Procedm%e [76], in Fig. 4-3-4. In Figs. 4-3-4(a)-(b), horizontal ordinate represents the estimated values
of the fundamental mode shape with the one at ground surface normalized to 1, and longitudinal
coordinates represents the depth. It is found that, results by the proposed method agree very well with
those obtained using the Rayleigh Procedure. The fundamental mode shapes are also estimated by
the Hadjian method [66], the obtained results are compared with those obtained using the proposed
method and the Rayleigh Procedure in Fig. 4-3-4. Fig. 4-3-4 shows that, the fundamental mode shapes
estimated by the proposed method are much closer to exact values than those by the Hadjian method.
In order to further compare the accuracies of the proposed method and the Hadjian method in
estimation of the fundamental mode shape, other 63 representative soil profiles are further selected
from Strong-motion Seismograph Networks (K-NET, KIK-net) [35]. In addition, a parameter r is
introduced to measure the accuracy in estimation of the fundamental mode shape, equation for r is
expressed as
g O = XY s
i=] X 1-i

where X214, 1X55). , respectively, represent the evaluated and exact value of the fundamental mode

Table 4-3-1 Soil data of the four representative soil profiles

Site No. | Layer No.i | Thickness H; (m) | Shear wave velocity V; Density pi
(m/s) (KN/m?)
1 8 130 18.62
Site-1 2 24 180 18.62
3 6 260 18.62
1 22 170 18.62
Site-2 2 6 250 18.62
3 22 300 18.62
1 6 136 15.68
Site-3 2 30 267 18.62
3 16 292 18.62
Site-4 1 20 110 15.68
2 170 380 18.62
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shape at ith soil interface. It can be known from Eq. (4-3-13) that, the closer to 0 the value r is, the
more accurate the calculated results are.

Values r of the total 67 soil profiles corresponding to the two simple methods are calculated by Eq.
(4-3-13), and obtained results are shown in Fig.4-3-5. The horizontal ordinate represents the total
thickness of estimated soil profiles, and the longitudinal coordinates represents calculated value of r.
For the soil profiles with total thickness less than about 20 m, values of » corresponding to the two
methods have no obvious difference, which means that the accuracy of the two methods are nearly
same. For the soil profiles with total thickness larger than about 20 m, values of r corresponding to
the proposed method are obviously less than those corresponding to the Hadjian method, which means
that results estimated by the proposed method are more accurate. In addition, it can be seen that, with
the total thickness of soil profiles become thicker, values of 7 of the Hadjian method become larger.
This means that errors by the Hadjian method are larger for higher soil profiles.

In addition, participation factors corresponding to the first mode of the 67 soil profiles are estimated
by the simple Eq. (4-3-12). In Fig. 4-3-6, the obtained results are compared with those estimated by
an eigenvalue analysis by discretizing the continuous soil profile into lumped-parameter MDOF
model. The obtained modal participation factors are remarkably accurate; 97% of the estimated values
are within 15% of the results by eigenvalue analysis. In other words, & 15% can be regarded as the
limits of the 97% confidence level.

Discussions
In the previous section, a part of values of the fundamental mode shape estimated by the Hadjian
method are found deviate significantly from exact ones, especially for high soil profiles. In following,

the reason for the deviation as well as area of application of the Hadjian method is clarified.
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The Hadjian method [66] estimates the fundamental mode shape, Xi1(z), of layered soil profiles, by
following equation:

X,(2) = cosZ ) @-3-14)
1-n

where, X1(z;) is the value of the fundamental mode shape at ith soil interface as shown in Fig. 4-3-1.
And, Th- represents the decoupled fundamental period of the soil layers from the first interface
(ground surface) to the ith interface, 71-» represents the fundamental period of the total soil profile.
The Hadjian method estimates the fundamental mode shape using results of the fundamental period
calculated by the Madera method [65]. And, all values of 71+ (i=1~n) are obtained during the
application of the Madera procedure.

Eq. (4-3-14) gives results of the fundamental model shape at the soil interfaces, for values between
two adjacent interfaces, values of the fundamental mode shape are assumed vary linearly along with
depth. For soil profiles with high soil layers, to reduce the error caused by the ‘linearly vary’
assumption, the high layers need be discretized into thinner layers. But, during the application of the
Madera procedure, at each step of replacing the top two layers with an equivalent single layer, the top
two layers are assumed to lie on rigid rock, when in fact they lie on a soil layer with limited stiffness.
In addition, the times of the rigid-rock assumption be used are positively correlated to the number of
soil layers. Thus, the more layers the soil profile be discretized, the more the rigid-rock assumptions
will be used. The errors in estimation of the fundamental period can accumulate along with the times
of the assumption be used, and the accumulated error will be transmitted to the fundamental mode
shape. So, the more layers results in the larger error in estimation of the fundamental mode shape.
And therefore, for the soil profiles with high soil layers in the previous section, errors of the
fundamental mode shape are significant.

To verify the above inference, the 67 soil profiles are discretized into different thickness, then
fundamental periods are calculated by the Madera procedure. The obtained results are compared with
those obtained by the Rayleigh Procedure in Fig. 4-3-7. As shows in Fig. 4-3-7 (a), accuracies of
results corresponding to the soil profiles without be discretized are remarkably good. But, error of the
fundamental period increases with number of soil layers be discretized as shown in Fig. 4-3-7 (b).
This observation supports the inference that error of the fundamental period accumulates with times
of the rigid-rock assumptions be used. In addition, fundamental mode shapes of the four
representative soil profiles in Fig.4-3-4 without be discretized, are recalculated by the Hadjian method,
and results are shown in Fig. 4-3-8. The results can be found are more accurate than those of soil
profiles be discretized, although the errors for high soil layers are still significant. This observation
supports the inference that, error of the fundamental period can be transmitted to the fundamental
mode shape.

Thus, for soil profiles with high soil layers, such as the four soil profiles used pre, it is difficult to

use the Hadjian method to calculate the fundamental mode shape accurately. Because, to reduce the
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error cause by the ‘linearly vary’ assumption, soil layers should be discretized into thinner layers; but
unfortunately, error of estimated results will become much bigger due to the accumulation of error by
using the rigid-rock assumption more times. But for estimation of the fundamental period only, as
soil layers need not be discretized into thinner soil layers, and original numbers of soil layers are not
that much for general soil profiles; the Madera procedure can give accurate estimation of the
fundamental period as shown in Fig. 4-3-7 (a).

Actually, same with the Hadjian method, the proposed method also assumes that values of the
fundamental mode shape between two adjacent soil interfaces vary linearly along with depth. Thus,
for soil profiles with high soil layers, to reduce the error caused by the ‘linearly vary’ assumption, the
high layers also need be discretized into thinner layers. But, it should be noted that, Eqs. (4-3-8) and
(4-3-9) only need the final result of the fundamental period by the Madera procedure, instead of all
results of the decoupled fundamental period, 71-; corresponding to every analyzed interfaces as the
Hadjian method (Eq. (4-3-14)). This means that, although the soil layers are discretized into thinner
layers during the estimation of the fundamental mode shape, during the estimation of the fundamental
period they needn’t be discretized thinner. Thus, the proposed method can avoid using the rigid-rock
assumption more times, in turn, accumulation of the error.
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Fig.4-3-7 Fundamental periods of the 67 soil profiles with soil layers be discretized into different
thickness by the Madera procedure using the approximate equations by Hadjian

4.3.5 Conclusions

In this section, a simple method is developed to calculate the fundamental mode shape of layered soil
profiles. On the basis of the preceding discussion, one can draw the following conclusions:

(1) A new equation is derived for estimation of the natural frequencies and mode shapes of layered
soil profiles.
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Fig.4-3-8 Fundamental mode shapes of the four soil profiles with soil layers be discretized into
different thickness by the Hadjian method

(2) By conjunctively using the derived equation and the proposed procedure in section 3.5, a simple
approach is developed to estimate the fundamental mode shape. The proposed approach can be
conveniently implemented in simple spreadsheets and easily used by practicing engineers.

(3) The accuracy of the proposed approach is investigated using a lot of representative layered soil
profiles. Results by the proposed method are found agree very well with accurate results.

(4) Using the approximate equations proposed by Hadjian, for the estimation of the fundamental
mode shape, the Hadjian method is difficult used for analysis of soil profiles with high soil layers.
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4.4 Validation of the proposed method

In order to investigate the accuracy of the proposed method for estimation of nonlinear effect of soil,
the 67 representative soil profiles selected from Strong-motion Seismograph Networks (K-NET, KIK-
net) [35] are used. Two levels of input motions, level 1 and level 2, defined in Japanese seismic code
are considered in the accuracy investigation. For the proposed method, the acceleration response
spectra specified at engineering bedrock are used directly. For the SHAKE program used for
calibration, the bedrock response spectra are converted to corresponding time-history motions. And,
duration of the level-1 and level-2 time-history motion are respectively, 60s and 120s. The proposed
method in section 3.5 are used to calculate the fundamental period and first resonance peak.

The fundamental periods and first resonance peaks of the 67 soil profiles under the two levels of

seismic motions, are estimated by the proposed procedure and compared with those obtained using
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the SHAKE program (Fig. 4-4-1). Figs. 4-4-1(a) - (d) show that, the obtained fundamental periods
and first resonance peak under seismic motion of each level are remarkably accurate. 93% of the
estimated fundamental period and 97% of the estimated first resonance peaks for the level-1 seismic
motion, are within 15% of the SHAKE results. And. 88% of the estimated fundamental period and
94% of the estimated first resonance peaks for the level-2 seismic motion, are within 15% of the
SHAKE results. In addition, the average error in both fundamenfal period and first resonance peak
are less than 6.7%, for each level of seismic motions. The accuracy is considered sufficient for
engineering calculation.

The good accuracy in every levels of motions indicates that, not only (1) the procedure introduced
in section 3.5 gives accurate estimation of fundamental period and first resonance peak, which has
been validated for linear analysis, but also (2) the developed procedure in Chapter 4 estimates
nonlinear effect of soil accurately.
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4.5 Free-field response spectra by the proposed method

In order to investigate the accuracy of the proposed method for estimating nonlinear site effects, 4
actual sites with detail data be surveyed by PS logging are used [28]. The shear wave velocity profiles
and soil properties of each sites are presented in Fig. 4-5-1. For simplify, only the level-2 input
motions defined in Japanese seismic code are considered in this section, and 10 time-history motions
used for the SHAKE analysis are converted from the bedrock response spectrum. |
RSRs of the four sites are calculated by the proposed methods, then response spectra at ground
surface of each site are obtained. Then, the calculated results by the proposed method are compared
with those obtained using the SHAKE program, in Fig. 4-5-2. It can be found that, results of each site
by the proposed method agree very well with those by the SHAKE program. To see clearly, only
values of response spectra for periods between 0~5s are shown in the figure, in fact values of response
spectra for periods between 5~10s also agree very well with those by the SHAKE program. In
addition, response spectra at ground surface of each site are also calculated by the method in Japanese
seismic code, and the results are also shown in Fig.4-5-2. Same with the conclusion of previous

studies [27-29], values of response spectra at fundamental periods are underestimated by the code
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Fig. 4-5-1 Shear wave velocity profiles and soil properties of the four actual sites used for analysis
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method, especially for the site-1, site-2 and site-3, in which impedance contrast of the soil layers are
large.

For the site-4 that has long fundamental period, values of response spectrum between fundamental
period and second natural period are overestimated by the code method; and, the results by the
proposed method can be seen clearly agree better with those by the SHAKE. For the other three sites
that have short fundamental period, as the space between fundamental period and second natural
period is very short, results by the proposed method have no obvious difference with those by the
code method.

Although Gs: are estimated in different ways, by the proposed method and the code method, values
of response spectrum at second natural by the two methods have no obvious difference. This
observation indicates that the accuracy of Gs2 of both the two methods are sufficient for engineering
use.
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Fig. 4-5-2 Comparison of acceleration response spectra at ground surface of the multi-layer soil

profiles calculated by different methods
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4.6 Conclusions

In this chapter, a simple procedure for estimation of the soil nonlinear behavior is developed. On the

basis of the preceding discussion, one can draw the following conclusions:

(1) A simplified response spectrum method is developed to estimate the soil nonlinear behavior. To
make the response spectrum method available, radiation damping caused by refraction and
reflection of seismic waves at the soil-bedrock interface, is converged to equivalent material
damping. ‘

(2) A simple method is developed to calculate the fundamental mode shape and corresponding
participation factor used for calculation of the maximum displacement. The accuracy of the
proposed approach is investigated using a lot of representative layered soil profiles. Results by
the proposed method are found agree very well with accurate results.

(3) The accuracy of the proposed approach for estimation of soil nonlinear behavior is investigated
using a lot of representative layered soil pfoﬁles. Results by the proposed method are found agree
very well with accurate results.

(4) The accuracy of the proposed method for estimating nonlinear site effects is investigated by
calculating free-field response spectra of four example sites. Results by the proposed method are

found agree very well with accurate results.
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Chapter 5

Fundamental period of MDOF structures

5.1 Introduction

In this chapter, the consideration of estimating the first resonance peak in Chapter 3 is extended to
calculate the fundamental period of multiple-degree-of-freedom (MDOF) system.

The fundamental period is a key parameter for the seismic design of a building structure using the
equivalent-lateral-force procedure; in principle, it can be accurately evaluated by means of an
eigenvalue analysis [77] on a structural model. In most building-design projects, since the
building’s period cannot be analytically calculated before it has been designed, accurate
computation is generally not possible in the preliminary design stage, and, typically, simple
formulae for the fundamental period are used to initiate the design process. These simple formulae
also serve as a basis for limiting the period from a finite-element model by applying the upper-
bound factor suggested in the 2003 NEHRP Recommended Provisions for Seismic Regulations for
New Buildings and subsequently in ASCE 7-05 [15]. Therefore, at present, simple formulae for
estimating the fundamental period with good accuracy play an important role in structural design
[78, 79].

Many researchers have previously proposed such formulae for this purpose. Generally, there are
two kinds of simple formulae for the fundamental period: empirical [79-91] and analytical [92-98,
11, 59). A lot of empirical formulae have been developed. Asteris ef a/ [80, 81] give an extensive
review of these formulae. Empirical formulae adopted in most codes are simply expressed in terms
of the height of buildings [98, 11]. Some researchers take into account other parameters apart from
the height of building. Kose [84] takes into account the presence of infill walls and frame type.
Hatzigeorgiou and Kanapitsas [86] proposed an expression considering the soil flexibility, the
influence of shear walls, and the external and internal infill wall. Asteris et al [80, 81] proposed a
more accurate formula that takes into account the number of stories, the number of span, the span
length, the infill wall panel stiffness and the percentage of openings within the infill wall. Further,
Asteris et al [83] recognized that the vertical geometric irregularity significantly influences the
fundamental period, and proposed a reduction factor to quantify this effect.

Analytical formulae also have been adopted in many codes [11, 59, 98]. This chapter focus on the

analytical ones, which have generally been developed based on vibration theory for a multiple-
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degree-of-freedom (MDOF) system. Among these, Rayleigh’s method, Geiger’s method, and
Dunkerley’s method are the three most widely used; the first two of which were specified in the
1997 Uniform Building Code [11], the Japanese seismic code [59], respectively.

In this chapter, the consideration of estimating site effects in Chapter 3 is extended to calculate
the fundamental period of MDOF. The rest of this chapter is organized as follows. Firstly, several
most widely used simple formulae for estimating the fundamental period are briefly reviewed in
Section 5.2. Then, in Section 5.3, the new method is described. In this method, the fundamental
period is estimated by replacing the complicated MDOF system with an equivalent single-degree-
of-freedom (SDOF) system. Then, to investigate the accuracy of the proposed method, the
fundamental periods of numerous MDOF models are estimated by the proposed method in Section
5.4 and compared to their accepted values. Finally, the main results of this study are concluded in
Section 5.5.
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5.2 Review of the current methods

Many studies have contributed calculation methods for estimating the fundamental period of MDOF
systems. This section reviews several most widely used methods briefly.

The first one, Rayleigh’s method, is a simple theoretical technique based on energy principles,
which was specified in the 1997 Uniform Building Code [11]. To introduce the basic consideration
of Rayleigh’s method for the fundamental period, consider a MDOF system undergoing free
harmonic motion with a fundamental frequency wi. The displacement vector {x(f)} and velocity
vector {x'(¢)} of the MDOF system corresponding to fundamental vibration are given by

()} = {u}sin(wr + @) (5-2-1)
X'} = {uo, cos(ot + @) : (5-2-2)
where {u} is a displacement vector representing the fundamental mode shape corresponding to

fundamental vibration and ¢ is the phase angle of the harmonic vibration.
Then, the maximum kinetic energy, KF, of the system can be expressed as

KE = {u M 1{u}or (52-3)

where [M] is the mass matrix of the MDOF system, and the maximum strain energy, SE, of the
system can be expressed as

SE =) K1) (5-2-4)
where [K] is the stiffness matrix of the MDOF system.

It is known that when the kinetic energy of the system is maximal, the strain energy will be zero;
on the contrary, when the strain energy of the system is maximal, kinetic energy will be zero. Then,
based on the principle of conservation of energy (i.e., total mechanical energy is constant), the KE is
equal to the SE. Accordingly, the fundamental frequency wi is given by

0)12 — {u}T[K]{u} (5_2_5)

o 1M1

As shown in Eq. (5-2-5), before calculating the fundamental period using Rayleigh’s method, the
fundamental mode shape {u} should be determined. For simplicity, instead of using an accurate
eigenvalue analysis, the fundamental mode shape is always determined based on some assumption.
Thus, the accuracy of Rayleigh’s method depends entirely upon the assumed fundamental mode
shape. A widely used estimate for the fundamental mode shape is the static displacement resulting
from subjecting the masses in the system to forces proportional to their weights. Based on this
assumption, the fundamental period, 7%, is given by

1, =2r | B

R

(5-2-6)




where Gi = gmi, mi is the mass of the ith degree of freedom, and » is the number of total degrees of
freedom.

The second technique, Geiger’s method, is also a widely used approximation method for
estimating the fundamental period of a MDOF system. This method was specified in the Japanese
seismic code [59]. To introduce the basic consideration of this method, consider an SDOF system

with mass m and lateral stiffness k£. Then, the fundamental period 7¢ of the SDOF system can be

m mg
T. =2 f_ =2 /_ 5-2-7
=27 . T P ( , )

By defining & =mg/kandC = \/5/271', TG can be expressed as

given by

T, =X2 (5-2-8)

where J represents the top lateral displacement resulting due to the weight of the system.
When Eq. (5-2-8) is applied to estimating the fundamental period of an MDOF system, the top
displacement (in cm) is estimated by

xmg
=i
L | (5-2-9)

i

o=

-

¥
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In Japanese seismic code [59], C is determined empirically according to the number of stories n
and equals 5.4 when n=2 and 5.7 when n> 2.

Eurocode 8 [98] also uses Eq. (5-2-8) to estimate the fundamental period, but C is
adopted as 5.

Note that, as with Rayleigh’s method, when Eq. (5-2-8) is used to calculate the fundamental
period, the top displacement should be estimated.

Another method, Dunkerley’s method, is based on the flexibility of the system-eigenvalue
problem and provides an “upper-bound” estimation of the fundamental period. The basic premise of
this method is to reduce the actual system into a number of simple subsystems; then, the square of
the fundamental period, T, equals the sum of that of each subsystem. Dunkerley’s equation can be

expressed as
=T+T,+.+T. (5-2-10)

where Tj; is the natural period of an SDOF system with mass “m;” acting alone at state i.
Unlike the previous two methods, Dunkerley’s method considers only the mass and stiffness of
the analyzed MDOF system, without mode shape or top displacement. However, it has been

reported that this method is not as accurate as the others [97].
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5.3 Method for estimating the fundamental period

A simple method for estimating the fundamental period of an MDOF system is proposed in this
section. The basic principle is to replace a complicated MDOF system with an equivalent SDOF
system for which the fundamental period can be easily obtained. To realize the SDOF-system
equivalence, a procedure to replace a two-degree-of-freedom (2-DOF) system with an SDOF
system having the same fundamental period, called the two-to-single (TTS) procedure, is developed
firstly; then, using the TTS procedure successively, the MDOF system can be replaced with an
equivalent SDOF system having approximately the same fundamental period.

A procedure to replace a 2-DOF system with an SDOF system
In order to develop the TTS procedure to reduce a 2-DOF system to an SDOF system with the same

fundamental period, a 2-DOF system and an equivalent SDOF system are considered, as shown in
Fig. 5-3-1. In essence, developing the TTS procedure means expressing parameters including mass,
Meq, and stiffness, keq, of the equivalent SDOF system in terms of the parameters of the 2-DOF

system. For this purpose, the following two equivalent equations are considered

My = My + 1y (5-3-1)

Toq =15_por (5-3-2)
here, mi, i = 1, 2, is mass of the ith degree of freedom and 7%-por is the fundamental period of the 2-
DOF system; Teq is the fundamental period of the equivalent SDOF system. In order to determine
the stiffness, keq, of the equivalent SDOF system using Eq. (5-3-2), the fundamental period,7%-por,
of the 2-DOF system should be derived firstly. ’

Consider the 2-DOF system in free harmonic vibration. The basic eigen problem for this system

is represented as .
(@;[M]-[kDlu}=0 (5-3-3)
where wi, i = 1, 2, are the free-vibration frequencies, [M] and [K] are the mass and stiffness matrices

of the 2-DOF system, respectively, and are expressed as

m, 0 k -k
M — 1 . K = i 1
[ ] I:O mz] [ ] |:_k1 k1+kzj|
and ki, i = 1, 2, is the stiffness of the ith degree of freedom.

By eigenvalue analysis, the fundamental frequency w1 can be given by

- :l[kl +k, +£_\/(w_ﬁ)2 _,_4_&2_.:! (5-3-4)

21 m, m, m, m mm,

As T2-por = 2m/w1, according to Eq. (5-3-2), the stiffness, keq, of the SDOF system is given by
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Fig. 5-3-1 Illustration of the concept of replacing a 2-DOF system with an equival
ent SDOF system

2 2 i ml m2

2
ke,,=; J{k th - \/(k‘+k —£)2+4——k1 (5-3-5)
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Using Egs. (5-3-1) and (5-3-5), an equivalent SDOF system having the same fundamental period as
the 2-DOF system can be obtained.

A procedure for estimating the fundamental period of an MDOF system
Successively using the procedure for replacing a 2-DOF system with an equivalent SDOF system as

described above, a procedure for finding the fundamental period of an MDOF system can be

developed. The concept of this procedure is illustrated in Fig. 5-3-2. And, the procedure includes

following steps:

L.

For the MDOF system shown in Fig. 5-3-2(a), the top two masses m1 and m are assumed to lie
on rigid ground and can be considered as a 2-DOF system. Then, based on the TTS procedure
(i.e., Eq. (5-3-1) and (5-3-4)), an equivalent SDOF system having the same fundamental period
as the top 2-DOF system can be obtained, forming a new MDOF system as shown in Fig. 5-3-
2(b).

Then, as in step (1), the top two masses of the new MDOF system as shown in Fig. 5-3-2(b) are
considered as a new 2-DOF system lying on rigid ground and can be replaced with another
equivalent SDOF system using Egs. (5-3-1) and (5-3-4) again, forming another new MDOF
system, as shown in Fig. 5-3-2(c).

By application of the TTS procedure successively to the remaining lower masses, finally, the
MDOF system is replaced with an equivalent SDOF system, as shown in Fig. 5-3-2(d). Then,
the fundamental period can be readily obtained.

Validation of the rigid-ground assumption
In the procedure for replacing an MDOF system with an equivalent SDOF system described in the

previous section, at each step of replacement, the top two masses are always considered as a 2-DOF
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Fig. 5-3-2 [llustration of the concept of replacing an MDOF system with an equivalent
SDOF system

system lying on rigid ground. However, except at the final step, the 2-DOF system lies on a floor
with limited stiffness. In order to validate the rigid-ground assumption, the fundamental periods of a
large number of MDOF structures are computed using the procedure described above and compared
with those obtained using an eigenvalue analysis.

The analyzed MDOF structures are divided into two major categories: MDOF structures with
floor stitfness varying with height and those with only one special floor with different stiffness from
the others. As the mass of the actual structure generally varies less significantly as a function of
height than does stiffness, the mass, mo, of the analyzed structures is considered constant.

In the first category, the variation of stiffness with height is expressed as
k; =rk, (5-3-6)

where ki is the stiffness of the ith mass point, as shown in Fig. 5-3-2(a), ko is a constant value, and
factor r represents the variation degree of stiffness along height. Eq. (5-3-6) means that, the stiffhess
of the top story equals ko, and stiffness of any lower ith story is r times as large as that of the upper
i-1th story. Generally, as the stiftness of the actual structure increases from the top to the bottom,
factor r is considered to vary from 1 to 1.5.
In the second category, the stiffness of only a special floor, ki, is considered variable, and the
others are constant and equal to ko. The variation of the stiffness of this special floor is expressed as
Ky = rky (5-3-7)
Eq. (5-3-7) means that, stiffness of the special story is r times as large as that of other stories
equaling ko. In this case, factor » is considered to vary from 0.5 to 1.5, and i varies from 1 to n,

where n the number of stories.
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It can be easily shown that, in these designed MDOF structures, the parameters controlling the
fundamental period are the factor r, the ratio between stiffness and mass, ko/mo, and the number of
stories n. Thus, the error in the estimated fundamental period caused by the rigid-ground
assumption is also considered to be affected by these three parameters. The variation ranges of the
parameter » have been introduced above, for the parameter ko/mo, two values, 10,000 (kN/cm)/6 (t)
and 10,000 (kN/cm)/60 (t), are considered in the following calculation. The wvalue, 10,000
(kN/cm)/6 (1), is determined according to an actual structure constructed in Japan [99]. To observe
the possible effect of the parameter ko/mo on the error clearly, another extreme value, 10,000
(KN/cm)/60 (t), is assumed. The extreme range assumed for the parameter ko/mo 1s to observe the
possible effect clearly instead of representing actual condition. And number of stories » is
considered to vary from 3 to 10.

The fundamental periods of these MDOF structures are calculated usiné the previously developed
procedure and compared against those obtained using an eigenvalue analysis. The errors are
expressed by ratios of the fundamental periods calculated by the previous developed procedure, 7p,
with those by an eigenvalue analysis, T.. Fig. 5-3-3(a) shows the results of the first category of
MDOF structures. For the second category of MDOF structures, results are very similar regardless
of the value of i expressed in Eq. (5-3-7); for simplicity, only representative results when 7 = » are
shown in Fig. 5-3-3(b). In these figures, the horizontal coordinate is the factor r, representing the
variation degree of stiffness, and the longitudinal coordinate represents the error.

It is observed that, for both subcategories in which there is error in the estimated fundamental
period, the maximum relative error is less than 8%. The errors are dependent on the factor r and the
number of stories n, but not on the ratio ko/mo. The errors increase with increasing r for the first
category but do not change noticeably for the second category. For both subcategories, the errors
increase with n. Comparing the effects of n and r on the errors, that of » is clearly more prominent.

The reason for the dependence on the number of stories is that, when replacing an MDOF system
with an equivalent SDOF system, the top 2-DOF system at each step is assumed to lie on rigid
ground, when in fact it lies on a floor with limited stiffness; thus, the more stories the analyzed
MDOF system has, the more the assumptions used, resulting in a larger error.

Generally speaking, the rigid-bedrock assumption used in the previously developed procedure
can cause a calculation error in the fundamental period, but the maximum relative error of the
analyzed MDOF structures is below about 8%. The errors are affected by the number of stories n

and the variation degree of the stiffness with height, although the former effect is more significant.

Correction factor
Based on the analysis in the previous subsection, the prediction of the fundamental period using the

previously developed procedure is improved with the appropriate introduction of a correction factor.
The fact that the error in the fundamental period obtained using the previously developed

procedure is affected by the number of stories and the variation degree of the stiffness along height
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(a) Results for structures in the first category (b) Results for structures in the second category

Fig. 5-3-3 Comparison of the fundamental periods obtained by the procedure described in

the previous Section with those obtained by eigenvalue analysis

leads us to conclude that the correction factor should be expressed in terms of the number of stories,
n, and a factor representing the variation degree of stiffness. However, since the variation degree
ofthe stiffness of an actual building cannot be expressed as a single factor like the idealized one, 7,
used previously, and since an increase in the number of stories affects the error more significantly
than variation of the stiffness, the correction factor is expressed only in terms of n.

To isolate the effects of variations of stiffness and mass, MDOF structures with constant mass
and stiffness with height are used to conduct the correction. MDOF structures composed of 3-20
stories are used for the correction. Then, a correction factor R is introduced, defined as the ratio
between the fundamental periods obtained by an eigenvalue analysis and by the previous developed
procedure. To determine the correction factor R, the fundamental ratios of the exact and predicted
periods of all analyzed MDOF structures are computed, and the results are shown in Fig. 5-3-4. By
trial-and-error analysis of a large number of functional forms, a very simple function is adopted for
the correction factor R, given by

R=(0.4n) /%0 (5-3-8)

The accuracy of this function can also be found very well from Fig. 5-3-4. The standard deviation
of residuals expressing the random variability of results by Eq. (5-3-8) is almost equal to 0.001.

Finally, considering the correction factor, the fundamental period of an MDOF structure can be
estimated as |

m
Tp, =27R_|—2

(5-3-9)
eq

where meq and keq are the mass and stiffness, respectively, of the final equivalent SDOF system
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Fig. 5-3-4 Ratios between the fundamental periods obtained by eigenvalue analysis

and by the method described in the previous section

obtained by the previous developed procedure.

The proposed method is composed of three equations (i.e., Eqs. (5-3-1), (5-3-5), and (5-3-8)), of
which the second equation seems more complicated than the current methods introduced in Section
5.2 at first glance. In Rayleigh’s method, the mode shape should be determined first; and, in
Geiger’s method, the top displacement should be estimated. As Eq. (5-3-5) is expressed in terms of
only mass and stiffness without any other additional parameters, the proposed method is considered
simpler and more direct than any presented in Section 5.2.

It should be noted that, the proposed method is developed for estimation of the fundamental
period of the widely used MDOF structural model. This means that, for an actual structure, it must
be simplified as an MDOF model before applying the proposed method. During the simplification,
besides the structural elements, the infill walls also should be properly considered in the model,
since contribution of the infill walls to the fundamental period may be also crucial [80,81].

In addition, as the proposed method considers variations of mass and stiffness with height, thus
the method is available for structures with vertical irregularity. For structures with plan
irregularities, torsion may be caused to the building, thus torsional stiffness should be considered in
the model of the structure. However, during the derivation of the proposed method, only lateral
stiffness is considered. Thus, the proposed method is only available for the shear-type MDOF
system. Improving the proposed method to analyze structures with plan irregularities is necessary in
the further study.
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5.4 Examples using the proposed method

Designed MDOF structures

In order to investigate the accuracy of the proposed method, a recalculation of the fundamental
periods of the two categories of MDOF structures introduced in Section 5.3 is performed, and
fundamental period ratios between the predicted periods, Tpr, and the exact ones are shown in Fig.
5-4-1. It is observed that errors are very low for both categories, with the maximum relative error
below 3%. Although the error increases with the number of stories for the first category of MDOF
structures, the error level (3%) is considered acceptable for engineering use.

In addition, in order to compare the accuracy of the proposed method with those of the methods
introduced in Section 5.2, the fundamental periods of the two categories of MDOF structures are
also estimated by the current methods. MDOF structures with as many as 60 stories are considered
for comparison. Representative results are shown in Figs. 5-4-2 (a)-(d). In these figures, the
horizontal coordinate is » and the longitudinal coordinates are the fundamental periods calculated
by different methods.

It can be noted that all results obtained by the proposed method are much more accurate than
those obtained by Dunkerley’s method, the Eurocode 8 method and Geiger’s method adopted in
Japanese code. Indeed, the accuracy of the proposed method is nearly equivalent to that of
Rayleigh’s method adopted in UBC 1997. Further comparisons of the average relative errors of the
results estimated by different methods are conducted. The corresponding results of those MDOF
structures used in Fig. 5-4-2 are listed in Table 5-4-1. The average relative errors by the proposed

method are smaller than those of the current methods.

Generally speaking, the accuracy of the proposed method is very good and is much better than
that of Dunkerley’s method and the Eurocode 8 method. For most of the estimated structures, the
accuracy of the proposed method is better than those of Rayleigh’s method adopted in UBC 1997

L1 i i I ; W7 11717771 77
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{a) Results for structures in the first category (b) Results for structures in the second category
Fig. 5-4-1 Comparison between fundamental periods obtained by the proposed method

and by eigenvalue analysis
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Table 5-4-1 Average relative error in the estimation results

-- Fig.5-4-2 (a) | Fig.5-4-2 (b) | Fig.5-4-2 (c) Fig.5-4-2

(%) (%) (%) (d) (%)

Proposed method 0.617 1.542 0.616 0.624
UBC 1997 0.643 4.298 0.623 0.655
Japanese code 3.032 3.890 3.084 3.000
Dunkerley’s method 10.935 18.615 10.876 10.967
Eurocode 8 10.543 18.196 10.484 10.575
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and Geiger’s method adopted in Japanese code.

MDOF models of actual structures

Further accuracy investigations are performed by estimating the fundamental periods of 19 MDOF
models of actual structures [99-104]. Parameters of these MDOF models are listed in Table 5-4-2. A
wide range of structures with 3—36 stories are considered. Most of these structures are in Japan, and
others are found in unknown locations. The fundamental periods of the 19 MDOF models are
calculated by the proposed method and the current methods; the obtained results are listed in Table
5-4-3, and the corresponding relative errors are also estimated and listed in brackets. It can be seen
that the average relative error by the proposed method equals 1.098% and that the maximum
relative error equals 2.828%. For 79% of the estimated MDOF models, relative error is less than 2%.
This accuracy is encouraging, and results by the proposed method are considered to agree very well
with those obtained by eigenvalue analysis.

Comparing the results of the various methods, it can be seen that, for all estimated models, the
relative error of the proposed method is much lower than that of Dunkerley’s method and the
Eurocode 8 method; for 84% of the estimated models, the proposed method also obtains a smaller
relative error than Rayleigh’s method adopted in UBC 1997. In addition, the average and maximum
relative errors by the proposed method are the lowest, meaning the accuracy of this method is the
highest.

Generally speaking, the accuracy of the proposed method is reasonably good, with a maximum
relative error below 2.828%. The accuracy is much better than that of Dunkerley’s method and the
Eurocode 8 method, and is better than that of Geiger’s method adopted in Japanese code or
Rayleigh’s method adopted in UBC 1997 for most of the structures considered.

Table 5-4-2 Parameters of the analyzed actual structures

Model No. Structure Location Structure Storie | Direction
01 Wakayama-Ken of Japan 3 X
02 Y
03 Tochigi-ken of Japan 4 X
04 Y
05 Ibaraki-ken of Japan 5 X
06 Y
07 Ibaraki-ken of Japan 7 X
08 Y
09 Tokyo of Japan 23 X
10 Y
11 Tokyo of Japan 36 X

93



12 Y
13 -- 5 X
14 Y
15 - 5 -~
16 Tokyo of Japan 3 X
17 Y
18 -- 8 NS
19 EwW

Table 5-4-3 Fundamental periods and corresponding relative errors of the analyzed MDOF
models calculated by different methods

Model No. | Theoreti | Dunkerle UBC | Japanese | Proposed | Eurocode

cal y’s 1997 (s) method 8 (s)

method method code (s) (s)
(s) (s)

01 0.213 0.258 0.211 0.205 0.213 0.234
(20.069) (0.850) | (3.417) | (0.236) (10.105)

02 0.122 0.148 0.121 0.118 0.122 0.134
(20.059) | (0.833) | (3.326) | 10.323) (10.209)

03 0.313 0.406 0.307 0.314 0.314 0.358
(27.236) | (1.850) | (0.295) | (0.420) (14.336)

04 0.392 0.527 0.383 0.394 0.394 0.449
(31.768) | (2.322) | (0.458) | (0.448) (14.522)

05 0.139 0.207 0.137 0.140 0.141 0.159
(43.524) | (1.603) | (0.578) | (1.337) (14.659)

06 0.139 0.207 0.137 0.140 0.141 0.159
(43.524) | (1.603) | (0.578) | (1.337) (14.659)

07 0.713 1.061 0.704 0.704 0.720 0.802
(42.435) | (1.239) | (1.314) | (0.911) (12.501)

08 0.696 1.038 0.686 0.692 0.707 0.789
(41.781) | (1.422) | (0.653) | (1.591) (13.256)

09 1.026 1.673 1.012 1.043 1.049 1.189
(48.196) | (1.362) | (1.682) | (2.242) (15.917)

10 1.047 1.811 1.032 1.074 1.076 1.224
(56.246) | (1.385) | (2.558) | (2.828) (12.916)

11 2.084 3.081 2.051 2.089 2.112 2.382
(33.481) | (1.557) | (0.266) | (1.368) (14.303)

94



12 2.170 3.180 2138 | 2172 | 2.198 2.467
(32.368) | (1.508) | (0.067) | (1.283) | (14.076)

13 0.150 0.187 0.149 | 0.147 0.150 0.168
(21.487) | (0.892) | (1.992) | (0.044) | (11.730)

14 0.139 0.206 0.137 | 0.140 | 0.141 0.159
(43.525) | (1.604) | (0.583) | (1.338) | (14.665)

15 0.691 0.816 0686 | 0.669 | 0.691 0.763
(15.463) | (0.754) | (3.126) | (0.013) | (10.437)

16 5.491 8.094 5346 | 5.520 5.625 6.897
(43.031) | (2.638) | (0.531) | (2.441) | (25.625)

17 5.933 8.881 5760 | 5.954 6.053 7.469
(45.817) | (2.919) | (0.352) | (2.032) | (25.900)

18 0.342 0.403 0339 | 0335 0.343 0.382
(13.273) | (0.904) | (2.023) | (0287) | (11.694)

19 0.355 0.429 0352 | 0.349 0.356 0.397
(15.822) | (0.973) | (1.818) | (0.391) | (11.927)

Error (Avg.) - 33.637 1485 | 1.348 1.098 14.602
Error (Max.) - 56246 | 2919 | 3417 2.828 25.900
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5.5 Conclusions

On the basis of the preceding discussion, one can draw the following conclusions:

1. A simple method of evaluating the fundamental period by replacing the complicated MDOF
system with an equivalent SDOF system is proposed. The proposed method is available for shear-
type MDOF system. As the proposed method is composed of three simple explicit formulae, 1t can
be conveniently implemented in simple spreadsheets. In addition, the application of the proposed
method does not require expert knowledge concerning eigenvalue analysis; thus, the proposed
method is thought can be used by practicing engineers conveniently. Moreover, as simple formulae
are expressed in terms of the mass, stiffness, and number of stories directly without the mode shape
or top displacement, the proposed method is a simpler and a more direct method.

2. The accuracy of the proposed method is investigated by estimating a series of designed MDOF
structures and 19 MDOF models of actual structures, and is found to be reasonably good. The
accuracy of the proposed method is much better than that of Dunkerley’s method and the Eurocode
8 method, and is better than that of Rayleigh’s method adopted in UBC 1997 and Geiger’s method
adopted in Japanese code for most of the analyzed structures. '
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Chapter 6

Conclusions

In this study, a new simple site-specific method for estimating site effects of layered soil profiles is
proposed. The proposed method takes into account properties of every soil layers, frequency
dependent properties of the site effects, and the soil nonlinear behavior. The contents of this study are

summarized as follows.

(1) Site amplification function

As the seismic motion for structural design is usually given in the form of response spectrum, the site

effects are typically characterized as ratio of response spectrum at ground surface against the one

specified at outcrop bedrock in seismic codes. In Chapter 2, an equation for estimating the response
spectral ratio (RSR) is developed.

1. To develop a function for estimating the RSR, RSR and Fourier spectral ratio (FSR) are compared
based on ground-motion records, in Section 2.2. It is found that, (1) the shape of RSR is nearly
consistent with the one of FSR, the shape of RSR is relatively gentler; (2) maximum value of
FSRs and RSRs occur at about the same period, and the one of FSRs systematically exceed that
of RSRs; (3) at period band longer than the site fundamental period, difference between RSRs
and FSRs decreases as magnitude and epicentral distance increase.

2. Comparison between RSR and FSR are also conducted based on random vibration theory (RVT),
in Section 2.3. An equation expressing the relationship between the RSR and the FSR is derived
based on the RVT. According to the derived equation, the relationship between the RSR and the
FSR is investigated. Nearly same findings with those based on statistical analysis in section 2.2
are obtained.

3. Based on the comparisons between RSR and FSR, a site amplification function representing the
RSR is constructed in Section 2.4.

(2) First resonance peak

- The developed equation for RSR in Chapter 2 consists of two basic parameters, namely the
fundamental period and first resonance peak. In Chapter 3, three simple methods for estimation of
the first resonance peak of layered soil profiles are developed.

1. Insection 3.3, a simple method for estimation of the Gs1 of layered soil profiles is developed. The
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method calculates results of Gsi, by replacing the layered shear wave velocity with an equivalent
linearly varying profile. The equivalent shear wave velocity profile is determined by regressing
the values at midpoint of each soil layer. The validity of the proposed method is demonstrated by
evaluating 67 representative sites. The results obtained using the proposed procedure agree well
with those produced by the wave propagation method.

2. In section 3.4, another simple method for estimation of the Gsi1 of layered soil profiles is
developed. The method calculates the Gsi, by replacing the multiple soil layers with equivalent
two layers. The interface of the equivalent two layers locates between two adjacent soil layers
whose impedance contrast is largest among all soil layers. The validity of the proposed method is
demonstrated by evaluating 67 representative sites. The results obtained using the proposed
procedure agree well with those produced by the wave propagation method.

3. In section 3.5, another simple method for estimation of the Gsi1 of layered soil profiles is
developed. This method calculates the Gsi, by successively replacing the top two layers with an
equivalent single layer using the TTS procedure. The validity of the proposed method is
demonstrated by evaluating 67 representative sites. The results obtained using the proposed
procedure agree well with those produced by the wave propagation method, and the accuracy of

this method is better than those of the two proposed methods above.

(3) Soil nonlinear behavior

As the soil nonlinearity significantly influences the site response, a simple procedure to consider the

soil nonlinear behavior in estimation of the site effects is developed in Chapter 4.

1. In Section 4.2, a simple procedure to consider the soil nonlinear behavior in estimation of the site
effects is developed.

2. During the application of this method, the first mode shape is necessary. A simple method for
estimating the first mode shape of layered soil profiles is proposed, in Section 4.3. The validity
of the proposed method is demonstrated by evaluating 67 representative sites. The results
obtained using the proposed procedure agree well with those produced by the exact Rayleigh
Procedure.

3. The accuracy of the proposed method for nonlinear soil behavior is investigated using the 67 soil
profiles, and considering two levels of input motions, in section 4.4. The results obtained using
the proposed procedure agree well with those by SHAKE using both two levels of inputs. In
addition, the validity of the total proposed method for site effects are demonstrated by estimating
ground-surface response spectra of several actual reprehensive soil profiles in Section 4.5. The
results obtained using the proposed procedure agree well with those produced by the equivalent
linear method. |

(4) Fundamental period of MDOF structures

In Chapter 5, the consideration of estimating site effects in Chapter 3 is extended to calculate the
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fundamental period of a multiple-degree-of-freedom (MDOF) system.

1.

The proposed method is composed of three simple explicit formulae, it can be conveniently
implemented in simple spreadsheets. In addition, the application of the proposed method does not
require expert knowledge concerning eigenvalue analysis; thus, the proposed method is thought
can be used by practicing engineers conveniently. Moreover, as simple formulae are expressed in
terms of the mass, stiffness, and number of stories directly without the mode shape or top
displacement, the proposed method is a simpler and a more direct method.

The accuracy of the proposed method is investigated by estimating a series of designed MDOF
structures and 19 MDOF models of actual structures, and is found to be reasonably good. The
accuracy of the proposed method is much better than that of Dunkerley’s method and the
Eurocode 8 method, and is better than that of Rayleigh’s method adopted in UBC 1997 and
Geiger’s method adopted in Japanese code for most of the analyzed structures.
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Appendices

Appendix 1: Current methods for site effects in seismic codes

Al.1 1994 and 1996 NEHRP, ASCE/SEI 7-05, ASCE/SEI 7-10, 1997 UBC, 2003, 2012 and 2015
IBC

The method for site effects in seismic codes including, ASCE/SEI 7-05 [15], ASCE/SEI 7-10 [16],
1997 UBC [11], 2003 [12], 2012 [13] and 2015 IBC [14], is based on earlier works in 1994 National
Earthquake Hazard Reduction Program (NEHRP) [17] and the later revision in 1996 [106]. In 1994
NEHRP, site effects are reflected by two site coefficients Fu and Fy of five site classes. The values of
the site coefficients Fi, and F for five site classes are listed in Tables 1-1-1 and 1-1-2, respectively.
The site classes are divided in terms of a representative average shear wave velocity, V30, as shown
in Table 1-1-3. The F. and F, respectively, represent response spectral ratios for short period and
long period (1s), expressed as:

Sus = FS, (Al-1-1)

S =ES, (Al-1-2)

where Ss and S1 are, respectively, rock-site maximum considered earthquake (MCE) spectral response
acceleration at short period and at a period of 1s; Sus and Sm are, respectively, free-field MCE
spectral response acceleration at short period and at a period of 1s.

The values for the Fiz and F» are based on results derived from both empirical studies of recorded
motions and numerical site response analysis [18]. The empirical studies included studies of stfong—
motion recordings of the Loma Prieta earthquake in 1989 and those comparison with those obtained
in previous earthquakes. These data are generally associated with low rock accelerations equal or less
than about 0.1g, because results at higher rock motions were not available. The values of site
coefficient in Tables 1-1-1 and 1-1-2 for higher levels of motion are based on laboratory and
numerical modeling studies of site response [18].
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Table Al-1-1 Site coefficient, Fa

E

Soils requiring sie response analysis
in accondance with Section 21.1

Site class Mapped Maximum Considered Earthquake Spectral Response
Acceleration Parameter at Short Period
S, <0.25 S, =05 S, =0.75 S, =10 S >21.25
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 0.9
F -
Table A1-1-2 Site coefficient, Fv
Site class Mapped Maximum Considered Farthquake Spectral Response
Acceleration Parameter at 1-s Period
$,20.1 S, =02 S, =03 S, =04 S, 20.5
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 24 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 24 2.4
F -
Table A1-1-3 Site classification
Site Class 7, Nor N, A
A. Hard rock >5,000 f/s NA NA
B. Rock : 2,500 to 5,000 fifs NA NA
C. Very dense soil and soft rock 1,200 to 2,500 fus >50 >2,000 psf
D. Stiff soif 600 to 1,200 fi/s 151050 1,000 to 2,000 psf
E. Soft clay soil <600 /s <i5 <1000 psf

Any profile with more than 10 ft of soil having the following characteristics:
—Plasticity index PI > 20,

—Moisture content w 2 40%,

—Undrained shear strength 5, < 500 psf

See Section 20.3.1

For 81 1 ftfs = 03048 mfs; | IV = 0.0979 kNAR
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Al1.2 NBCC 2005

The Canadian Committee on Earthquake Engineering (CANCEE) advises on the seismic provisions
of the National Building Code of Canada (NBCC) [106]. CANCEE essentially adopted the 1994
NEHRP provisions for establishing the free-field acceleration response spectrum and the NEHRP site
classes. The short- and long-period amplification factors Fa and Fv, respectively, were adopted also
with some minor modifications. The 2005 NBCC factors are listed in Tables 1-2-1 and 1-2-2.
CANCEE adopted site class C in 1994 NEHRP as the reference site for amplification for the 2005
NBCC, instead of site class B as used in the 1994 NEHRP provisions. Therefore, for all intensities of
earthquake shaking, the site factor for site C is 1.0.

Table A1-2-1 Site coefficient, Fa

Site class Mapped Maximum Considered Earthquake Spectral Response
Acceleration Parameter at Short Period
S, <0.25 S, =05 S, =0.75 S, =1.0 S >1.25
A 0.7 0.8 0.8 0.8 0.8
B 0.8 0.8 0.9 1.0 1.0
C 1.0 1.0 1.0 1.0 1.0
D 1.3 1.2 1.1 1.1 1.0
E 2.1 1.4 1.1 0.9 0.9
F -
Table A1-2-2 Site coefficient, Fv
Site class Mapped Maximum Considered Earthquake Spectral Response
Acceleration Parameter at 1-s Period
S, <0.25 S, =05 S, =0.75 S, =10 S, >21.25
A 0.5 0.5 0.5 0.6 0.6
B 0.6 0.7 0.7 0.8 0.8
C 1.0 1.0 1.0 1.0 1.0
D 1.4 1.3 1.2 1.1 1.1
E 2.1 2.0 1.9 1.7 1.7
F -
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A1.3 2005 Seismic Design Code for Buildings in Taiwan

Similar with those seismic codes introduced in section 1.1, site effects are also reflected by two site
coefficients Fi and Fy, in 2005 Seismic Design Code for Buildings in Taiwan [107]. The Fq and F5
also, respectively, represent response spectral ratios for short period and long period (1s). But, the
values for F. and Fyshown in Tables 1-3-1 and 1-3-2 are different with those shown in section 1.1.

~And, the sites are divided into 3 classifications in terms of the V30, as shown in Table 1-3-3.

Table A1-3-1 Site coefficient, Fa

Site class Value of Fa
S, <05 S, =0.6 S, =07 S =038 S$. 209
Hard site 1.0 1.0 1.0 1.0 1.0
Normal site 1.0 1.0 1.0 1.0 1.0
Soft site 1.2 1.2 1.1 1.0 1.0
Table A1-3-2 Site coefficient, Fv
Site class . Value of Fy
$,20.3 S, =0.35 S, =04 S, =045 S, 205
Hard site 1.0 1.0 1.0 1.0 1.0
Normal site 1.5 1.4 1.3 1.2 1.1
Soft site 1.8 1.7 1.6 1.5 1.4
Table A1-3-3 Site classification
Site Class Vs30 (m/s)
S1 (Hard site) V., >270
S2 (Normal site) 180<V,, <270
it
S3 (Soft site) V., <180
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Al.4 Eurocode 8 2004

Eurocode 8 [98] adopts only one soil factor S to reflect site effects. The values of the soil factor S for
5 site classes are listed in Table 1-4-1. The site classes are divided in terms of a representative average
shear wave velocity, V30, as shown in Table 1-4-2. The S represents amplification ratio of response
spectrum, and S is considered to be constant and independent on the frequency. In Table 1, Type 1
and Type 2, respectively, represent high and moderate seismic regions and low seismicity regions.
Thus, Eurocode 8 implicitly considers effect of soil nonlinearity on the site effects. It can be noted
that, the values of S for Type 2 are larger than those for Type 1. The reason is because that, the soil
damping is larger for high and moderate seismic regions.

Table Al1-4-1 Soil factor S

Ground type S (Type 1) S (Type 2)
A 1.0 1.0
B 1.2 1.35
C 1.15 1.5
D 1.35 1.8
E 1.4 1.6

Table A1-4-2 Site classification
Site Class Description of stratigraphic profile Vszo (m/s)

A Rock or other rock-like geological formation, V.40 >800

including at most 5 m of weaker material at the

surface.

B D its of d d, 1,

e.pOSl s of very dense sand, gravel, or V?ry 360<7,,, <800
stiff clay, at least several tens of metres in
thickness, characterized by a gradual increase

of mechanical properties with depth.

C Deep deposits of den.se or ‘medlum-dense sand, 180<V,, <360
gravel or stiff clay with thickness from several

tens to nlany hundreds of meters.

D Deposits of loose-to-medium cohesionless soil 7. <180
(with or without some soft cohesive layers), or $30

of predonlinantly soft-to-firm cohesive soil.

E A soil profile consisting of a surface alluviulll
layer with Vs values of type C or D and
thickness varying between about 5 m and 20 m,
underlain by stiffer material with Vs > 800 m/s.
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Al.5 Japanese seismic Code 2000

Japanese seismic Code reflects site effects by a amplification factor G((T'). The G,(T) represents

amplification ratio of response spectrum on ground surface respect to the one on bedrock,

So(T)=G,(T)Sy(T) (Al-5-1)
where S,(T)is design acceleration response spectrum at ground surface, Sy(7) is design response

spectrum at engineering bedrock. And, the G,(T) is expressed as:

Gs, —- T<0.87,
0.87,
G5y =G% 1, s, 0889295 1 0.8T, <T <0.8T,
o) 080 -T5) 0.8(7; - T;) (A1-5-2)
Gs, 0.8T; <T <1.2T;
R PR
—oa?l o1 124
1.27, 1.21,

where T is the fundamental period of the soil profile, 72 is the second natural period of the soil profile,
Gs1 is amplification ratio respect to the fundamental period, and Gs2 is amplification ratio respect to
the second natural period.

The G,(T) is developed theoretically based on a simple soil rhodel, a single-layer soil profile on

bedrock. As shown in Fig.A1-5-1, the G,(T) is constructed to envelop the site transfer function of

the simple soil model using four parameters, 71, 72, Gsi and Gs2. For the simple soil model these

parameters can be obtained by following equations:

AH
I==- (A1-5-3)
T =% (Al1-5-4)

1
T S Al-5-5
N1 5Th+a ( )

1
Gs, = AL-5-6
2T Y lh+a ( )

where H is the soil thickness, 7 is the soil shear wave velocity, # is the soil damping ratio, and a is

the impedance ratio of the soil layer with respect to the bedrock, which is defined as:
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2.5

Site amplification factor Gs
) Transfer function of
[ single-layer soil profile on bedrock

1.5 f ) -]

Amplification ratio
|

0.5 ]
0 087, 08T 2T
0.01 01 1 10
Period 7(s)

Fig. A1-5-1 Illustration of the concept to develop the equations for estimating site amplification

factor, Gs in Japanese Seismic Code

i (A1-5-7)
PBVB

~where Vg and pp are the shear wave velocity and density of the bedrock, respectively.

For a multi-layer soil profile on bedrock, the multiple soil layers are replaced with an equivalent

single layer by calculating the weighted averages of soil shear wave velocity and density as:

N
>V, H,
y = m=l (A1-5-8)
n
Hm
m=1
N
2 Pty
p=rl (A1-5-9)
>H,
m=

where m is soil layer number, each soil layer has finite thickness H, shear wave velocity Vi, and
density pm, and N is the number of soil layers. And, the damping ratio 4 is also calculated as the
weighted average of all soil layers [22, 58] as follows:

N
thEm
h=t—— (A1-5-10)
2L,
i=1
where En is the energy stored in mth layer [58]. For linear analysis, the soil damping ratio of each
layer, hm, 1s constant, and is generally considered equal to 0.02. For nonlinear analysis, the damping
ratio of each layer is dependent on the shaking level, and can be approximately estimated using the

equivalent-linear method.
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It is noted that, different with all seismic codes introduced above, the amplification factor G(T) is

a continuous function of period 7. And the factor G, (I') is developed by taking account into the

amplification properties for all periods instead of those for only one or two representative periods.

Soil nonlinear behavior

To consider the soil nonlinear behavior in estimating site effects, a simple response spectrum method
developed by Kenji [67] is introduced into 2000 Japanese seismic code. The response spectrum
method takes account of the soil nonlinear behavior utilizing the response spectrum defined on
bedrock as input directly. The procedure including following steps to consider the soil nonlinear
behavior. Firstly, using the bedrock response spectrum, maximum soil displacements at surface layer

u1, and on bedrock us, can be estimated by:

u = (£)2AS(T1) (A1-5-11)
2w
T, \»
uy =(--)" 4, (1)) (A1-5-12)
2
where As(T1) and As(T1) are, respectively, Fourier spectrum amplitude at ground surface and bedrock,
estimated by:
A(T) =G0 ha F,(T) (A1-5-13)
1
1
4,(1y) == Gy (T ha)F(T) (A1-5-14)

1
The Gs(T1, h, a) is amplification ratio of seismic motion on overlay bedrock respect to outcrop
bedrock expressed as:

1.57h
G, (1, h,a) = —— Al-5-15
T T ( )
Fs(T) is Fourier spectrum amplitude at outcrop bedrock, can be approximately related to undamped

velocity response spectrum S, (7,/2=0) by:

F(T)~S,(T,h=0) (A1-5-16)

The undamped velocity response spectrum can be in turn expressed in term of acceleration response
spectrum as:

S, (T,h=0)=(T/27)S (T,h=0) (A1-5-17)

Then, using the results of maximum soil displacements at surface layer, us1, and on bedrock, us,

maximum soil displacement at any ith interface can be estimated by:
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u, =, —ug|U, (Al1-5-18)

s1

where U is value of first mode shape at ith soil interface. Ui can be estimated using an eigenvalue
analysis by discretizing the continuous soil profile into lumped-parameter multi-degree-of-freedom
(MDOF) model, or using the simple Stodola method.

Then, based on the consideration of equivalent linear method, equivalent shear strain can be estimated
by:

7, =0.65(u, —u,, )/ H, (A1-5-19)

The soil nonlinear behaviors are characterized as shear modulus degradation and energy dissipation
(damping) depending on the shear strafns. Thus, during each interaction soil shear modular and
damping should be update according to the estimated equivalent shear strain. It is noted that, the
procedure is iterative; the calculation stops until the difference in the values of the fundamental period

between two successive iterations is less than some specified value.
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Al.6 MDOC 2012

In Mexico seismic code, site effects are reflected by a site amplification factor Fsand a nonlinear

factor F,,d . Fs represents amplification ratio of peak acceleration on ground surface respect to the one
on bedrock, and factor E,d is used to account for the nonlinear soil behavior.

a,=F/Fa, (A1-6-1)
where ao is peak ground-surface acceleration, and ag is peak rock acceleration.

Fy is a function of impedance ratio, ps, and T, =T,./F,; , where T, is the fundamental period of

soil profile, and F; isa distance factoras Fj =a,/500. Values for F; are listed in Table 1-6-1. And

the nonlinear factor E,d is a function of level shaking F}; , impedance ratio ps, and soil type, expressed

as:
ca T
~(-FH=, T.<1.5
gt EDTS L (A1-6-2)
F? T.21.5

Values of the nonlinear factor Fnd in Eq. (A1-6-2) for sands and clay are listed in Tables 1-6-2 and

1-6-3, respectively. 7

The values for these factors are based on site response analysis of a single-layer soil profile on
bedrock, using the input power spectrum of the rock excitation and through application of the random
vibration theory to predict peak responses.

Table A1-6-1 Values of the site an;pliﬁcation factor Fs.

Ds s | 0.00 0.05 0.10 0.20 0.50 1.00 2.00 3.00
1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.625 1.00 1.08 1.23 1.12 1.00 1.00 1.00 1.00
0.250 1.00 1.18 1.18 1.98 1.40 1.12 1.00 1.00
0.125 1.00 1.20 2.64 2.01 1.69 13.2 1.00 1.00
0.000 1.00 1.22 4.51 3.17 2.38 1.75 1.19 1.00
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Table A1-6-2 Values of the nonlinear factor ﬁnd for sands and gravels.

Ds 0.00 0.10 0.20 0.30 0.40 0.50 0.75 . 1.00

1.000 1.00 0.97 0.93 0.90 0.86 0.83 0.75 0.71

0.625 1.00 0.95 0.91 0.89 0.85 0.82 0.71 0.68

0.250 1.00 0.93 0.87 0.82 0.77 0.73 0.63 0.56

0.125 1.00 0.92 0.84 0.75 0.67 0.64 0.58 0.53

0.000 1.00 0.90 0.78 0.66 0.58 0.54 0.53 0.50

Table A1-6-3 Values of the nonlinear factor ﬁ‘nd for clays and cohesive soils.

Ps 0.00 0.10 0.20 0.30 0.40 0.50 0.75 1.00

1.000 1.00 0.98 0.95 0.91 0.87 0.85 0.79 0.75

0.625 1.00 0.97 0.94 0.93 0.90 0.88 0.81 0.79

0.250 1.00 0.96 093 091 0.87 0.85 0.77 0.74

0.125 1.00 0.93 0.85 0.76 0.70 0.67 0.61 0.56

0.000 1.00 0.82 0.63 0.46 0.36 0.32 0.31 0.28
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Appendix 2: Some theoretical methods for site effects

A2.1 Method by N.T.K. Lam et al.

N.T.K. Lam et al. developed a simple theoretical method to estimate site effects in construction of
soil response spectra. The method considers the soil profile as a multi-storey moment-resisting frame
(MRF) with rigid girders, and estimates site effects by vibrational analysis of the MRF model.

Specially, the procedure takes account of the site effects by following steps. Firstly, peak velocity
on the soil surface (PGV) is estimated using the response spectral velocity of the bedrock motion at
the natural period of the site, RSV (Tg) by

PGV = \/(1.2 PRSV(T))* +(PRV)? (A2-1-1)

where 1.2 is the adopted participation factor consistent with a parabolic displacement profile, and
PRYV is the peak velocity of the underlying bedrock. In situations where the value of 7% is close to the

highest point on the rock spectrum, PRV can be approximated RSW(Z,, }/2 . Eq. (A2-1-1) can therefore

be simplified as follows:

PGV = \/(1 2BRSV(T,))* +(RSV(T,)/2)? (A2-1-2)

In contrast, if Tg is so remote from the highest point on the rock spectrum peak such that PRV is
approximately equal to RSV (7%), Eq. (A2-1-1) becomes:

PGV = \/(1 2BRSV(T,))* +(RSV(T,))* (A2-1-3)

Then using following equations, the maximum response spectral velocity RSVmax at 7=Tg, in turn,

the maximum response spectral displacement, RSDmax at =7} can be obtained.

RSV, =aPGV (A2-1-4)

RSD ey = RSV, (T /27) (A2-1-5)

in which the coefficient a is the velocity amplification factor which relates the maximum velocity of
the single degree-of-freedom (SDOF) system to the peak ground velocity.
In addition, based on the consideration of equivalent linear method, soil nonlinear behavior is also

characterized by strain-dependent stiffness degradation and dissipation of hysteretic energy. The

average shear strain in the soil (7,,) at maximum dynamic displacement is estimated in accordance

with RSV (T%) and soil depth (H)

Yoy =12BRSV(T, )T, /27)/ 0.6H (A2-1-6)
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where £ 1is the damping adjustment factor expressed as:
B=TNL+2) (A2-1-7)

B=(5/)" (A2-1-8)

Eq. (A2-1-7) is used associate with Eqgs. (A2-1-2), and (A2-1-7) is used associate with Eq. (A2-1-3).
The average shear strain determined by Eq. (A2-1-6) can be used to determine soil damping and
stiffness degradation. The procedure is iteratively, the calculation stops until the difference in the
values of the soil damping between two successive iterations is less than some specified value.
Moreover, the effect the shear wave velocity of the rock half-space on RSVmax is reflected by a
reduction factor 4 expressed as:
A=08 V<1000 m/s (A2-1-9)

A=0.8+0.0001(V,-1000) 1000 m/s < Vs< 3000m/s  (A2-1-10)

A=1 Vs> 3000m/s (A2-1-11)
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A2.2 Methods by Hing-Ho Tsang et al.

Hing-Ho Tsang et al. developed another simple method to estimate site eftects [24]. The method
reflects site effects using a single spectral ratio (SR) at site fundamental period, T, given by:
SR = f(a)xPDR (A2-2-1)

f(a) is a resonance factor expressed as:
fla)y=a<23 (A2-2-2)

PDR represents ratio between the peak ground displacement on the surface of the soil sediment and
that on the bedrock surface. Equation for PDR is derived according to multiple reflection of seismic
waves based on a simple soil model, single-layer soil profile on bedrock; the equation is expressed
as:

2a7!

PDR =——=— |- 164,8“ (A2-2-3)
a —

where, R is reflection coefficient, describes amplitude ratio of the upwardly propagating reflected

wave and the downwardly propagating incident wave within the soil layer, expressed as:

R:l—a'"1

N (A2-2-4)
1+a”™

a is the impedance ratio of the soil layer with respect to the bedrock. f is half-period damping factor,
and is introduced to represent the hysteretic damping (also known as anelastic attenuation) of seismic
waves energy in the soil layer for every half-cycle of wave travel, which is defined as:

B = exp(=75) (A2-2-5)
where ¢ is the soil damping ratio.

In addition, the soil nonlinear behavior is reflected by soil damming and period shifting. The soil

damming is estimated according to bed-rock response spectrum, RSVTg , at the fundamental period,

¢=125+6.5log(R Ay)—0.13P1 (A2-2-6)
RSV,
y=—rt (A2-2-7)

S

R, is the ratio of the effective shear strain to maximum shear strain, which has been found to vary

between about 0.5 and 0.7 from empirical modelling (0.6 has been used in this study). The reduction
factor A, as developed in Reference [25], is needed to account for the bedrock rigidity etfect
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-1 _pé
,1:10‘ - /llR’f,B“ (A2-2-8)
+a -

Eq. (A2-2-6)) may be bounded by a ‘practical’ minimum damping ratio ¢,; and an upper bound
damping ratio G, :
6pi(70)=2.5+0.03P1(%)< 6.8 (A2-2-9)

Gu(%6)=17.5-0.07PL(%)> ¢ (A2-2-10)

The period shifting due to the degrading of shear wave velocity is estimated by [25]:

Tg
= =1+ R Ayu (A2-2-11)

i

u is defined as the ‘Plasticity Factor’ to allow for the effects of soil plasticity (u« =1.6, 0.9, 0.4, 0.2
for PI=0, 15, 30, 50%)

115



Appendix 3: Input seismic motion at bedrock

This section describes the seismological model of Fourier spectral amplitude (FAS) of ground motion
used in section 2.3. The FAS of acceleration at a rock site, A4(®), is described analytically as a

function of the source, propagation path, and site characteristics (the site characteristics in this case
represent the effect of the near-surface rock layers and not the effect of the overlying soil layers),

expressed as:
A(w) = E(M,,»)P(R,0)G(®) (A3-1)
The Brune [108, 109] omega-squared model is the most common and simplest used source

spectrum model. This source spectrum, E(M,®), can be given by:

E(M,,0)=CM,S(0,0,) (A3-2)
The C is a constant expressed as:
R, FV
C=—"— (A3-3)
4rpp

where Ry, is the radiation pattern, usually averaged over a suitable range of azimuths and take-off
angles (=0.71). V represents the partition of total shear-wave energy into horizontal components (=

l/ \/—i ). Fis the effect of the free surface (taken as 2 in almost all applications, which strictly speaking

is only correct for SH waves), o and g are the density and shear-wave velocity in the vicinity of
the source. |

Mo is the seismic moment, introduced into seismology in 1966 by K. AKI [110], it can be expressed
in terms of moment magnitude M as:

M0 — 101.5M+10A7 ‘ (A3"4)

S(w,w,) is the displacement source spectrum given by the equation

2

@
S(a),a)c) ——W

(A3-5)

where @, is the corner frequency, it is affected by the seismic moment, Mo, and a parameter

controlling the strength of the high-frequency radiation, stress drop Ao,

£.=49010°B,(Ac/ M,)" (A3-6)
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The path effect P(R,w) is given by the multiplication of the geometrical spreading and Q

functions, expressed as:

P(R,®) = Z(R) exp(~ wR/20p) (A3-7)
Geometrical spreading function Z(R) is given by a piecewise continuous series of straight lines:
R
Z(Ry=1Z B (A3-8)

ZR)CH™ R, <R

In this study, the three-segment geometrical spreading operator used in ATKINSON and BOORE’s
[111] predictions of ground motions in eastern North America is adopted.

And the Q functions is given by

0=680f" (A3-9)

The site effects are expressed by two parts, amplification ( A(@)) and attenuation ( D(w)) as
follows: ,

G(w) = D(o)A(®) (A3-10)

The amplification function, A(w), accounts for the propagation of waves from the deeper crust,

where the shear wave velocity of the rock is on the order of 3,500 nV/ s, to the near surface, where the
shear wave velocity of competent rock is generally 750 m/ s. Suggested values of A(w) for generic

rock sites in WNA can be found in Boore and Joyner [112]. These amplification values generally

range between 1.0 and 4.0 over the frequency range of engineering interest.
The diminution function D(®) is used to model the path-independent loss of energy, expressed as:

D(w) = exp(-0.5k,0) (A3-11)

where kis a diminution parameter, kis adopted as 0.04 according to [112].
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