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CHAPTER 1

Introduction

1.1 Background

Civil infrastructure facilities, including buildings, bridges, transportation networks and
public utilities must designed to satisfy the service requirement and withstand
environmental events such as earthquake, wind and snow. In engineering design, an
important consideration is how to handle the unavoidable uncertainties of the
environmental events and ensure structural safety. Several decades ago, many standards
have recognized this problem. For example, the design wind speed and ground snow loads
were recorded and determined from the probability distributions for the annual extreme
fasted mile wind speed and the annual extreme ground snow load. For ordinary structures,
the design value for these parameters is that value which has a probability of being exceed
0f 0.02 in any year (the 50-year mean recurrence interval value). Similarly, the acceptance
criteria for concrete strength in ACI Standard 318-14 [1] are designed to insure that the
probability of obtaining concrete with a strength less than £’ is less than 10 percent.

In the presence of uncertainty, absolute reliability is an unattainable goal. However, in
current codes and guidelines, the load and resistance factors (LRF) are used to handle the
effects of these uncertainties and the target reliability (in terms of the required safety
index) is used to ensure structural safety [2-3]. Over the past 40 years, many researchers
have been working on the improvement of the method of structural reliability and the load
and resistance factors design (LRFD) [4-6]. Compared with the first-generation
probability-based limit states design (PBLSD) methods (the first and second order
reliability methods), the third moment method offers advantages in both simplicity and
accuracy. However, it leaves much to be improved in the 3M method.

In structural engineering, with a given service lifetime, reliability index is an indicator
of safety level. Conversely, with a given critical reliability index (or critical failure
probability), the service lifetime is an indicator of durability. To upkeep the safety and



increase the service life of civil infrastructure facilities, a large amount of labor and
money should be invested in maintenance or reconstruction [7-8]. Therefore it is also
important to evaluate structural service lifetime with appropriate method. Considering the
environmental uncertainties, probabilistic method with high-efficiency and high-accuracy
is required.

1.1.1 Third-moment reliability index
As shown in Fig. 1-1a, in civil engineering, R — S = 0 is the original criterion of survival

and failure of structures, where R and S are the interior resistance and the exterior

deterioration load effect, respectively.

R Q X2
survival - 8//
A\ . (X1, X2)
R-8>0 survival
GX)>0
failure failure
R—S<0 G(X) <0 G(X)=0

S Xi
(a) Linear two-variable problem (b) Nolinear two-variable problem

Fig. 1-1 Reliability calculation

When evaluating structural reliability, the most important step is to calculate the failure
probability (i.e., the reliability index) of a structure; this is given as
P, _profz =G(X)< O]J(,v(x)sof (ki x (1-1)
where X is a vector of random variables representing uncertain structural quantities and
Pris the failure probability. f(x) is the probability density function (PDF) of the limit state
function G(X). The domain of integration, G(X) < 0, denotes the failure set, as shown in
Fig. 1-1b (Nolinear two-variable problem is taken as an example). As shown in Fig. 1-2,
the shaded area to the left of zero is equal to the failure probability.
Difficulty in computing failure probability has led to the development of various
approximation methods, among which the first-order reliability method (FORM) [9] is
now used worldwide in engineering codes. However, in the case of multiple design points

[10], FORM is inconvenient. Because of insufficient accuracy when applying FORM to



nonlinear performance functions, the second-order reliability method (SORM) [11] has
been proposed to improve FORM. Although SORM is more accurate than FORM, it also
requires the calculation of the design point and the curvature of failure of the limit state
at the design point. However, when the PDFs of the basic random variables are unknown,
neither FORM nor SORM are applicable. For such cases, sampling simulation methods
[12-14] are known to be sufficiently accurate; however, when the performance function

is complicated or high reliability is required, such methods are time-consuming.

A

Jx)

il

Figure 1-2 Illustration of the concept of failure probability

0 4G "G(X)

3M methods have been proved to require neither iteration nor computation of
derivatives and have no shortcomings associated with the design point [15]. However,
existing 3M methods do have some limitations: in some cases, due to the method’s
mathematical formula, existing 3M methods either cannot be used to calculate the failure
probability or result in large errors. By focusing on the problems in the mathematical
formulae of existing 3M methods, namely, the inclusion of the square root, the unknown
value of the denominator, and the logarithmic term in the approximation formula, the
proposition of a simple 3M method with relatively high accuracy and no limitations is
significant. '

1.1.2 Load and resistance factors

Design codes have incorporated probabilistically-based load and resistance factor formats
based on first and second order reliability methods [2-3]. However, there are inevitable
shortcomings of the first and second order reliability methods. Then some simplification
methods were proposed [15-17]. According to the Mori method, all random variables are

assumed to have known PDFs and are transferred into lognormal random variables.



However, the PDFs of some random variables do not obey lognormal distribution and are
often difficult to obtain. In Zhao’s research [15], the iteration computation of the target
mean resistance is simplified to one time. But the applicable range is restricted for the
inevitable mathematical limitations. Therefore, it is necessary to propose an easier
method to completely avoid the iteration, at the same time, accurate enough, without or

with less limitation in applicable range.
1.1.3 Application of third-moment reliability in structural durability

Chloride-induced corrosion can shorten the service life of concrete structures. For
countries like Japan, with a coastline of about 30,000 km, the chloride corrosion is
particularly serious. Reliable predictions of life cycle performance of concrete structures
are critical to the optimization of their life cycle design and maintenance to minimize their
life cycle costs. As shown in Fig. 1-3, the time of corrosion-induced failure can be
expressed with respect to corrosion level. Engineers have always recognized the presence
of uncertainty in the influence factors and probabilistic methods has been applied to solve
the problem, typically, Monte-Carlo (MC) simulation [18-19]. One of the reasons that
MC simulation is widely used in probabilistic analysis of structural durability is that it is
a simple simulation technique. It is possible to calculate the failure probability with only
a little background in probability and statistics [20]. And it is accurate when the number
of samples is large. However, the requirement of the distribution of random variables is
inevitable. In the case of the performance function is complex or the reliability is very
large, MC simulation is time-consuming. Therefore, in recent years the moment method
is proved capable and applied to durability design [21-22]. The result of 3M method is
identical with MC simulation but very few researchers chose it to do the probabilistic
analysis [23]. One of the reasons is the existing 3M method is imperfect. Whether it is
efficient and applicable to structural durability design is required further verification.
Although significant efforts have made by scientific committees and have led to
specific publications [24-25], in which probabilistic durability design is recommended,
European regulation concerning durability of concrete structures [24] do not yet mention
any threshold reliability level regarding the corroded RC structures. Moreover, the choice
of a threshold reliability level is not a straightforward task. According to usual
probabilistic approach [24-26] the reliability level is expressed in terms of the reliability
index f. Some values have been proposed for the target reliability index, for instance fir
= 1.3 in [27], with the assumption that corrosion is likely to start as soon as the steel is

depassivated. For concretes of precast components, a lower value, i = 1, has been



suggested recently in [27]. For different reliability requirement, the influence mode of the
environment and structure character on the durability design is yet to be studied. The

proposition of an efficient and accurate 3M method to solve this problem is significant.

»
»

Limit state o*

Progress of corrosion

»

»
Time

Initiation period  Propagation period

Fig. 1-3 Determination of service life with respect to corrosion of RC structure
1.2 Objective

This study is aim to solve three main problems.

Firstly, the shortcomings of the existing 3M methods will be verified. A simple and
accurate 3M method will be proposed without any mathematical limitations in equations.
The proposed 3M method, with wider applicable range, can be applied to analyze the case
that is out of the applicable range of the existing methods. Both the reliabilities of simple
structure and system will be analyzed with the existing methods and the proposed method.
Moreover, with the new method, the structural reliability design is safe and material-
saving.

Secondly, the proposed 3M method will be used in the calculation of load and resistance
factors. Simultaneously, the two step recursive optimization in the computation process
of the target mean resistance will be further simplified to no iteration. And the
computation accuracy of the new method will be higher than the existing methods in most
cases.

Thirdly, it will be proved that the proposed 3M method is applicable to the structural
durability design. The RC structures in chloride-rich environment will be taken to be
analyzed. A full set of methods will be proposed, including the sensitive analysis of
environment influence factor, the corrosion and cover cracking prediction and reliability

evaluation of structures.



1.3 Organization

Chapter 2

Previous research

Chapter 3
3M reliability index

Application

Chapter 4 Chapter 5
Load and resistance factors Probability durability design

The background and pervious research were introduced in Chapter 1 and 2, respectively.

The thesis consisted of two parts: (1) proposition of a simple third-moment method
(Chapter 3), (2) application of the new method (Chapter 4 and 5). Then the application
was divided into two parts: the application in the calculation of load and resistance factor
(Chapter 4) and the application in probabilistic durability design (Chapter 5). In Chapter
4, the analysis focused on the structures under loads (e.g. dead load, live load, wind load,
snow load et al.), while in Chapter 5, the analysis focused on the corroded structures in
chloride-rich environment. In Chapter 4, the reliability assessment was given based on a
design service life. More than the application of 3M method, simplification of the
calculation process of load and resistance factors was given in Chapter 4. Similarly, the
corrosion evaluation method of RC structures was also improved. The reliability analysis
in Chapter 5 was translated into probabilistic durability design, which means based on a
given critical reliability, the service life of structure was predicted. In fact, the analysis in
Chapter 5 was an inverse operation of the analysis in Chapter 4.

In the last Chapter, the significant innovations in Chapter 3 to 5 was summarized and



the shortcoming in this thesis was pointed out.
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CHAPTER 2

Previous research

2.1 Introduction

There are a lot of methods of reliability index, as introduced in Chapter 1. In Section 2.2,
the details of four typical methods, namely, FORM, 3M-1, 3M-2 and MC simulation were
introduced and the shortcomings of them were further analyzed. Because of the proposed
method is an improved method of the existing 3M methods, 3M-1 and 3M-2, they were
emphatically introduced in this section.

In Section 2.3, three methods for the calculation of load and resistance factors, namely,
ASCE method, Mori’s method and Zhao’s method, were introduced. The details of the
calculation process and the comparison of them were given. And the advantages and
limitations of the existing 3M methods were emphatically analyzed.

In Section 2.4, the application of 3M method in durability analysis of RC structures
was introduced. Especially the sensitive analysis of the influence factors, such as the mean
value, the coefficient of variation of them was proposed. The process of modeling the
corrosion initiation and cover cracking and predicting the service life of RC structures
was introduced in details. The comparison of 3M method and other methods in durability
analysis was presented. Moreover, the shortcomings of the existing corrosion models of
RC structures was pointed out.

- 2.2 Existing methods of reliability index
2.2.1 First-order reliability method (FORM)

As introduced in Chapter 1, the limit state function could be linear or nonlinear due to the
relationship and distributions of random variables. If the joint probability density function
(PDF) of the random variables decays rapidly as one moves away from the minimum

distance point, then the first-order estimate of reliability is quite accurate. If the decay of

10



the joint PDF is slow and the limit state is highly nonlinear, then one has to use a higher-
order approximation for the reliability computation. Consider the two limit states shown
in Fig. 2-1, one linear and one nonlinear. Both limit states have the same distance point,
but the failure domains are different for the two cases. The FORM method will give the
same reliability estimate for both cases. But it is apparent that the failure probability of
the nonlinear limit state should be less than that of the linear limit state, due to the
difference in the failure domains. The curvature of the nonlinear limit state is ignored in
the FORM method, which uses only a first-order approximation at the minimum distance
point. Thus the curvature of the limit state around the minimum distance point determines
the accuracy of the first-order approximation in FORM.

X2

GX)<0
(unsafe state)
x" (design point)
G(X)=0

G(X)>0
(safe state)

X1

Fig. 2-1 Linear and nonlinear limit state

The Taylor series expansion of a general nonlinear function G(X1, X2, ..., X») at the

value (x1°, x2°, ..., xn*) is [1]
G(X,. Xy X,)=Gx X0 x)+ Dx—x)
i=l1

SR . N0
+% Zﬂxi—xi Xxj—xj) x g{} +...

%
x,
2-1)

i=1 j=1

where the derivatives are evaluated at the design point of the X;’s.

The variables (X1, Xo, ..., X,) are used in Eq. (2-1) in a generic sense. One should use

11



the appropriate set of variables and notation depending on the space being considered. In
the case of reliability analysis, the first-order or second-order approximation to G(X) is
being constructed in the space of standard normal variables, at the minimum distance
point. However, this design point is not a priori known hence should be determined by

iterative method. The details of iteration was not discussed in this thesis.
2.2.2 Third-moment method (3M method)

2.2.2.1 Principle of 3M method

Without loss of generality, the limit state function Z can be standardized by

Z = Z-H 2-2)
Og
where uc and o are the mean and standard deviation of G(X), respectively.
According to the definition of the probability, the failure probability can be expressed

as
P, =P[G(X) <0]=P[Z,0,, + u; 0]
:P[zs g_ﬁ@]zp[zs < p ] 23)
O-G
where
Bor = Lo (2-4)

is the second-moment (2M) reliability index.

Suppose the standardized variable Zs can be expressed as a function of its third moment
asG; _
Z,=Su,a,;) (2-5)
where u is the standard normal variable, and a3¢ is the skewness of G(X) [2].

Substituting Eq. (2-5) into Eq. (2-3), the failure probability can be expressed as
P, =Plz, = S(,0,0) <=, (2-6)
if the inverse function of S'is
u=S"2,)) (2-7)

According to Egs. (2-6) and (2-7), it is not difficult to obtain

12



P, =Plu<S7( By, )|= 057 8,,,)] (2-8)
Therefore, the reliability index is expressed as
B = —(D_I(Pf) = _Sal(—ﬂzM) (2-9)

For the first three moments of G(X) used in Eq. (2-9), the reliability index calculated
by Eq. (2-9) is called the 3M reliability index — thus the name, the 3M reliability method.
From Eq. (2-9), if the inverse function of S(u) is obtainable, the 3M reliability index can
be given.

2.2.2.2 3M method based on 3P lognormal distribution

With the first three moments of the performance function z = G(X), assuming that Z,

obeys three-parameter (3P) lognormal distribution [3], the relationship between Z, and u

is given as
Z =8u)= ub(1~—l—exp [Sign(am /In(4 )u]] (2-10)
Ja
where
A=14-
= +g ‘ (2-11a)
1 o]
u, =(a+b) +(a—b) ——— (2-11b)
Usg
11 1 1
a=——o/|—+= | b= ol +4 (2-11c¢)
Ui \ A 2 2a3;

where Sign(x) is —1, 0, or 1 while x is negative, zero, or positive, respectively.

The relationship between u, and a3 is given as

Qs = —(3 + —L]i (2-12)

2
Uy ) Uy

For small a3g, i.e., a3 < 1, it has been derived that [4]

3 . ,,
Z = a—{l—em[“—;(u—f‘é&m (2-13)
3G

13



a, 3 1
M:TG-!- ln(l—gamZ“) (2-14)

A

According to Egs. (2-9) and (2-14), the 3M reliability index is obtained as

. 3 1
B S . m(l__amﬂz}v/) (2-15)
6 o, 3

2.2.2.3 3M method based on 3P square normal distribution

In another formula of the 3M reliability index, Z, is assumed to obey 3P square normal

distribution [5], the u-Z, transformation is expressed as

Z,=Su)=a, +a,u+au’ (2-16)
where
7r+!0|

a; =—a, =*v2 cos — 2-17)
a, =+1-2a; (2-18)

8—a? :
0 = tan-1| Yo" %0 (2-19)

Uy

For —1 < a3 <1, a3 can be simplified as [6]
ay =03, /6 (2-20)
where the simplification error is less than 2%.
Then, it can be derived that

z, =%a36.(1—u2)—u (2-21)
O+a?, —6a,.Z -3
u___\/ 3G 3G u (2-22)
X3

Using the relationship in Eq. (2-9), the 3M reliability index is obtained as [7]

3-\9+a3; —6a
P - e (2:23)
3G

2.2.2.4 Limitations of existing 3M methods

14



It has been shown that the applicable range of f3u.1 and Sz is expressed as

—-120r <o < 40r

3G —
ﬂZM ﬂZM

where 7 is the allowable relative difference.

(2-24)

However, there are other limitations for the calculation of the reliability index for S3.
1 and B3,
First, for the antilogarithm of Eq. (2-15), the limitation is
1- %aZGﬁzM >0 (2-25)
s PBong <3
where o3¢ # 0.
Furthermore, for the square root of the numerator and the variable of the denominator

in Eq. (2-23), the following qualification should be observed:

9+ as; —60t,; 0, 20
603, B,y <9+ a3 (2-26)
9+ al.

<
Prs <=

3G

where a3g # 0 also. Fig.2-2 shows that the difference between the two reliability
indices increases as |a3g| increases; the further o3¢ is from 0, the greater the error. In fact,
in the case of negative a3g, the exact value calculated by Monte-Carlo (MC) simulation
is in the middle of the two reliability indices calculated by S3u.1 and B3ur2. Furthermore,
in the case of a positive a3, the result of MC simulation is below the values of 3.1 and
P3m2. Because the MC simulation can only be used for analysis of practical examples,

different 3M reliability indices will be compared with MC simulation results in Chapter
3.
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As shown in Figs. 2-3 and 2-4, the smaller the Sy, the smaller the difference between
the two reliability indices and the more reliable the approximate value, where the dotted
line is the 2M method. Figs. 2-3 and 2-4 show that the difference between the two
reliability indices is greater when asc is positive compared with the case when asg is
negative. In other words, the 3M method is more applicable when a3 is negative.

According to the formulae mentioned above, one can see that:

(1) If Eq. (2-15) cannot meet the limitation of Egs. (2-24) and (2-25), the 3M reliability
index cannot be defined.
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(2) If Eq. (2-23) cannot meet the limitation of Egs. (2-24) and (2-26), the 3M reliability
index cannot be defined.

(3) If the value of S or |a3g] is large, their calculation error will be great.
2.2.3 Monte-Carlo simulation

Monte-Carlo (MC) simulation is a special technique that we can use to generate some
result numerically without doing any physical testing. We can use results of previous tests
(or other information) to establish the probability distributions of the important
parameters in our problem. Then we use this distribution information to generate samples
of numerical data. Take G(X) = R — S as an example, where R and S are normal distribution

and lognormal distribution. The basic procedure is as follows [8]:

1. Randomly generate a value of R using its probability distribution information: the
mean value, the coefficient of variation and distribution type.

Randomly generate a value of S using its probability information.

Calculate G(X) =R - S.

Store the calculated value of G(X).

Repeat steps 1-4 until a sufficient number of G(X) values have been generated.

AN

Estimate the failure probability as

B number of times that G(X) <0
totalnumber of simulated G(X) values

’ (2-27)

The error (in percent) of a MC solution with a given sample size N can be evaluated as

-7

r(in%)=20 (2-28)

where P is an unbiased estimate of the probability py.
To insure the accuracy of reliability calculation using MC simulation, the sample size

should be large enough and an appropriate software such as MATLAB and
MATHEMATICA should be applied.

2.3 Existing methods of load and resistance

2.3.1 Principle of load and resistance factors



Based on the LRFD format, the performance function in structural design can be
expressed as

gR, 2> 7,0, (2-29)

where ¢ is the resistance factor, y; is the partial load factor to be applied to load S;, Ry is
the nominal value of the resistance, Oy is the nominal value of load Q..

In reliability-based design, the load and resistance factors ¢ and y; should be determined
with a specified reliability, called the target reliability. Therefore, Eq. (2-29) should be
probabilistically to the following equations.

G(X)=R->0, (2-30)

where R and Q; are random variables representing uncertainty in the resistance and load
effects, respectively.
For a given target reliability f7 or target probability of failure P/, Eq. (2-30) can be

expressed in terms of probability:
ﬂZﬂTanSP/T (2"31)

where f and Prare the reliability and the probability of failure, respectively.
If R and O are mutually independent normal random variables, the second-moment
(2M) method is correct and the design formula is expressed as

ﬂZM Z ﬂT (2-32)
where
oy =2 (2-33a)
Oy

= U, ——Z,UQ , 0, =,|03 +ZO'51 (2-33b)

where Sy is the 2M reliability index; 4z and o7 are the mean value and standard deviation
of the performance function G(X), respectively; ur and or are the mean value and standard
deviation of R, respectively; and up; and op; are the mean value and standard deviation of
0, respectively.

Substituting Eq. (2-33) in Eq. (2-32), the load and resistance factors can be expressed
as

wl-a v 8,)2 S 1+, V, ;) (2-34)

Comparing Eq. (2-34) with Eq. (2-29), the load and resistance factors can be expressed
as



¢= (1 —apVp )%& (2-352)

n

Ho,

7=+ ¥, 5 (2-35b)

where Vr and Vo; are the coefficient of variation for R and Q,, respectively; and ar and

aoi are the sensitivity coefficients of R and O, respectively, where
=2, g, =22 (2-36)

As introduced above, the 2M method is based on the assumption of all the variables
obey normal distribution and are independent of each other. In the case of R and Q; are
other random variables, the 2M reliability in Eq. (2-33) is incorrect. Therefore other
methods were proposed, typically, the FORM [9]. The load and resistance factors can be
obtained as

R o

¢= 3 V= 0 (2-37)

where R" and Q;" are the values of the variables R and Q;, respectively, at the design point
of the FORM. Because R and Q;" are usually obtained using derivative-based iterations,
explicit expressions of R and Q;" are not available. Some simplifications have been

proposed to avoid iterative computations.
2.3.2 Mori method

As an approximate method, all of the variables are considered obeying lognormal
distribution and are independent of each other. The load and resistance factors can be
expressed as [10]

1 Hy v
= exp(a,, ) —= (2-38a)
Y \/-1—_'_—1/5 XpL&y, gQ By 0.

1 My
_ _ VR 2-38b
@ /—1+VRz exp(—x ¢ Br) R ( )

where Vi and V' are the coefficient of variation of the loads and resistance, (p; and (r are
the standard deviation of InR and InQ.

$? =In(1+77?)
The sensitivity coefficients of R and 0, ar and ao; are calculated by

op =0y -U (2-39a)
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where

O-lnR

aR = > "
\/O-]nR +Z(c,; 'Jan_,)
a;} - - cl ‘O_an,v
0; >
\/O-]nR +Z(Cj 'O'mQ,)
1.05

1- (1—\/(05;)2 +(max{ oz, })? ) CD[

u=

max{/V,, }-0.6
0.4

where

Ay, — the mean value of In(Syi/us:);

G, — the nominal value of dead load;
Usi/Sni — the rate of the mean value and the nominal value of load;
® — standard normal distribution function.

2.3.3 The existing 3M method

(2-39b)
(2-40)
(2-41)

(2-42)

(2-43)

In Zhao’s 3M method based on 3P-lognormal distribution (3M-1) [11], the two step

recursive optimization is used to avoid the iteration computation:

Hpr = Z,UQ, + B0,

He, =D Ho T B D0

where
urT — the target mean resistance;
uro — the original target mean resistance;
oz — the standard deviation of G(X);
[S>r — the target 2M reliability, which is obtained by the 3M method

20
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o, 3 1
Bay = -—= ——ln(l_ga32ﬂ2Mj (2-46)

6 o,

The inverse function of Eq. (2-46) is expressed as

3 Xz | _p Ky -
ﬂzy'__BZ{l_exp{ 3 ( Py 6 J]} (2-47)

1 .
Q37 = ;_‘;(asko-;e _zass, Ué) (2-48)

z

N

where

The steps for determining the load and resistance factors using this method are as
follows:
1. Calculate uro using Eq. (2-45).
2. Calculate oz, a3z and f2r using Eq. (2-33b), Eq. (2-48) and Eq. (2-47), respectively.
3. Calculate urr with Eq. (2-44).
4. Repeat step 2 with urr. Then with the values of oz, a3z and for, calculate ar and ag;

with Eq. (2-36).

5. Determine the load and resistance factors with Eq. (2-35).

The shortcoming of the calculation process is that one time iteration calculation of o7,
o3z and for is inevitable. And Eq. (2-47) is complicated. When Equation (2-46) is used

for the calculation of 3M reliability, there is a mathematical limitation in as

Oy, <

(2-49)

2M
2.3.4 ASCE method

According to ASCE 7-10, the “principle action-companion action” format is proposed, in
which one load is taken at its maximum value while other loads are taken at their point-
in-time values. Based on the comprehensive reliability analysis performed to support their

development, it was found that these load factors are well approximated by [12]
70 =\t /O N+, V) (2-50)

in which ap is a sensitivity coefficient that is approximately equal to 0.8 when Q is a
principal action and 0.4 when Q is a companion action. This approximation is valid for a
broad range of common probability distributions used to model structural loads. The load

factor is an increasing function of the bias in the estimation of the nominal load, the
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variability in the load, and the target reliability index, as common sense would dictate.

As an example, the load factors in the following combination are based on achieving a
f of approximately 3.0 for a ductile limit state with moderate consequences (e.g.,
formation of first plastic hinge in a steel beam).

1.2D+1.6L+0.5(L,0rSorR) (2-51)

where D is dead load, L is live load, L, is roof live load, S is snow load and R is rain load.

For live load acting as a principal action, #o/Q, = 1.0 and Vo = 0.25; for live load acting
as a companion action, uo/Q» = 0.3 and Vp = 0.6. Substituting these statistics into Eq. (2-
51), yo = 1.0[1+0.8(3)(0.25)] =1.6 (principal action) and yo = 0.3[1+0.4(3)(0.6)] =0.52
(companion action). If an engineer wished to design for a limit state probability that is
less than the standard case by a factor of approximately 10, § would increase to
approximately 3.7, and the principal live load factor would increase to approximately 1.74.

Similarly, resistance factors that are consistent with the aforementioned load factors
are well approximated for most materials by

6= /R, Jexpl- 5V, ] (2-52)

in which or is a sensitivity coefficient equal approximately to 0.7. For the limit state of
yielding in an ASTM A992 steel tension member with specified yield strength of 50 ksi
(345MPa), ur/R, = 1.06 (under a static rate of load) and V'z = 0.09. Eq. (2-52) then yields
¢ =1.06 exp[—0.7)(3.0)(0.09)] = 0.88. The resistance factor for yielding in Section D of
the AISC Specification (2010) [13] is 0.9. If a different performance objective were to
require that the target limit state probability be decreased by a factor of 10, then ¢ would
decrease to 0.84, a reduction of about 7%. Engineers wishing to compute alternative
resistance factors for engineered wood products and other structural components where
duration-of-load effects might be significant are advised to review the reference materials
provided by their professional associations before using Eq. (2-52).

There are two key issues that must be addressed to utilize Eq. (2-50) and Eq. (2-52):

selection of reliability index, 3, and determination of the load and resistance statistics.
2.4 Probabilistic durability analysis of chloride-corroded RC structure
2.4.1 Overview of mechanisms of chloride ingress into concrete structures

In general, chloride penetration through concrete can be empirically described by

Fick’s second law:
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Cx,t)= Cs[l—erf(z—\/%ﬂ | (2-53)

where
C(x,t) — the chloride content at a distance x (m) from the concrete surface at time
(%/m?);
Cs — surface chloride content (%/m?);
D — diffusion coefficient for chloride (m?%/s);
t — time (s);
erf — Gaussian error function.
By replacing the parameter to the cover thickness (c) of the concrete structure, the

initiation time for corrosion is obtained from the following formula:

C = Cs[l—erf(z \/J%Tﬂ (2-54)

C.» — the critical chloride content (%/m?);

where

¢ — the concrete cover (m);
to — the initiation time of corrosion (s).
This formula can be simplified by using a parabola function and re-written in the

following form for initiation time of corrosion #o [14]:

1 c ’
- 2-
o 12D(1-(Ccr /CO)’/Q) (2-35)

As an inherent and inevitable phenomenon in the formation of concrete mixture, early-

age micro cracking will obviously influence the chloride penetration into concrete and
consequently the time to corrosion initiation. Previous study [15] has already found that
the patterns of chloride penetration in cracked concrete are obviously different with that
in sound condition. The diffusion coefficient D here can be divided into two parts (namely,
D¢r and Dy, as shown in Fig. 2-5 and is expressed as:

D, A, +DyA

cr cr

D="oa 0T 2-56
A, +A4 ( )

where D, is the value of chloride diffusion coefficient inside the early-age micro cracking,

Dy is the corresponding value for sound area, A, is the area of micro cracking (m?), 4 is

the exposed surface area of the concrete element (m?).
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Fig. 2-5 Partition hypothesis of chloride diffusion through cracked concrete

It has been indicated that the value of chloride diffusion coefficient inside a crack of
concrete cover (namely D, m%/s) is independent of material effects, even if tortuosity
and roughness are different. Djerbi et al. suggested the following relationship between

the crack width wy in concrete cover and its diffusion coefficient D, inside the crack:

D =2x10"w, —4x1071°,30m < w, <80
{ cr 0 Iurn 0 IL”n (2_57)

D, =14x107% w, > 80m

Besides penetration in the micro cracked area of concrete cover, the chloride will also
diffuse in its sound area, as follows:
Dy = A Ap 4Dy (2-58)
where
An — the correction coefficient for environmental relative humidity 4 (%);
Ar — the corresponding coefficient for temperature 7 (K);
A+ — the same coefficient for exposure time #; (day);
D»g — the chloride diffusion coefficient for a specimen under standard curing (28 days):
D, = 10(-1206+2.4w/c) (2-59)

where w/c is the water-to-cement ratio. Also the parameters An, A, and Ar can be

]

A= (lz_sj (2-61)

Ul 1 1
A =exp| —| ——— 2-62
e |:R(Tzs TH (262
in which

h. — the threshold relative humidity (A~=75%);
g — the time of standard curing (28 days);

respectively expressed as:

24



m — the age factor related to w/c by m=3(0.55 — w/c);
U — the activation energy equal to 35000 J/mol;
R — the gas constant;

T>3 — the temperature for standard curing on day 28 (293 K).
2.4.2 Corrosion probability prediction of RC structures

Depending on the variable of interest, the corresponding performance function can be
formulated, generally, as the difference between a term that is equivalent to a “resistance”
and a term that is equivalent to a “load or load effect”. For example, the term “resistance”
here is the threshold chloride concentration Cy. Similarly, the term “load effect” is the
chloride concentration at the steel at given time ¢, C.;. Therefore, the limit state function

for corrosion initiation can be formulated as follows [16]:
g(Cs’c’D’Ccr)ZCcr_CC,I(CS’C’D’t) (2_63)

Hence:

2(Cs, ¢, D, Cer) = 0 = “limit state”.

g(Cs, ¢, D, Cer) > 0 = “desired state”, or “un-corroded state”.

2(Cs, ¢, D, Cer) < 0 = “corrosion state”, or “failure state”.

The limit state equation g(Cs, ¢, D, Ccr) = 0 can be represented geometrically by an n-
dimensional surface, which is referred to as a “failure surface” or in the case “corrosion
initiation surface”. Using Fick’s second law of diffusion of Eq. (2-53), the limit state
function for the corrosion time can be formulated as a function of four variables, as
follows,

c
C.,c,D,C,)=C,—-C|1-er 2-64
g(C, ) ( fzm) (2-64)

The probability of corrosion at time ¢ corresponds to the integral of the probability

density function fx(x) on the corrosion domain, as follows: ,
Pf = J-g(Q, e.D, CC,-J)<0 fX (Cs’ C', D’ Cur)ix (2-65)

In Saassouh’s paper, FORM and SORM methods are used to analyze the probability of
corrosion of RC structures, while MC simulation is applied as a contrastive method. From
the results of the examples, both FORM and SORM are in great agreement with MC
simulation. However, in the case of the coefficient of variation of random variables is
large, the errors of FORM and SORM are large. As we know, the random variables in

chloride-rich environment are changeable, such as the chloride concentration on the
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concrete surface. The coefficient of variation of these random variables can be quite large.
Therefore, a method, with higher accuracy and efficiency, convenient for application, is
considered to be significant.

2.5 Conclusions

In this Chapter, several typical previous research are introduced in details.

(1) In Section 2.2, the widely used FORM, 2M, two methods of 3M and MC simulation
were introduced.

(2) In Section 2.3, the application of moment method in calculation of load and
resistance factors is introduced. Three typical applications in AIJ design guideline (Mori’s
and Zhao’s method) of Japan and ASCE 7-10 of America were introduced.

(3) In Section 2.4, the application of moment method in prediction of corrosion
probability of RC structures in chloride-rich environment was introduced. A brief
introduction of mechanisms of chloride ingress into concrete structures was given. Then
establishment of the probabilistic model of the corrosion process was introduced.

Based on these previous research, new methods and several improvements will be

proposed in Chapter 3-5.
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CHAPTER 3

Proposition of a new 3M reliability index

3.1 Introduction

In this chapter, two new third-moment reliability indices were proposed. According to the
accuracy comparison of two proposed reliability indices, one of them was selected as the
new index. In Section 3.2, firstly, the proposition of the reliability index was introduced.
Then the advantages and disadvantages were analyzed, respectively. The applicable range
and the comparison with existing 3M methods were also given. In Section 3.3, various
examples were used to verify the applicability of the proposed method. In the analysis of
these examples, the results of the second-moment (2M), 3M-1, 3M-2 methods and the

proposed 3M-3 method were compared with the result of MC simulation, respectively.

3.2 Proposed 3M method
3.2.1 Proposed formulas

In order to overcome the limitations and insufficient accuracy of current 3M reliability
indices, the variation roles of the 3M reliability indices with respect to the 2M reliability
index and the third moment of the performance function are thoroughly investigated.

As introduced in Section 2.2, in the case of a3 < 0, the accurate reliability index is in
the middle of results calculated by 3M-1 and 3M-2. Fitting the average value of f31.1 and
S3m2, two new 3M reliability indices in the form of exponential function, using a trial and
error method, can be proposed.

And in the case of a36—0, with aid of a first-order Taylor expansion of €%, it has already

been shown that both 311 and S3u.2 have the same limit when azc—0 [1], expressed as

Powm +%a3<;(ﬂ22/\/1 ‘1) (3-1)

28



In order to obtain the same equation, the following two formulas are proposed:

1 lasa(ﬁz,\l —L]
Posss =3 Pua| 2+ e’ Fau (3-2a)

5 7 %%G(ﬂzwf —%J
Bri-a = EﬂZM 3 te e (3-2b)

where both f3r3 and f3a4 are fitting equations for the average value of f3u1 and faao.
In the case of a36—0, f3um-3 and S3ur4 have the same limit as f3u.1 and S3u2, expressed
as

laSG ﬂzmr—L
Pri—s —;ﬂzM|}+e2 ( /”zMJ
- ﬂ?’)M l:2+1+%a36(ﬂ2M - ﬂl J} (3—3&)
2M

1
=Pom + g%G (/HZZM - 1)
2 1
5 7 3%G (ﬂw o j
= — — + e 2M
:B3M—4 1 2 ﬁZM{S

5 7 2 1
= EﬂZM |ig+1+§a3(;[ﬂ2M _EH (3-3b)

= Boum +éa36 (ﬂ22M _1)

Compared with S3u.1, both two formulas do not include any logarithmic term.
Compared with f32, they do not include any square root. With the calculation error in
an acceptable range, both of them are theoretically applicable for calculating the 3M
reliability index in all cases except far —0.

In the case of oy —0, both limf3,.3 and limf3u.3 are expressed as

m 0,a,;20
m = -
Bru—0* M + o0, (2% <0 (3 4a)
im 3 0,0,,<0
im = -
Pap—0” M —00, Uy, > 0 (3 4b)
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That is to say, both of two proposed 3M methods are not applicable to the case offfau

—0. However, in engineering practice the reliability index is usually much larger than 0.
3.2.2 Accuracy of the proposed formula

Compared with Sar.1 and Saa, the accuracy of a3 and Baurs is analyzed. As shown in
Fig. 3-1a and 3-1b, the comparison of f3u.3 and f3u4 is given for foyr = 1, 2, 3, 4. In the
case of a3 <0, the reliability calculated by f31.3 is in the middle of the results calculated
by f3m-1 and B2, while the reliability calculated by B3us4 is slightly lower than the results
calculated by f3ur1 and S3u. That is, the proposed method B33 is more accurate than
[3uma. In the case of azg > 0, both the reliabilities calculated by S35 and f314 are lower
than the results of S31 and f3u2. As introduced in Section 2.2, in the case of azg > 0, the
accurate reliability calculated by MC simulation is lower than the results calculated by
B3t and S, both of f3ur3 and S3u4 are more accurate than B3u1 and Sz, which will
be analyzed in the following section. Considering the formula of 31,3 is simpler and more

accurate than f3u4, [S3u3 1s finally regarded as the proposed method.

Fig. 3-1a f3m-3 with respect to a3c Fig. 3-1b f3u4 with respect to o3¢

The changes of S3u.1, f3m-2, and f3u3 with respect to fau are depicted in Figs. 3-2 and
3-3 for a3 = 0.3, 0.6, 1.0 and —0.3, —0.6, —1.0. One can see that the differences among
the three 3M reliability indices are smaller when a3 is negative than when it is positive.
Because f3ur.1 and Sz are not accurate when asg is large (i.e., positive), it is too early to

evaluate the accuracy of 313 based only on comparison with f3.1 and 2.
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Fig. 3-2 Bam3 with respect to S (a36 > 0)
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Fig. 3-3 [3m3 with respect to fau (a36 < 0)

In Tables 3-1 and 3-2, the relative difference is given as r = 2|fa - B33/ (Bav + S3us3),
where [y is the average value of f3.1 and S3a.2. It is shown that for the cases of 2 < fom
<4 and —1.0 < a36 < 0.3, the relative difference remains at less than 5%. But 2 <fom <4

and —1.0 < a3 < 0.3 are not the applicable range of the proposed method. For the case of

aszc > 0.3 or fom > 4, the relative difference is insignificant, because both f3rc1 and fau2

are inaccurate at this range. In other words, it is possible that the applicable range of the

proposed method is wider than the existing methods, 3M-1 and 3M-2. Further comparison

of the existing 3M methods and the MC simulation is given in Section 3.3.

Table 3-1 The relative difference between B3, faum-2, and fauz (a36 > 0)

Bom 2.0 3.0 4.0 5.0
o3>0 0.43 0.6 0.73 | 0.31 0.41 048 | 023 031 035 | 0.19 024 0.29
Relative
2% 5% 10% 2% 5% 10% 2% 5% 10% 2% 5% 10%
difference
Table 3-2 The relative difference between S3ar1, f3um-2, and f3n3 (a3c < 0)
Bou 2.0 3.0 4.0 5.0
a36<0 | -0.8 -1.72 —-4.18|-16 -221 -15.74|-0.81 -1.13 -1.56|—-0.57 -0.79 -1.09
Relative
2% 5% 10% | 2% 5% 10% 2% 5% 10% 2% 5% 10%
difference

31



3.2.3 The corresponding relationship between Z, and u

According to Section 2.2.2.1 (Eq. (2-6)-(2-9)), the corresponding Z, of Eq. (3-2a) can be

expressed as
1“36 Zu-L
u:——l-Z 2+e? ( Z"J (3-5)
3 u

=03 —Eq.(3-5) _i
N ¥ - ~Eq.(3-6)
1

a 3(]:—0'6 ':

|||1\|||'||.|‘.|';
5 4 45 5
V/

u

_5:IIIIIIIII[llIl’lIIIIIIle
1 1.5 2 25 3 3.

Fig. 3-4 Comparison of Egs. (3-5) and (3-6)

Z, can be expressed as the inverse function of Eq. (3-5). Because the inverse function

of Eq. (3-2a) is nonexistent, the approximate function can be obtained and Z, can be

expressed as
Z = _3_8[1 T } (3-6)

Qs

In the case of asc equals —1 to 0.5 and Z, equals —4.0 to —1.0, the errors of Eq. (3-6)
compared with (3-5) are certified to be less than 7%, as shown in Fig. 3-4.

3.3 Application of the proposed reliability index
3.3.1 Influence of distribution type

3.3.1.1 Introduction of common distribution types
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(1) The Normal distribution
The best known and most widely used probability distribution is undoubtedly Normal

distribution. Its PDF for a continuous random variable X, is given by

fX(X)=;j—2—;ex{——;-(x;“Jz} —w<x <o (3-7)

where u and o are the mean and standard deviation of X.

(2) The Lognormal distribution
The random variable X is a Lognormal random variable if ¥ = In(X) is normally
distributed. The Lognormal distribution is also a popular probability distribution, its PDF

1S

R B RS o :
)=t o{z[ - ” 0 69)

where A = E(InX) and ¢ =./Var(InX), are the parameters of the distribution, which means

that these parameters are, respectively, also the mean and standard deviation of InX.

(3) The Gamma distribution
The PDF of a gamma random variable is useful for modeling sustained live load in

buildings. In general, the Gamma distribution for a random variable X has the following
PDF,

Ix (x)= F(/)c) = (3-9)
=0 x<0

where v and £ are the parameters of the distribution, and I'(k) is the gamma function

(k)= I:xk“le‘)‘dx where k >1.0 (3-10)

(4) Extreme Type 1 - the Gumbel distribution
Extreme value distributions, as the name implies, are useful to characterize the
probabilistic nature of the extreme values (largest or smallest values) of some

phenomenon over time, such as the wind speed. The PDF of the Gumbel distribution is

1y, ()= a, e m)ex p[— ey —u,,)] (3-11)



in which
u, — the most probable value of ¥y,

an, — an inverse measure of the dispersion of value of ¥y,

(5) Extreme Type 2 - the Frechet distribution
The Frechet distribution sometimes gives the best approximation of the distribution of
the maximum seismic load applied to a structure. The PDF is
k+1
fx(x)= 5(3) et/ (3-12)
u\x

where u and k are the distribution parameters.

(6) Extreme Type 3 - the Weibull distribution
The PDF is
AE g
— = by >0
flo)= z(zj ¢ ¥
0 x<0

(3-13)

3.3.1.2 Influence analysis of distribution type

The simple R — S reliability model is considered.

G(X)=R-S (3-16)
where R and S are the interior resistance and the exterior deterioration load effect,
respectively.

The statistical parameters of random variables are listed in Table 3-3, where ug = 50 ~
100 and us = 30 are the means of R and S, vg = 0.2 and vs = 0.4 are the coefficient of
variation of R and S, respectively. The exact results are obtained using MC simulation for
10 samplings and the 2M results are given. The following six cases are investigated under
the assumption that R and S obey different probability distributions (see Table 3-3).

For cases 1 - 6, as shown in Fig. 3-5, one can see that as the value of ur increases, the
results of each 3M method moves further from the exact MC simulation. It is obvious that
the 2M method is not accurate enough, while the proposed 3M method is in close
agreement with the MC simulation in all cases. And it can be seen that the proposed 3M

method has, either higher or at least the same accuracy as the existing methods.
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Table 3-3 The probability distribution information of R and S in different cases

(c) Case 3

35

Case number R S
1 Normal  Lognormal
2 Normal Gamma
3 Normal Gumbel
4 Lognormal  Normal
5 Lognormal  Weibull
6 Weibull Normal
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(e) Case 5 (f) Case 6

Fig.3-5 Relationship between the mean value of R and the reliability index
3.3.1.3 Error analysis of different methods

In order to verify the accuracy of different methods, the details of error is given in Fig.
3-6. The error is calculated by

;= Iﬂl - ﬂMCI

MC

x100% (3-17)

where MC simulation is regarded as a comparing method.

From Figs. 3-6 (a) to (f) one can see, the error of 2M method is much greater than other
3M methods. In most cases, the error of 2M method is greater than 5%, while the error of
3M-3 is less than 5% in all cases. Since there is error in MC simulation, as introduced in
Chapter 2, it is reasonable to regard error under 5% as accurate enough. In case 4 and
case 5, the error of 3M-2 is also greater than 5% when a3 varies, while the error of 3M-
1 is also slightly larger than 3M-3. It’s worth noting that in case 4 and case 5, when asc
is positive the errors of three 3M methods are larger than that of a3 is negative. And in
the case of a3 tends to 0, the errors of three 3M methods decrease, while the error of 2M

Increases as a3g increases.
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Fig.3-6 Error respect to asc

3.3.2 Influence of the number of load

Since in practical engineering design, the number of load may be much more than one.
The following performance function is used to analyze the influence of the number of

load on the accuracy of the proposed 3M method, where n =2, 4, 6, 8, are considered.
G(X)=R-D_S, (3-18)
i=1

The distribution type of R and S; are normal distribution and lognormal distribution,
respectively, where the mean values of all loads are us; = 30, vg = 0.2 and vs; = 0.4 are the
coefficient of variation of R and S;, respectively. The exact results are obtained using MC
simulation for 10® samplings and the 2M results are given.

As shown in Fig. 3-7, the number of load has almost no influence on the reliability.
Compared with MC simulation, the errors of all methods are lower than 5%. For the a3
in all cases varies from -0.3 to 0, the results of all methods are consist with the result of

MC simulation.
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Fig.3-7 Influence analysis of load number

3.3.3 Application in simple structure

Example 1

The analytical I-beam design problem, as shown in Fig. 3-8, introduced by [2] is
considered.
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The limit state function is given in terms of bending stress. The expression for the limit
state can be defined as

G(X)= 0,0 —S (3-19)
where
Pa(L-a)d
= 7 3-20
O ax 37, (3-20a)
b, d*>—\b,—t \d-2t

P
H_Li d —» a1,
~ AN
- o e
L by

Fig.3-8 The cross section and load on the I-beam

The details of all the random variables are given in Table 3-4.

In this example, the first three moments of G(X) can be obtained as ug = 455704, oG =
249347, and azc = 1.098. Reliability indices calculated by different methods are
summarized in Table 5. The 2M is not applicable for an error of 24.04%, and the 3M-2 is
out of its applicable range. Furthermore, for an error of 19.77%, the 3M-1 is consi#lered

inapplicable, as well. The 3M-3 is the only applicable method with an error as low as
5.11%.

Table 3-4 Parameters of random variables for Example 1

RVs U v Distribution
P 14000 0.4 Lognormal
L 120 0.2 Lognormal
a 72 0.08 Normal
S 170000 0.03 Normal
d 23 0.02 Normal
br 2.3 0.02 Normal
tw 0.16 0.03 Normal
ty 0.16 0.03 Normal
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Table 3-5 Comparison of reliability indices for Example 1

Method s Error
2M 1.828 24.04%
3M-1 2.837 19.77%
3M-2  Out of range —
3M-3 2.449 5.11%
MC 2.327 ——

Example 2

A cantilever beam made of isotropic material, as shown in Fig. 3-9, is subjected to a
distributed transverse load [3].

Hlflug

L

Fig. 3-9 Cantilever beam

The performance function is the tip displacement, which is expressed as

4
G(X):acr_azécr“% (3_21)

where X = {0, O, L, E, I }, 0c- = 10 mm is the critical tip displacement (which is 1/500
of the length of the beam), Q is the constant distributed transverse load acting on the beam
(o =5 N/mm, vp = 0.3), L is the length of the beam (¢, = 5000 mm, v, = 0.04), E is the
Young’s modulus of the beam material (uz = 73000 N/mm?, v& = 0.01), and [ is the
moment of the cross-section (1= 1.067x10° mm®*, v;=0.001). All of the random variables
obey normal distribution.

In this example, the first three moments of G(X) can be obtained as ug = 4.94, o6 =
1.74, and azc =—0.388. As shown in Table 3-6, the result of 2M is far from MC simulation,
while the errors of all three 3M methods are in acceptable range. Because the result of

3M-3 has the lowest error, it is considered as the most accurate method.
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Table 3-6 Comparison of reliability indices for Example 2
Method p Error
2M 2.838 13.93%
3M-1 2482 0.54%
3M-2 2499 1.22%
3M-3 2476 0.30%
MC . 2.469 —

Example 3

To demonstrate the application of 3M-1 to a more complicated problem involving
several random variables, the moment capacity of a singly reinforced rectangular
prismatic concrete beam is considered here. The moment capacity or resistance Mg of

such a beam can be calculated using the following expression [4]:

My = Asfyd(l—n—fé—% (3-22)
where

Ag — the area of the tension reinforcing bars;

f, — the yield stress of the reinforcing bars;

d — the distance from the extreme compression fiber to the centroid of the tension
reinforcing bars;

n — the concrete stress block parameter;

f- — the compressive strength of concrete;

b — the width of the compression face of the member.

It is extensively reported in the literature that all these variables are random. Their
mean values and coefficients of variation are tabulated in Table 9. Assume further that
the beam is subjected to a moment M, which is also a random variable. Its mean value
and coefficient of variation are shown in Table 3-7.

The limit state function for the problem can be expressed as

G(X)= 4, fyd(l - nf—;{},j -M (3-23)

The probability distributions of the random variables in Eq. (3-23) are shown in Table
3-8. The results summarized in Table 3-9 clearly indicate that the distributions of random

variables play a very important role in safety index or failure probability estimation.
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Compared with MC simulation, the errors of 2M, 3M-1, 3M-2 and 3M-3 are given. It is
obvious in all cases, the error of 3M-1 is the smallest in all methods.

Table 3-7 Design parameters of a reinforced concrete beam

RVs Mean Coefficient of variation

As (mm?) 1006.45 0.036
1y (MPa) 328.89 0.15
f.' (MPa) 24.13 0.21

b (mm) 203.2 0.045

d (mm) 335.28 0.086

n 0.59 0.05

M (KN'm) 36.86 0.17

Table 3-8 Distributions of random variables in a reinforced concrete beam

RVs Case 1 Case 2 Case 3 Case 4
As Normal Normal Lognormal Lognormal
1 Normal Normal Lognormal Lognormal
1! Normal Normal Lognormal Lognormal

b Normal Normal Lognormal Lognormal
d Normal Normal Lognormal Lognormal
n Normal Normal Lognormal Lognormal
M Normal Lognormal Normal Lognormal

Table 3-9 Reliability indices calculated by different methods for Example 3

Case 1 Case 2 Case 3 Case 4
Method f  Error S Error S Error B Error
2M 339 6.35% 3.39 5.04% 3.43 21.69% 3.43 14.68%
3M-1  3.78 4.42% 3.73 4.48% 4.59 4.79% 4.49 11.69%
3M-2 3.82 5.52% 3.75 5.04% 532 21.46% 5.00 24.38%
3M-3 377 4.14% 3.72 4.20% 4.45 1.60% 438 8.96%
MC 362 — 357 — 438 — 4.02 —
Example 4

As shown in Fig. 3-10, the horizontal displacement of a one-bay elastoplastic frame
can be expressed as
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(D+Lg +S)HD
12E1
where D, Lsand S are the dead load, the live load and the snow load, respectively; E, I, H
and L are the elasticity modulus, the area moment of inertia, the height and the length of

the frame, respectively.

(3-24)

The limit state function is expressed as
(D+Lg +S)HE
12E1

where 4, is the critical displacement of point A.

G(X)=da,-4=4,- (3-25)

The details of random variables are shown in Table 3-10

D+Ls+S

Y A
VAN ' JAN

- : -

Fig. 3-10 One-story one-bay frames of Example 4

Table 3-10 Parameters of random variables for Example 4

RVs Mean Coefficient of variation Distribution type
A 3cm 0.1 Normal
E  2x10"N/m? 0.2 Normal
I 6.06x10*m* 0.4 Lognormal
H 3m 0.5 Gumbel
L 6 m 0.05 Lognormal
D 2x10*N/m 0.05 Lognormal
Ls  2x10°N/m 0.1 Lognormal
S 3x10°N/m 0.05 Lognormal

The 03¢ in this example is -0.21. The calculated reliability indices and error are listed
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in the Table 3-11. According to the results, the three 3M methods are accurate enough,
while the 2M method is not applicable.
Table 3-11 Comparison of reliability indices for Example 4
Method f Error
2M 439 13.73%
3M-1  3.87  0.26%
3M-2 390 1.04%
3M-3  3.87 0.26%
MC  3.86 —

3.3.4 Application in system reliability
Example 1

This example is a one-bay elastoplastic frame, as shown in Fig. 3-11 [5],

S2
S i
M
M M1
20

Fig. 3-11 One-story one-bay frames of Example 1

where M1, M, and M3 are the member strengths and S1 and S> are the loads. The mean
values of the random variables are uy1 = ure = 500 ft kip, ums = 667 ft kip, us1 = 50 kip,
and us2 = 100 kip; the standard deviations are o = o = 75 ft kip, ous = 100ft kip, os1
=15 kip, and o5z = 10 kip.

The performance functions that correspond to the six most likely failure modes

obtained from stochastic limit analysis are listed as follows:

g, =M, +3M, +2M,—15S, -10S, (3-26a)
g, =2M, +2M, 158 (3-26b)
gy =M, + M, +4M,—15S, —108, (3-26¢)
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g, =2M,+M,+ M, 155, (3-26d)
gs=M +M,+2M,-155, (3-26¢)
g =M, +2M, + M, -15S, (3-26f)

The performance function of the series system can be expressed as the minimum of the

performance functions that corresponds to all potential failure modes, which is
G(X)=min{g,,g,85,24:8586 (3-27)

Using the method found in [5], the first three moments of G(X) can be obtained as ug
=1244.85, 66 =307.523, and a3 =—0.307. With different methods, the reliability indices
are oy = 4.048, S3m1 =3.438, f3m2 =3.480, and fau3 =3.452. Three 3M methods are in
good agreement.

Different types of distribution of the random variables were also assumed. Assuming
all the member strengths and loads are Weibull random variables, the results of the
different 3M methods and the MC simulation (10° samplings) are summarized in column
2 of Table 3-12. Results for Gamma, Gumbel, and Normal distributed random variables

are also summarized in columns 3 to 5, respectively, in Table 3-12.

Table 3-12 Comparison of reliability indices for Example 1 with different types of PDFs

Method Weibull Gamma Gumbel Normal

M 3.872 4.040 4.123 3.980
(13.51%) (13.73%) (27.1%) (4.5%)

M1 3.572 3.689 3.556 4.024
(5.46%) (4.90%) (12.46%) (5.59%)

o T 3.584 3.713 3.592 - 4.024
(5.80%) (5.31%) (13.46%) (5.59%)

M3 3.573 3.670 3.566 4.024
(5.49%) (4.14%) (12.74%) (5.59%)

MC 3.382 3.521 3.139 3.805

Note: Percentage of error in the reliability index relative to that of the MC simulation is

in parenthesis.
From Table 3-12, one can observe that each of the three 3M methods is in close
agreement with MC simulation, except for Gumbel distribution. In all cases, the proposed

method is either more accurate than or as accurate as other methods.

Example 2
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This example is a frame structure with two stories and two bays, as shown in Fig. 3-12.
The mean values of the probabilistic member strength are pum = tan = ums = Ume = s
=70 ft kip, ums = 120 ft kip, and pams = 90 ft kip. The mean values of the probabilistic
loads are us1 = 5 kip and ps2 = puss = uss = 10 kip. The standard deviations of the member
strength and loads are 0.15 and 0.25, respectively; the distributions of the member

strength and loads are normal distribution and lognormal distribution, respectively.

Ss
S m—_w i 7
M, M o8
Sz — —]
M, M;s
M M M =
20 T 20 7

Fig. 3-12 The two-story two-bay frames of Example 2

The failure modes and corresponding performance functions are listed as follows:

g, =2M, +2M, +2M, —15S, —155, (3-28a)
€, =M, + M, +2M; 105, (3-28b)

g5 =M, +3M, 10, (3-28¢)

g4 =M, +3M;—10S; (3-28d)

g5 =2M, +2M, + M, + M, —155, 155, (3-28¢)
8o =M, +3M, +2M; 158, (3-28)

Table 3-13 Comparison of reliability indices for Example 2
Method f Error
2M 2940 17.25%
3M-1  2.506 1.33%
3M-2  2.529 2.24%
3M-3 2501 1.13%
MC 2473 —

The performance function of the series system is the same as Eq. (3-27) in Example 1.
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Using the method found in [5], the first three moments of G(X) can be obtained as uc
=170.75, o6 = 58.08, and a3 = —0.457. With different methods, the results are listed in
Table 3-13, which shows that the 2M result is far from MC simulation, while the error of

3M-1 and the proposed 3M-3 are accurate enough, with errors of less than 2%.
3.3.5 Application in other fields
Example 1

The proposed method is applicable in not only civil engineering but also other field.
The performance function of a shaft in a speed reducer can be defined as '
2712
_ 32 [P,

GX)=8 -5\

(3-29)

where X={S, D, F, L, T},
S (MPa) — the material strength;
D (mm) — the diameter of the shatft;
F (N) — the external force, 7 (Nm) is the external torque;
L (mm) — the length of the shaft.
The performance function represents the difference between the strength and the

maximum stress. The details of the random variables are given in Table 3-14.

Table 3-14 Parameters of random variables for Example 1
RVs u v Distribution

70 0.2 Lognormal
60 0.18 Normal
1500 0.5 Lognormal
400 0.2 Normal
250 0.2 Normal

N N O W

Table 3-15 Comparison of reliability indices for Example 1
Method S Error
2M 3529 27.82%
3M-1  2.171 20.52%
3M-2 2248 17.08%
3M-3 2407 10.26%
MC  2.667 —
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The mean value, standard deviation, and skewness of GG(X) are obtained as ug = 61.05,
o6 = 17.30, and o036 = —1.898, respectively. Because |a3g| is large in this example, none
of the methods are accurate; however, the 3M-3 provides the highest accuracy, as shown
in Table 3-15. Its error of 10.26% is much lower than the error of 20.52% for 3M-1 and
17.08% for 3M-2.

3.4 Conclusions

Based on existing methods for calculating the 3M reliability index, this paper proposes a
new 3M method in which the following improvements are considered valuable:

(1) The proposed method, with less mathematical limitation, is simpler for calculation
of 3M reliability index than other existing 3M methods.

(2) Compared with other methods, the proposed method is accurate enough and its
applicable range is much wider — especially in the case of negative a3c. It is, therefore,

considered applicable for cases out of the applicable range of existing methods.
Appendix

3G

1
In the case of foyr— 0F, if A=e27,

Par —>0*

: . 1 oy~
lim ﬂ3M =ﬂl‘11110+§ﬂ2M|:2+A( ﬁzu]jl

1, —L
= ﬁzll‘llgl0+§ﬂ2M 2+Aﬂ2M Ny | ,32/‘1:| (A-])

1

. 1 1 \Au
= lllTI :ﬂZM 2+1(ZJ

Bory—0" 3

In the case of 4 > 1 (i.e. azg > 0),
lim A, = lim %-0[2+1-0]=0 (A-2)

Parg 0" PBam —0"

In the case of 4 <1 (i.e. a3g <0), if x = 1/faum
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Fig. A B3u with respect to Sau in the case of fay— 0.

The opposite result can be obtained when Sy — 0.
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CHAPTER 4

Load and resistance factors

4.1 Introduction

Load and resistance factor design (LRFD) is widely used in building codes for reliability
design. The 3M method has been proposed to overcome the shortcomings (e.g. inevitable
iterative computation, requirement of PDFs of random variables) of other existing
methods. In existing 3M method, the iterative is simplified to one time, and the PDFs of
random variables are not required. In this chapter, the proposed 3M-3 in Chapter 3 is used
in the determination of load and resistance factors. The computation of the existing 3M
method is further simplified to no iteration. And the accuracy of the proposed method is
proved to be higher than the existing 3M methods. Additionally, with the proposed
method, the limitations of applicable range in existing 3M methods are avoided. With the
load combination and example in ASCE 7-10 and AlJ, the comparison of the existing 3M
method, the ASCE method, the Mori method and the proposed method is given. The

results show that the proposed method is accurate, simple, safe, and saving material.
4.2 Proposition of the new method
4.2.1 Computation process for LRFD

As introduced in Chapter 2, the LRFD format is expressed as
goRn 2 Z Z7/1"5’;71' (4-1)

The computation process is shown in Fig. 4-1. Before calculating the load and
resistance factors, the target reliability index S and the distributions of loads should be
decided. Then the target mean resistance should be calculated. With the target mean

resistance and other variables, the load and resistance could be finally calculated.
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START

Decision of target
reliability index fr

Decision of the distributions
of random variables

A

Calculation of the
target mean resistance

A

Calculation of the load
and resistance factors

END

Fig. 4-1 Computation process of load and resistance factors
4.2.2 Simplification of the existing 3M method for LRFD

As introduced in Chapter 2, in the existing 3M method for LRFD, one time iteration for
the calculation of the target mean resistance is necessary. In order to simplify the
calculation process, the iteration is eliminated in the proposed method.

In the existing 3M method for LRFD, the second-moment target reliability is calculated

by [1]
3 %6 p %G -
Bor = _0-’36 {1 —exg{——; ( Br —6 ﬂ} (4-2)

which is the inverse function of the existing 3M reliability index, 3M-2 (introduced in
Chapter 3).
In the proposed 3M method for LRFD, the second-moment target reliability is

calculated by the inverse function of the proposed 3M reliability index, expressed as

—a6Br
5 _3_2{1* } (43)
a

3G

For the inverse function of the proposed 3M reliability index is not exist, Eq. (4-3) is

proposed as an approximate inverse function.
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The steps for determining the load and resistance factors using the new method are as
follows:

1. Calculate urr using Eq. (4-4).

Hpr = Zﬂs; +/abr ZO' §, | (4-4)

where a and x are determined by linear fitting (more information below).
2. Calculate o, aszc and Sor using Eq. (4-5), Eq. (4-6) and Eq. (4-3), respectively. Then
calculate ar and as; with Eq. (4-7).

He = Hp —Zﬂs, > 0g :\}0'122 +Z°’§i (4-5)

1 ( .
- 3
X6 = o3 X3r0OR _zaas,0'§, (4-6)
G
o
O Oy
ap =5 ag = o-—l (4-7)
G G

3. Determine the load and resistance factors with Eq. (4-8).

¢:(1—aRVR,BT)% (4-8a)

Ko,
v, =1+ ayVy B )Q—Q (4-8b)
In the proposed method, there is no iteration calculation in step 1 and step 2, which is

necessary in the existing 3M method for load and resistance factors.
4.2.3 Determination of @ and x

In order to determine a and x in Eq. (4-4), a large amount of examples are used to obtain
the target reliability. Then according to the target reliability, @ and x can be achieved. One
of the examples is introduced here. The performance function is

G(X)=R-(G+Q) (4-9)
where

R — the resistance, with unknown PDF, the coefficient of variation vg = 0.2, the
skewness ar = 0.608.

G — the dead load, with unknown PDF, us = 10, the coefficient of variation vg = 0.1,
the skewness o = 0.

Q — the living load, with unknown PDF, up = 5, the coefficient of variation vg = 0.4,

the skewness ag = 1.264.
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With the calculation process in Section 4.2.2, the load and resistance factors can be
calculated. With the calculated load and resistance, finally the reliability can be obtained
by MC simulation. When @ = 1 and x = 2.7, the calculated reliability of the proposed
method is in great agreément with the target reliability, as shown in Fig. 4-2, while the

result of the existing method is far from the accurate value (the dotted line).

LA L L L OB L LB BN L

35 —Proposed
r  —-—Existing

T A A

Fig. 4-2 Computed reliability with respect to the target reliability

Considering the influence of the number and variation of loads, the number of loads »

and k are introduced, where

> g, /j

b= =h 4-10
min( g ) ( )

The details of resistance and loads in 10 cases are listed in Table 4-1 to 4-10, in which
the random variables in Table 2 is same with that in Eq. (4-9).

Table 4-1 Basic random variables in the case of n =1

Mean value Coefficient of variation Skewness
R — 0.15 0.454
Si 10 0.35 0.772

Table 4-2 Basic random variables in the case of n =2

Mean value Coefficient of variation Skewness

R — 0.2 0.608
S 10 0.1 0
S$2 5 04 1.264
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Table 4-3 Basic random variables in the case of n = 3

Mean value Coefficient of variation Skewness

R — 0.15 0
S 10 0.35 0.772
S2 10 0.4 0.8
S3 10 0.1 0.2

Table 4-4 Basic random variables in the case of n =4

Mean value Coefficient of variation Skewness

R — 0.1 0.301
S 3 0.1 0

S$2 6 0.2 0.4
S3 9 0.1 1.14
S4 10 0.3 1.14

Table 4-5 Basic random variables in the case of n =15

Mean value Coefficient of variation Skewness

R — 0.2 0
S 10 0.2 0.608
$2 5 0.4 1.264
S3 6 0.4 1.14
S4 7 0.2 1.14
Ss 8 0.1 0

Table 4-6 Basic random variables in the case of n =6

Mean value Coefficient of variation Skewness

R — 0.15 0
Si 10 0.35 0.7
$ 15 0.4 0.277
S5 20 0.1 -0.175
Ss 25 0.2 0.4
S5 30 02 1.14
Se 10 0.1 0.301
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Table 4-7 Basic random variables in the case of n =7

Mean value Coefficient of variation Skewness

R — 0.2 0.608
S 5 0.4 0.277
S 10 0.5 1.14
S3 15 0.25 0
Sy 20 0.35 0
Ss 15 0.1 0.2
Se 10 0.1 0.2
S7 5 0.2 0.4

Table 4-8 Basic random variables in the case of n =8

Mean value Coefficient of variation Skewness

R —_ 0.2 0.608
S 5 0.2 -0.352
$2 5 0.4 0.277
S3 5 0.1 -0.715
Sa 5 0.4 0.277
Ss 10 0.2 0.608
Se 30 0.1 0.2

S7 30 0.4 1.14

S 30 0.1 0.301

Table 4-9 Basic random variables in the case of n =9

Mean value Coefficient of variation Skewness

R _— 0.15 0
S1 7 0.35 1.14
S2 13 0.26 1.14
S3 24 0.5 0.566
S4 19 0.3 -0.026
Ss 31 0.05 0
AY3 20 : 0.42 1.14
S7 12 0.17 1.14
AY: 10 0.1 -0.715
So 11 0.02 0

56



Table 4-10 Basic random variables in the case of n = 10

Mean value Coefficient of variation Skewness

R — 0.1 0.301
S 20 0.2 0.608
$2 10 0.3 -0.026
S3 17 0.4 1.14
S4 21 0.03 0
Ss 10 0.3 -0.026
Se 19 0.12 0
S7 25 0.2 0.4
S 29 0.4 0.8
So 30 0.01 0
Sto 15 0.2 -0.352

In order to obtain a reliability close to the target reliability, the values of a and x are
calculated by trial computation. The relationship of x and », and the relationship of x and
k are given in Fig. 4-3 and Fig. 4-4, respectively. From Fig. 4-3, there is no distinct rule
in the number of load » and x. As shown in Fig. 4-4 (a = 1), the fitting result is in great
agreement with the results from 10 examples, where the value of Adj. R-Square is
0.98569. The fitting equation is

x=1.8k (4-11)

Therefore, Eq. (4-4) can be expressed as

Hpr = Zﬂsj +y B Z <.7§-/_ (4-12)

In the case of 1.8k > 5, the target mean resistance calculated by Eq. (4-12) is too safe.
Therefore in the case of 1.8k > 5, Eq. (4-12) is expressed as

Hrr =Z#S, +\/ﬁ;20§ (4-13)

Considering the mathematical definition of k, £> 1, accordingly, x > 1.8.
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Fig. 4-3 The relationship of x and » Fig. 4-4 The fitting result of x and £

4.3 Application of the proposed 3M method for load and resistance
factors

4.3.1 Influence of numbers of load

With the details of random variables in Table 4-1 ~ 4-10 and the Eq. (4-12), the load and
resistance factors can be calculated. Then the design mean resistance can be calculated
with

1
Ha = 52“’ e (4-14)

As shown in Fig. 4-5(a) ~ (j), the design mean resistance uq is calculated with the
existing 3M method and the proposed 3M method, respectively. It shows that us
calculated by the proposed 3M method is greater than that of the proposed 3M method in
most cases. In a few cases, uq calculated by the proposed 3M method is almost the same
with that of the existing 3M method.

For further analysis of the accuracy of two methods, with the design mean resistance,
the reliability is calculated by MC simulation, as shown in Fig. 4-6(a) ~ (j). It shows that
in all cases, the reliability calculated by the proposed 3M method is close to the target
reliability (the dotted line), while the reliability calculated by the existing 3M method is
far from the target reliability in some cases, such as Fig. 4-6(a), (b), (g), (h).

58



n=1
40 e

35 | —Proposed
- —Existing

I,

\

T

voa b be bl

ol Lo b bev i Lunay

15 2 25 3 35

RN

(a)

n=3

LA L L L B L

100

Hy

—Proposed
- —Existing

90
80

L AL IR R

70
60

T
T T

50

Ly b b s benn b Ny

40

30 Bl b b b
15 2 25 3 35

—_
s
~N ol

(©)

n=>5
200 e

=
<180
160
140
120
100

1
/

—Proposed
-~ Existing

x
(=)

DA
S O
ol L L L L B L S L

N S T R R R

~

59

n=2

e

Ha

— Proposed
—-—Existing

40 |

»|1|||||||||||\|||l|l||||||

S T B SN TN B
151 1.5 2 25 3 35 4
B,
(b)

n=4
u50_""‘””'”"""""""",'
2 L —Proposed -
45LL - —Existing b
40 | .
35 .
! ]
11} I B B I B I
1 1.5 2 25 3 35 4
B,

(d)

n=6
%300_,.,,,....]....,....|.,,,,..,.
2 —Proposed i
250 [ - - Existing b
200 [ 4
3 1
150 | ]
11010 ) I B I B B
1 1.5 2 25 3 35 4
B,



n=7
220 e

200 Proposed e
- -~ Existing 1
180 - ]
160 [ ]
140 - ]
120 ]
1007t b b b b o]
1 .5 2 25 3 35 4
B,

(2

n=9
m400_'""“"1"""""""""'
L /A
2 - —Proposed 7/ ]
350_— "‘Existing // ]
L V B
. Vi 4
300 [ J/ b
L 7 ]
250 |- ]
200 ]
]5():....IU..I..HI....l..,.l....-
1 1.5 2 25 3 35 4
B,

(@)

n=238
ﬁ300_....[....,....,.,..,....,...._
2 "—Proposed 1
- - Existing 1
250 | _
200 [ _
150 2ttt
1 15 2 25 3 35 4
B,
(h)
n=10
<30 e
N C ]
320 —Proposed
r  —~Existing
300
280 [
260 - ]
240 - .
2200 el b i b 1 ]
1 15 2 25 3.5 4
B,

0)

Fig. 4-5 The design mean resistance with respect to the target reliability

— Proposed
- - Existing

| U AT STSTATATE S P

/'.

LI L L L L BB

AN I T N P B

1 1.5 2 25 3 35

S

7

(a)

60

n=2
B 4|||rl
E —Proposed ~
3'5:_ - - Existing E
g .
251 JUPET
2:_ //"’ ]
15F A 4
L 2£ ]
7, -
A N B E R T
1 1.5 2 2.5 3 3.5 4
.

(b)



3.5

2.5

1.5

3.5

2.5

1.5

n=3
I L I I UL B>
- —Proposed B
-~ Existing 4 E
- // -
- 4 4
r 4 1
E p E
L /) 4
r P ]
L V ]
AT T T
1 15 2 25 3 35 4
B,

(c)

n=35
RS RN AN RS AN
- —Proposed i_
r  ——Existing 1
: ]
- 4 .
AT T T T
1 5 2 25 3 35 4
T

(e)

n="17
A I B UL I WY %)
- —Proposed E
-~ Existing .
- E
3 ;
AT T T T T
1 1.5 2 25 3 35 4

)

61

N

—
W

T T T T T T T T T T[T T T[T T T[T

—

3.5

N
19y

N

—
W

—

— Proposed
-~ Existing

Lovvo b a b b bag a0

A RN I N B e
1 15 2 25 3 35 4
B,

(d)

n=6
r | T IR IR R T
- —Proposed E
r — - Existing 1
- ]
AT T N
1 15 2 25 3 35 4
r

n=38
r | | T i
- —Proposed E
-~ Existing ]
AT T T T T
1 .5 2 25 3 35 4
B,

(h)



n=9 n=10
[34_ L B B R T 4= T T T T
F —Proposed 7 ] I —Proposed
33 -~ Existing B 3'5; - - Existing
C 7 ] r -
3 C S ] 3 C 7
' /, | r ._//
C 7 ] r 4
25F z 3 25¢ g
C ] r 4
2 = 2f A
C ] r 2
1.5F ] L5 |
1 L ! I ! [ 1:.. ! L L ! !
1 1.5 2 25 3 3.5 4 1 1.5 2 25 3 35 4
B, r
@) 0)

Fig. 4-6 The calculated reliability with respect to the target reliability

4.3.2 Convergence of the proposed method

In order to compare the convergence of the existing 3M method and the proposed method,
the following performance function is considered

G(X)=R—(D+L+S) (4-15)
where R, D, L and S are the resistance, dead load, live load and snow load, respectively.
The details (the mean value, coefficient of variation and third moment) of the basic
variables are same as that in Table 4-3.

As introduced before, there is one time iteration in the existing 3M method, while in
the proposed 3M method there is no iteration. In order to compare the convergence
property of the two methods, 5 time iterations are considered. As shown in Table 4-11,
Udo 1s the design mean resistance calculated with no iteration, while u; is the design mean
resistance calculated with i time iterations.

From the results for 7= 3, after 3 times iteration, the convergence value of the design
mean resistance can be obtained (regard 1% as the critical error) by the proposed 3M
method, while 4 times iteration is necessary in the existing 3M method. The convergence
speed of the proposed 3M method is slightly faster than the existing 3M method. Because
of the convergence value of the design mean resistance is different of two method, further
analysis is necessary. Based on the convergence value of the design mean resistance of
two methods, the reliability calculated by MC simulation respect to the target reliability
(1 ~4)is given. As shown in Fig. 4-7, both of the two method are not accurate. Compared

with the existing 3M method, the reliability calculated by the convergence value of g of
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the proposed 3M method is closer to the accurate value.

Table 4-11 Design mean resistance calculated by iteration

Method Udo Udl Ud2 Ud3 a4 Uds
Existing formula 31.25 27.83 27.88 27.91 27.92 27.92
Proposed formula 32.72 29.19 29.44 29.42 29.42 29.42

B 4_""I""I‘"'l""l""f""‘l‘ﬂ
[~ Accurate A
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Fig. 4-7 Reliability calculated by convergence value of ug respect to the target reliability

4.3.3 Comparison of four methods

In order to compare the application of the proposed method, the following example is
considered [2]. The load combination is same as Eq. (4-15). The details (the mean value,
coefficient of variation and third moment) of the basic variables are shown in Table 4-12.
Although the distribution types of loads and resistance are not necessary in the calculation

of load and resistance factors, the distribution types are given for MC simulation.

Table 4-12 Basic random variables for ASCE example

R —  0.09 — 0.27 1.06 — Lognormal
D 1 0.25 0.25 0 1.0 1 Normal
L 0175 0.59 0.103 1.18 1035 0.5 Gamma
S 0.6874 0.21 0.144 1.14 0.982 0.7 Gumbel
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4.3.3.1 ASCE method

For target reliability fr = 3, with the method in [2], the resistance factor can be calculated
as

¢:(/‘R/Rn)exl{—aR/3VR]=0.877 (4-16)
where the sensitivity coefficient of resistance ar = 0.7 is an approximate value which
introduced in [2].

And the load factors can be calculated as

7o =k /D N1+ ap V) =1.600 (4-17)
ye = /L, N1+, B7,)=0.598 (4-18)
7s = s /S, N1+ a5 Vs)=1.229 (4-19)

As introduced in [2], ap is a sensitivity coefficient of load that is approximately equal

to 0.8 when load Q is a principal action and 0.4 when Q is a companion action.
4.3.3.2 Mori method

Step 1, the distributions of all loads should be transformed into lognormal distribution.
According to Eq. (2.4.17), (2.4.18) and (2.4.25) of [3], gumbel distribution of the snow
load can be turn to Lognormal distribution by

25 =In(1-0.164/5)=—0.035 (4-20)
1+3.14,

¢ =0.430xIn| ————51=0.233 4-21

s : n(1—0.164/SJ (+21)

Ve = Jexpl¢2)-1=0.236 (4-22)

Similarly, the Normal distribution of the dead load and the Gamma distribution of the

live load can be transformed into lognormal distribution:

X =0 (4-23)
&) =0.012+0.8300,) —0.47%2 +0.11 W3 =0.192 (4-24)

V= +Jexpl¢2)-1=0.194 (4-25)
2, =0.002—-0.02%, —0.26 V2 —0.07%} =—0.120 (4-26)
&, =0.009+0.92%, —0.20%7 +0.08W7 =0.501 (4-27)

v, = Jexpl¢?)-1=0.534 (4-28)

Step 2, the sensitivity coefficients of loads and resistance can be obtained by the

following calculation.
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According to Eq. (4-27), cs, cp, c1 can be calculated.

exp A +10'1n02 Ou Ho,
c. = M - 2 B Dn Qni

P i y
Zex Ao, “‘lo'mo2 O Ho,
J - 2 B Dn an

ce =0.363, c,=0.543, ¢, =0.094

* *
Then or and as are expressed as

O,
a}*? — InR
2
\/UlnR +ZT¢] 'Uan,)
J
. i " Omg,
o, =

2
J% S, .%Qj)

J

where

oyx = In(l+72) =0.090

* *
The results of ag and as are

al=0369, ai=0347, a),=0427, o =0.193

1.05

e o

0.4

The sensitivity coefficients of loads and resistance can be calculated as

op=ap -u=0493
og=og-u=0.463
o, =a5-u=0.570

a, =a; -u=0258

Step 3, the load and resistance factors can be determined.

! exp(—aR,BTO',nR)ﬂR =0.924

¢:1[1+V}% Rn
1

= exp(aSﬁTO',nS)#S =1.328
1+VS Sn

Vs =

Similarly,
¥y, =1.352
v, =0.444
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4.3.3.3 The Existing 3M method

With 5 steps of the existing 3M method, the load and resistance factors can be calculated.

Step 1, the original target mean resistance can be obtained

Hr, = D Ho +,/,B73f'520'é =3.959

Step 2, o6, azc and f2r can be obtained
g =0k +Zo-é =0.470

where oy =, -V, =0356

Ay = O__lg(az»RO'?z _Z%Q, o), ): 0.072

Bor = ai{l —exp{—ag—G(— B, —f‘;ﬁﬂ} ~2.906
3G

Step 3, the target mean resistance grr can be obtained
Hrr = Z/“Q, +for0 =3.228
Step 4, repeat step 2 with urr, 06, a3 and fr are obtained as
o =,03 +Zo-é =0.422
where o = g Vi =0.291

Ay = o%(ozmo-;?2 - Z%Qf 02), ): 0.025

Por = ;3_{1 - ex[{gig(— Pr _%H} =2.967
3G

Then the corresponding sensitivity coefficients of loads and resistance are

a, =28 =0.688
O¢

ay =22 =0.592
oy

a, =2L =0.244
Og
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(4-49)
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(4-53)
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g =25 20342
Og

Step 5, the load and resistance factors can be finally determined

p=(1- aRVR,BZT)%nﬂ ~0.865

o :(1+aDVD,327)‘1‘)D ~1.439

n

¥, = (uaLVLﬂzT)% =0.500

n

y5=(1+aSVS,827)§i=1.191

n

4.3.3.4 The proposed 3M method

(4-55)

(4-56)

(4-57)

(4-58)

(4-59)

With 3 steps of the proposed method, the load and resistance factors can be calculated.

Step 1, in this example, £ = 3.55, 1.8k > 5, therefore the target mean resistance can be

obtained with Eq. (4-13)

Hignew = O Ho, +|B2Y 0 =6.638

Step 2, 06, azc and far can be obtained, respectively

oG = o2 +Y 0 =0.671

where o = sy - Vi =0.597
1 5

3 |
s :G_3(a3Ra,; - a0 )_ 0.175
G

—o36Br
ﬂszi'i l-e 38 [=2.802
Ui

Then the corresponding sensitivity coefficients of loads and resistance are

ap =—2=0.890
Og
(o
p=—2=0372
¥ei
L =2L 20.153
Og
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ag =—5=0214 (4-67)

Step 3, the load and resistance factors can be finally calculated

p=(-axVefor )’;—R ~0.822 (4-68)
yD:ﬁ+aM@ﬂnnz=426l | (4-69)
v, =(+a,V, Bor )_‘Lfi— =0.439 (4-70)
7s =+ asVs By ) S =1.106 (4-71)

n

4.3.3.5 Results comparison

The results of load and resistance factors in different methods are listed in Table 4-13.
The results show that the resistance factors ¢ calculated by three methods are in great
agreement. The results of the dead load factor yp are also close, while y; and ys calculated
by Mori method is different from that of other methods.

In order to compare the accuracy of four methods, with the load and resistance factors

in Table 4-13, the design mean resistance is also calculated with

Hr _Hp R, _pp 1 D, L, S, 4
Mo _He Ry _px L[ Dy Ly 72
D, R D, R ¢(n’ b, "t'p 5D (4-72)

As shown in Table 4-14, the design mean resistance calculated by ASCE method is the
largest, while result of Mori method is the smallest. The results of the proposed 3M

method is slightly larger than the existing 3M method.

Table 4-13 Results of load and resistance factors
¢ ¥D yL Vs
ASCE method 0.877 1.600 0.598 1.229
Mori method 0.924 1.328 1.352 0.444
Existing 3M method 0.865 1.439 0.500 1.191
Proposed method  0.822 1.261 0.439 1.106

Table 4-14 Results of design mean resistance
Method ASCE method Mori method Existing 3M method Proposed 3M method
H1r/Dh 3.335 2.656 3.091 2.907
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With the design mean resistance and the values of up/Dn, ui/D, and us/Dy, the reliability
calculated by MC simulation (100,000 samples) are shown in Table 4-15, reliability 3.02
of the proposed 3M method is closest to the target reliability 3.0. Therefore, the proposed
3M method is considered accurate and safe. The existing 3M method is also accurate and
safe, but in this method, there are a lot of limitations and one time iteration is inevitable.
The ASCE method is much simple, but the reliability by this method is much greater than
the target reliability, which is safe but waste of structural materials. Conversely, the
reliability calculated by Mori method is much smaller than the target reliability, which
means the design is not safe.

Table 4-15 Reliability of MC simulation with different methods
ASCE method Mori method Existing 3M method Proposed method
B 3.53 2.46 3.08 3.02

The advantages and disadvantages of different methods are listed in Table 4-16. ASCE
method is simple and applicable for most structures. But it is too safe for reliability design,
which means it is a waste of material. Mori method in this example is difficult and not
safe. In the case of the distributions of resistance and loads are very different from
lognormal distribution, the calculation error may be large in Mori method [4]. The
existing 3M method is safe and material-saving, but the calculation is difficult for
designers for one time iteration is necessary. And there are limitations of applicable range.
The proposed 3M method is accurate, safe, material-saving, without any mathematical
limitations and no necessary for iteration calculation. Therefore the proposed 3M method

is considered to be the most applicable for practical structural reliability design.

Table 4-16 Comparison of different methods

ASCE Mori Existing 3M Proposed
method method method method
Applicable range Large Large Narrow large
Safety degree Safe Dangerous Safe Safe
Material saving ) ) .
Waste Saving Medium Saving
degree
Difficulty degree Simple Difficult Difficult Medium
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4.3.4 Design for wind load
4.3.4.1 The calculation of wind load and other variables |

Based on the method in [3], the horizontal wind load can be expressed as

Wp=quCpGp4 (4-73)

1
4w =5 PU} (4-74)
Uy =Uskp, KpKsEy (4'75)

where
Wp — wind load (N) at hight Z (m) (from ground);
gn — velocity pressure (N/m?);
Cp — coefficient of wind pressure;
Gp — influence coefficient of gust in the wind direction;
A — area of building in the vertical direction of wind load (m?);
p — density of atmosphere, 1.22 kg/m?;
Uy — design wind speed (m/s);
Uy — basic wind speed (m/s);
krw — conversion coefficient of the reproduction period;
Kp — wind directionality factor;
Ks — seasonal factor;
Ey — vertical factor of the wind speed according to the surface condition of the
building site.
In the case of reproduction period 100 years, without considering the influence of Kp
and Ks, Eq. (4-73) can be expressed as
Wy = PUE, F CoGpd (4-76)
Considering the uncertainty of p, En, Cp, Gp, the details are given in Table 4-17 based
on assumption.

Table 4-17 Details of random variables

o Coefficient of Lognormal Lognormal
Distribution o o Skewness
variation mean value standard deviation
p  Lognormal 0.1 -0.0050 0.0998 0.301
En Lognormal 0.1 -0.0050 0.0998 0.301
Cp Lognormal 0.15 -0.0111 0.149 0.453
Gp Lognormal 0.15 -0.0111 0.149 0.453
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Based on the basic wind speed Up in Tokyo and the wind speed in reproduction period

500 years, Usoo, the wind load in reproduction period 50 years can be expressed as
2
oy [V, 2[1—0.068&(;—2—1H =0.985 4-77)

Where
uw — the mean value of the maximum wind load in 50 years;
W, — the nominal value of the maximum wind load in 50 years.
The coefficient of variation, third moment, and fourth moment of uw, can be calculated,

too.

1.28x(g—g—1)
v, = 75 =00891 oy =114, = 5.4 (4-78)
172-0.111x

The details of resistance, dead load and live load are given in Table 4-18. The value of
Wo/Dy, varies from 0.25 to 4.0 [3]. In this example, it is assumed W,/Dy, = 2.

Table 4-18 The details of resistance, dead load and live load
Coefficient of UR/R, or

Distribution L ] Qin/D, Skewness
variation 1o/ Qin
Resistance R Lognormal 0.2 1.14 — 0.608
Dead load D Normal 0.1 1.0 1.0 0
Live load L Gamma 0.59 0.8 0.8 1.18

Different from the snow load analysis in Section 4.3.3, the distribution type of the wind
load in Section 4.3.4 is unknown. Therefore the MC simulation cannot be used as a
comparing method. In the following analysis, the load and resistance factors are
calculated by Mori method, the Existing 3M method and the proposed 3M method.

4.3.4.2 Mori method
Firstly, the gumbel distribution of the maximum wind speed in 50 years should be

transformed to lognormal distribution.
2, =In(1-0.164x0.089)=—0.0147 (4-79)

& =0.430><ln( 1+3‘14”)'0891):0.112 (4-80)

1-0.164%x0.0891
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v, = Jexplc2)-1=0.113 (4-81)

Other variables are also transformed into lognormal distribution with Eq. (4-82), as
shown in Table 4-18.

/l}:ln( le} (4-82)

Therefore, the wind load can be transformed into lognormal distribution as

By =200y 42 Ay By T, + Ay, =—0.0666 4-83)
Cw = \/(2.;3,)2 ¢, Fre2+ct +¢2 0380 (4-84)

Vy = Jexp¢2)-1=0.394 (4-85)

The same as the calculation of snow load, other parameters can be calculated.

exp{—O.0666+%x0.3802J><2><().985:1.98 (4-86)
¢y =—8 0546 ¢, =0.276 ¢, =0.178 (4-87)
1.98+1+0.176
@ =0.0.487 a5, =0.511, @) =0.062 o =0.220 (4-88)
. 1.05 - 1204 (4-89)
1—(1—\/0.6332 +0.7622 ) @(ﬁ'—q

The sensitivity coefficients of loads and resistance are
o, =0.587 a =0.615 ap =0.0742 o, =0.264 (4-90)
The load and resistance factors can be calculated.
¢ =0.869, 7, =1.361, 3, =1.005 y, =0.811 (4-91)

The design mean resistance can be finally calculated as

R 1 w, D L 1
=— Ty gy = % (1.361x2+1.005% 1+ 0.811x0.8) = 5.04  (4-92
D, ¢(7W D YD D Yo Dn] 0.860 ( ) ( )

n n

4.3.4.3 The existing 3M method

Firstly, the wind load can be expressed as the product of independent variables.

Y = ﬁX, (4-93)
i=1
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The standard deviation and the third moment of Y can be calculated by

o =ﬂ${]i[(1+’42)—1} (4-94)

i=1

sy = l:ﬁ(a3ll/i3 +3V2 +1)- 3f1(1 V2 )+ 2} / Vi (4-95)

i=1 i=1

If X obeys lognormal distribution, the coefficient of variation and third moment of ¥
= X” are expressed as
vz =Q+v2) -1 (4-96)

oty =3V + V3 (4-97)
If X obeys other distribution, the coefficient of variation and third moment of ¥ = X2

arc expressed as

y
v, = 1+)I{/ 5 Ja+day,Vy +(ayy -2 (4-98)
Oy = (1 -V )0‘3)( +1 -5(0‘4X - I)VX (4-99)

Therefore, the coefficient of variation and third moment of the parameters in Eq.(4-
93) can be calculated:

(1) The coefficient of variation and third moment of ¥ = U? are

V, = U 4+ 4oy Vi + (o — 12 =0.186 (4-100)
1+V2
asy = 1=V, Jorsyy +1.5(tyyy =1, =1.626 (4-101)

(2) The coefficient of variation and third moment of X = E? are

vy =1+ J —1=0202 (4-102)

sy =3V +VE =0.613 (4-103)

Then the coefficient of variation and third moment of wind load are expressed as

v, = ﬁ(lw,?)—l =0.370 (4-104)

i=1

oy = %{ﬁ(aﬂ/ﬁ +3V2 +1)—3ﬁ(1 +V2)+ 2} ~1.342 (4-105)

W i=l i=1

The original target mean resistance can be calculated.
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Hro :Z'UQ,- N }‘5205 =6.39u),

With pro, the following factors can be calculated.

Ooo =02 +Y 0l =1.522u,

3 3

O30 pg — Za O

3RY RO 30,70

a3GO = 0_3 = 0-1 95
GO

Boro = & 1—exy 2300 - b ——%GO] =1.904
U360 3 6

Repeat Eq. (4-107) ~ (4-109),
o =1.542u;, ay; =0.207, By =1.898

The sensitivity coefficients of loads and resistance are
agp =0.844 a;, =0.065 o, =0.245 oy =0.473
$=0.775 y,=1.012 y, =1.019, y,, =1.312

The design mean resistance can be finally calculated as

(4-106)

(4-107)

(4-108)

(4-109)

(4-110)

@-111)
(4-112)

R 1 w D, L 1
—_—=— A AR Yt SR VS /R x(1.312x2+1.012%x1+1.019x0.8)=5.74 4-113
D, ¢(}’W D, YD D, Yo DnJ 0.775 ( ) ( )

4.3.4.4 The proposed 3M method

The coefficient of variation and third moment of the wind load are same as the results of

the existing 3M method. The target mean resistance is calculated as

HRr-new = Z/“Q, + 73"3820'5, =6.278u),

where x = 1.8k = 3.38.
where o = gy V3 =1.256u,

Qg = ;12—(633}30',3e - Zaw] o) ): 0.183

3G

~a36Pr
By = —3;8—|:1—e 38 }: 1.907

Then the corresponding sensitivity coefficients of loads and resistance are
o =0.835 a, =0.067 a, =0.251 ay, =0.485

Finally, the load and resistance factors can be finally calculated
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$=0.777, y, =1.013 y, =1.026 7, =1.322 (4-119)

The design mean resistance can be finally calculated as

R

D

n

1w D L
A W B Bl L (13202 41.013x141.026x0.8)=5.76  (4-120
¢(7W p, P'p, 7 D,,] o777~ > ) (4-120)

According to the design mean resistance, the results of the proposed 3M method is in

agreement with the existing 3M method, while the result of Mori method is much

smaller than other methods.

4.4 Conclusions

In this chapter a simplified third-moment method for determining the load and resistance

factors is proposed. Compared with the ASCE method, Mori method and the existing 3M

method, the following advantages of the proposed method are considered significant.

1.

The proposed 3M method is simpler than the existing 3M method. The one time
iteration in the computation of the target mean resistance in the existing 3M method
is simplified to no iteration in the proposed method.

The convergence of the proposed method in the computation is better than the existing
3M method. Simultaneously, the accuracy of the proposed method is good enough.
There is no mathematical limitation in the computation of the target reliability in the
proposed method, while in the existing 3M method, the mathematical limitation is
inevitable.

Compared with ASCE method and Mori method, the proposed method is considered

safe and material-saving.

REFERENCES

[1]

2]

[3]

[4]

Zhao Y.G. et al. Estimation of load and resistance factors using the third-moment
method based on the 3P-lognormal distribution, Frontiers of Architecture and Civil
Engineering in China, 2011, 5(3): 315-322.

ASCE. Minimum design loads for buildings and other structures. ASCE Standard 7-
10, ASCE, Reston, Va. 2010.

Architectural Institute of Japan. Recommendations for limit state design of buildings.
2015.

Mori, Y.. Practical method for load and resistance factors for use in limit state design
(in Japanese), J. of Struct. Constr. Eng., ALJ, 2002, 559: 39-46.

75



CHAPTER 5

Probabilistic durability analysis

Al

5.1 Introduction

In section 5.2, the improved analytical model of corrosion initiation was given, where the
concept of crack rate #, was proposed. Then the corresponding stochastic model was built
to analyze the corrosion probability. And the accuracy of the proposed 3M method was
compared with MC simulation (sample size 10000). The influence of the mean value, the
coefficient of variation and the distribution of factors was analyzed respectively in
durability assessment.

In section 5.3, the analytical model of cover cracking was built. The stress intensity
factor arrive fracture toughness was regard as the limit state of cover cracking. And the
initial micro-cracking was considered as an influence factor of cover cracking. The same
as the stochastic analysis of corrosion initiation, the influence of the mean value, the
coefficient of variation and the distribution of factors was also analyzed in the evaluation
of the failure of cover cracking. Some conclusions that are different from the analysis of
corrosion initiation were proposed.

In section 5.4, from the analytical model and stochastic analysis of corrosion initiation
and cover cracking, there were several conclusions, which can give structure designers

some opinions to prevent chloride corrosion of RC structures.
5.2 Corrosion initiation
5.2.1 Analytical model

Numerous studies [1-5] have indicated that chloride penetration through concrete can be

empirically described by Fick’s second law:
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C(x,tl)zC{l—er/{z o ﬂ (5-1)

where #1 is the spent time from start of exposure to corrosion initiation (s), C(x,t1) is the
corresponding chloride concentration at depth x (m) (%/m?), and erfis the Gaussian error
function:

2 ¢
erf(z)= ﬁj;exp(—— 1 )dl‘1 (5-2)

As an inherent and inevitable phenomenon in the formation of concrete mixture, early-
age micro-cracking will obviously influence the chloride penetration into concrete and
consequently the time to corrosion initiation. Some previous studies [2, 5] have already
found that the patterns of chloride penetration in cracked concrete are obviously different
with that in sound condition. Therefore, early-age micro cracking will be included in the
diffusion coefficient D (m?/s) in Eq. (5-1) to assess its effect on corrosion initiation. The
diffusion coefficient D here can be divided into two parts (namely, D, and Dy, Fig. 5-1)
and is expressed as:

b Doy +DoA _ Dyt + Dy (5-3)
A, +A4 1+7n,
where

D¢ — the value of chloride diffusion coefficient inside the early-age micro-cracking;

Do — the corresponding value for sound area;

A — the area of micro cracking (m?);

A — the exposed surface area of the concrete element (m?).
In order to quantify the influence of the early-age micro cracking, in this study #, is

referred as the crack rate, which equals to 4./4.

Cracked sample Uncracked sample Cracked
D Dy D.»

Fig. 5-1 Partition hypothesis of chloride diffusion through cracked concrete

y4

It has been indicated [6-7] that the value of chloride diffusion coefficient inside a crack
of concrete cover (namely D.», m?/s) is independent of material effects, even if tortuosity
and roughness are different. Djerbi et al. [8] suggested the following relationship between

the crack width wy in concrete cover and its diffusion coefficient D, inside the crack:
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5-4
D,, ~14x107°,, > 80um (>-4)

{DC, =2x10" W, —4x1071°,30m < w, <80um
Besides penetration in the micro cracked area of concrete cover, the chloride will also
diffuse in its sound area. The environmental parameters such as relative humidity and
temperature, along with the exposure time of RC structures affect the diffusion in sound
concrete greatly [1-5, 6-9]. In order to discuss the coupling effects of these influencing
factors on the corrosion initiation, here the parameters are accounted for via corrections
to the diffusion coefficient Dy, as follows:
Dy = A, A1 2, Dyg (5-5)
where
Arn — the correction coefficient for environmental relative humidity % (%);
Ar — the corresponding coefficient for temperature 7' (K);
A+ — the coefficient for exposure time #; (day);
D»g — the chloride diffusion coefficient for a specimen under standard curing (28 days)
[9]:
Dy =1 (-1206+24w/ c) (5-6)
where w/c is the water-to-cement ratio. Also the parameters An, A, and Ar can be

respectively expressed as:

Xy = {1 (S0 ] (5-7)

A —[’—) (5-8)

Ul 1 1
ZT = CXK{E(FZB— —?J} (5‘9)
where

h. — the threshold relative humidity (h=75%);

s — the time of standard curing (28 days);

m — the age factor related to w/c by m=3(0.55 — w/c);

U — the activation energy equal to 35000 J/mol;

R — the gas constant;

T>s — the temperature for standard curing on day 28 (293 K).

Corrosion initiation occurs when chloride concentration on the surface of the steel bar
C(x = ¢, t1) (where c is the thickness of the concrete cover) exceeds the critical threshold
chloride concentration C... Therefore, the following equation can be regarded as the

criterion for the corrosion initiation of the steel bar.
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Cle,ry)=C, (5-10)
5.2.2 Stochastic model

Base on the analytical solution for corrosion initiation (Eq. (5-1) ~ Eq. (5-10)), it can be
found that the chloride concentration on the surface of the steel bar C(c, #1) is a function
of a number of basic random variables (i.e. Cs, ¢, D, nw, w/c, h, T and t1). The critical
threshold chloride concentration C. and C(c, t1) in Eq. (5-10) are identified with interior
resistance R and effect of exterior deterioration S, respectively. The performance function
governing the initiation of corrosion can be written as
G (x)=c, —Cle,1,) (5-11)
The corresponding failure probability of corrosion initiation, Pi(#1), can be estimated
as
R(t,)="R[G (x)=<0]=R[C(e,)=C,] (5-12)

5.2.3 Durability assessment
5.2.3.1 Efficiency and accuracy of the present method

In order to verify the efficiency and accuracy of the present method in analyzing the
probability of corrosion-induced failure, the following example of corrosion initiation is
given in this paper to compare the proposed 3M reliability index with the previous used
MC simulation. The statistical parameters of corrosion-induced failure adopted for the

corresponding verification and following assessment are summarized in Table 5-1.

Table 5-1 Values of basic variables in the stochastic analysis of corrosion initiation

Basic Coefficient of o
. Mean o Distribution Sources
variables ) variation
0.9 (0.6 t0 1.2)
Cer 3 0.19 Lognormal [10]
kg/m
Cs 1 kg/m? 0.5 Weibull [10]
Nw 0.2% 0.4 Lognormal [10]
w/c 0.5 0.1 Normal —
h 75% 0.05 Normal [10]
20 °C 0.2 Lognormal -
c 70 mm 0.14 Normal [11]
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For corrosion initiation, the prediction of the failure probability derived from the
proposed 3M methods is compared with the result from MC simulation (sample size N
10000). One can see from Fig. 5-2 that the results of all 3M methods are in good
agreement with that of MC simulation. 3M-1 is the most accurate method. However, in
the case of #1 is great (11 = 50 year), the lifetime of structure may be underestimated.
Considering the advantages of 3M-3 method mentioned in Chapter 3, the proposed 3M

method is chose in the following analysis.

20%|||||||||l|‘lll]rrrlllll

15%

10%

5%

PRT ST TR S N TN SN WU N [N SN Y TS S AN SO SO ST

0%

Fig. 5-2 Probability of corrosion initiation

5.2.3.2 Influence of the mean value of variables

One of the advantages of stochastic analysis is the possibility to examine the sensitivity
of different variables affecting the probability of corrosion initiation. A parametric study
was conducted on the basic variables deemed to be significant in corrosion initiation, as
provided in Table 5-1. The time-dependent probability of corrosion initiation influenced
by the mean values of these factors is presented in Figs. 5-3 to 5-10.

Among these variables illustrated in Figs. 5-3 to 5-10, the water-to-cement ratio w/c
has the great effect on the probability of corrosion initiation. For example, the structure
lifetime when its corrosion probability reaches 10% (Fig. 5-3) is shown to increase from
approximately 4 years to 50 years as w/c changes from 0.6 mm to 0.4 mm. w/c is directly
related to the pores of the concrete structure, thus implying that improving concrete

quality is also an efficient method for increasing service life.
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The humidity 4 is the second important influence factor. As shown in Fig. 5-4, the
decrease of humidity from 90% to 60% can prolong the structure lifetime from 12 years
to 40 years (critical failure probability 10%).

As shown in Fig. 5-5, the structure lifetime increases from 2 years to 22 years as ¢
increases from 30 ¢cm to 70 cm (critical failure probability 10%). This demonstrates that
increasing ¢ is an efficient method for prolonging the service life of corroded RC
structures.

The surface chloride concentration Cs and the critical chloride concentration Ce, are
also important in evaluation of structure lifetime. As shown in Fig. 5-6, 0.1 %/m? increase
of C; can shorten the structure lifetime 5 ~ 10 years. Conversely, 0.1 kg/m? increase of
C.r can prolong structure lifetime for about 5 years (critical failure probability 10%), as
illustrated in Fig. 5-7.

The influence of the crack rate #,, and the temperature 7 is quite obvious and should
not be ignored, as shown in Fig. 5-8 and 5-9. However, #,, in Fig. 5-8 changes from 0.1%
to 0.3%. In the case of high crack rate, the corrosion probability may reach to the critical
probability rapidly. In Fig. 5-9, the temperature changes from 10 to 30 °C, sometimes in
summer the surface temperature of structure is up to 60 ‘C. In the case of high

temperature, the structure may be corroded quickly.

20% 20% rrrrr
Qj:' —O—w/c=0.6 Q:\ b
i —O—-w/c=0.5 ]
15% ——w/c=0.4 . 15% | -]
10% |- 10% |- 7

5%
- 0 1h=75%

—-~h=90%
——h=60% |

0% L I 11 1 1 I L1 1 1 I 11 1 I- 11 1 1 l 11 1 1 I L1 11 I 111 I-
0 10 20 30 40 50 0 10 20 30 40 50
t (year) ‘ 1,(year)
Fig. 5-3 Influence of w/c on Pn Fig. 5-4 Influence of z on Pn
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Fig. 5-7 Influence of C,r on Pn
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Fig. 5-8 Influence of ,, on P
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Fig. 5-9 Influence of 7 on P

5.2.3.3 Influence of the distribution of variables

The complexity of natural corrosion of a real engineering structure under aggressive
chloride environments makes it difficult to accurately understand the statistical
parameters of the variables. Thus different types of the distribution are generally assumed
in many previous researches [12-20] to predict the probability of corrosion-induced
failure. The corrosion probability gaining from different distributions of variables is
investigated here to analyze the effects of the type of distribution (such as the 4 variables
in Figs. 5-10 ~ 5-13). It is found that the specific choice of distribution has almost no
influence on corrosion probability. This result shows that the probability of corrosion
initiation is not sensitive to the choice of distribution of variables. The same results can

be found in the analysis of other variables.
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Fig. 5-12 Influence of w/c on Pn Fig. 5-13 Influence of Cr on Pn

5.2.3.4 Influence of the coefficient of variation of variables

The mean of a variable is generally used to study its effect on the probability of corrosion-
induced failure. However, the values of variables are generally uncertain and change
frequently in natural corrosion of exposure environments. Thus, different coefficients of
variation v are also tested here to study the effect of the variation of variables on the

probability of corrosion initiation (Figs. 5-14 to 5-20).
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As shown in Fig. 5-14 and 5-15, corrosion probability is sensitive to variations in C;
and C., which is same as the influence of the mean value of Cy and C,.

The influence of coefficient of variation of variables is relative to exposure time, such
as Fig. 5-16 and 5-17. In early times, a larger coefficient of variation of ¢ and w/c may
lead to a higher corrosion probability. Then the influence may get less obvious.

The influence of coefficient of variation of #, and 7 is negligible, as shown in Fig. 5-
18 and Fig. 5-19.

In Figs. 5-14 to 5-19, the greater the coefficient of variation, the faster the corrosion
failure increases. From Fig. 5-20, a contrary tendency can be found. The corrosion failure

is higher in the case of the coefficient of variation is small.

20% 20%
A= A= i
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Fig. 5-14 Influence of Cs on P Fig. 5-15 Influence of C¢ on P
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Fig. 5-16 Influence of ¢ on P
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5.3 Surface cracking

Several engineers deem the point of corrosion initiation of reinforcing steel as too
conservative to be a criterion for the failure of service life of corroded RC structures, and
instead regard the point of surface cracking of concrete cover as more appropriate.
Therefore, the surface cracking of concrete cover is generally considered as another useful

indicator in evaluating the corresponding service life.
5.3.1 Analytical model

For corrosion-induced cracking, concrete with embedded reinforcing steel bar can be
modeled [21-33] as a thick-walled cylinder with a bar in the center of the cylinder (Fig.
5-21). The initial defect such as micropore structure and random fine crack occurring in
the formation of concrete mixture has a certain effect on the corrosion-induced stress field
in concrete cover and thus maybe affect the time to cover cracking [33], especially on the
scale of the cover thickness (<100mm). Hence, the effect of initial defect on surface
cracking will be taken into account in this thesis. The initial defect is assumed to be a fine
crack starting on the surface of the bar. Firstly the pore band and fine crack will be filled
with rust products (Fig. 5-21 (a)). Then further increase of the amount of products will
inevitably result in internal pressure on the surface of the bar (Fig. 5-21 (b)). When the

stress intensity factor K; of the concrete cover exceeds its corresponding fracture
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toughness Kjc, the crack can grow and propagate rapidly to the concrete surface, as shown
in Fig. 5-21 (¢).

do rust % dot0,
U

(a) Depassivation and filling full in pore (b) Cracking development (c) Surface cracking

Fig. 5-21 Cover cracking process initiation from the interface defect
At the moment of cover cracking, K; can be determined [34] by following equation
after including the effective crack propagation of the initial defect:
K, =FF\ma+Aa (5-13)

where a is the length of the initial defect, Aa is the length of effective crack propagation,

Py is the critical corrosion-induced pressure, and F| is given by

/b 1 4, (1)

1 = (5-14)
J1-(/p)°
in which
A, =0.854-1.812(a/c)*’ —0.212(a/c)
(5-15)
A, =—0.114+1.193(a/c)"” - 0.656(a/c)’
b=(d/2+c)/(d/2) (5-16)

If the parabola model of concrete materials is used to determine the softening
characteristic of concrete cover and to consider the size and boundary effect of Kjc, Aa

can be given as

1 (K.Y
Aa = 5‘;(7’] (5-17)

where f; is the tensile strength of concrete.
When the surrounding concrete is subjected to a corrosion-induced pressure Py, the
corresponding mass of steel per unit length of the reinforcement being consumed by

corrosion W as well as time to cover cracking 7> can be obtained from the radial
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displacement of the concrete u1 [26, 28] on the surface of the reinforcing bars, i.e.,

_ ‘P()(rl +d0) (”1 +d0)2 +ry

1 E I:rzz_(,.]+d0)2 lu}

where 71 is the radius of the reinforcement bar, ro= ri+dotc, do is the thickness of the

(5-18)

annular layer of the concrete pores at the interface between the reinforcing bar and the
concrete, u is the Poisson’s ratio of concrete, and E is the effective modulus of elasticity
of concrete cover, which is given by
E
E=—:= (5-19)
1.0+6

where E. and @ are the initial tangent modulus and creep coefficient of concrete cover,

respectively.
After determining the radial displacement of the concrete u; by Eq. (5-18), W can be
given by

(r+dy+u) —r2)
n—1.0
where p; is the mass density of reinforcing steel, and #» is the ratio of the volume of

2 (5-20)

expansive corrosion products to the volume of iron consumed during corrosion [26, 28].

Also the formula of cracking time of concrete cover #; (in years) is

t,=W?/2k, (5-21)
where £; is a function of the rate of metal loss, i.e.,
k, =0.196ami (5-22)

where o is the ratio of the molecular weight of iron to the molecular weight of the

corrosion products (¢=0.57), and i is the corrosion rate (uLA/cm?).
5.3.2 Stochastic model

Corrosion-induced cracking of concrete cover occurs when its stress intensity factor K;
exceeds the corresponding fracture toughness Kjc. If . represents the critical time when
crack propagation arrives the cover surface (gained by the value of K¢ of concrete cover),
the following criterion can be used to define the occurrence of concrete surface cracking:
' t,>t, (5-23)
Just like the assessment of corrosion in concrete structure, whether the surface cracking
happen or not can be determined by the following performance criterion
G,(X)=1, -1, (5-24)

in which G2(X) is the performance function. The failure probability Prof corrosion
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initiation or surface cracking can be calculated as
B(1,)="P[G,(X)<0]=P[, >, (5-25)
As introduced in Section 5.2.3.1, the proposed 3M-3 method is also applicable (The
details is not given).

5.3.3 Durability assessment

Note that the corrosion and cover cracking are two stages, the failure time of cover

cracking £, in this Section 5.3.3 doesn’t contain the time to corrosion initiation #1.
5.3.3.1 Influence of the mean value of variables

With the values of the basic variables that are deemed to be important for surface cracking
in Table 5-2, the cérresponding failure probability of cover cracking influenced by the
mean values of these factors are listed in Figs. 5-22 to 5-29. From Figs. 5-22 to 5-29, it is
obvious that the probability of cover cracking increases rapidly after corrosion initiation.
As shown in Fig. 5-22 and 5-23, the probability of cover cracking in 0.1 year is given.
The ratio of the volume of expansive corrosion products » is the most important factor,
which depends on the environment of the RC structure is exposed to. The different
corrosion products will have different volume expansions as presented in Table 5-3. It is
shown that an increase of n from 2 to 4 can greatly shorten the structural lifetime. The
similar rule of corrosion rate can be found in Fig. 5-23. At the time of 0.1 year, 0.5 zA/cm?
increase of i can result in 3% ~ 5% increase of the failure probability.

Table 5-2 Values of the basic variables in the stochastic analysis of surface cracking

Basic Coefficient of  Distribution
. Mean o Sources
variables variation type

n 2 0.2 Lognormal [35]

i 1.5 (1 to 2) uA/cm? 0.33 Normal [10]
fi 5.725 MPa 0.2 Normal [16]
E 18820 MPa 0.12 Normal [16]
d 25 mm 0.2 Normal [16]
K 1.118 MPa-m'”? 0.177 Normal [34]

c 70 mm 0.14 Normal [36]
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Table 5-3 » for various corrosion products

Name of corrosion

FeO Fe3;0s4 FeyO3 Fe(OH) Fe(OH); Fe(OH)3-3H0
products
n 1.80 2.00 2.20 3.75 4.20 6.40
NZO%_"‘I,'I' T I ] N10%>"'| 1 T |
~ / ~ | 0
) / ° -—i=1.0 A
15% Y - [ =15 1
/ - - - .." =
o N
S /) —w2 1 % S
10% - ) -——n=3 i ]
H II ......... n=4 4% L h
r / / i o7
5% '_ - ,I ] i » // i
L / 2% |- b < —
/ L - _ 4 4
i / | Pt
0% —";"— Z 1 [ S NS T U B S R 0% ) ':"':.: - 1’ - T oo o
0 002 004 006 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

1,(year) 1, (year)

Fig. 5-22 Influence of n on Pp Fig. 5-23 Influence of i on Pp

The influence of ¢, d and E on the probability of cover cracking is also obvious, as
shown in Figs. 5-24 to 5-26. Within 0.5 year the variation of the mean value of ¢, d and
E has a significant impact on the failure of cover cracking. The increase of cover thickness
can delay the failure of cover cracking, as shown in Fig. 5-24. It worth noting that the
failure probability in the case of the diameter of reinforcing bar 25mm is lower than that
of d = 15mm and d = 35mm (Fig. 5-25), which means making d too great or too small
will increase the probability of cover cracking. As shown in Fig. 5-26, Py increases with
the increase of the elasticity modulus E.

Contrary to the elasticity modulus of concrete, P, decreases with the increase of the
fracture toughness K, as shown in Fig. 5-27. The similar rule can be found in Fig. 5-28,
the tensile strength of concrete f; is also slightly influence the probability of cover
cracking. The slightest influence factor is the length of the initial defect a, as shown in
Fig. 5-29.
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5.3.3.2 Influence of the coefficient of variation of variables

The influence of the coefficient of variation on Py, is very different from the mean value
of factors, which is shown in Figs. 5-30 to 5-37. For all influence factors, the increase of
the coefficient of variation v will accelerate the failure of cover cracking.

As shown in Figs. 5-30 and 5-31, the influence of v, and v; is the most significant,
which is the same with the influence of their mean value. In Fig. 5-31, there is a turning-
point in the case of v; = 0.6, which means in the case of v; is very large, P, will increase

rapidly after corrosion initiation, then the increase rate will become slow.
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Fig. 5-30 Influence of v, on Pp. Fig. 5-31 Influence of v; on Py

The coefficient of variation of d also has obvious influence on Pp, as shown in Fig. 5-
32. Thus controlling v4 under 0.2 is significant in reducing the risk of cover cracking.

From Figs. 5-33 to 5-35 we can see, the coefficients of variation of E, K and f; are
slightly influence the probability failure of cover cracking.

Different from the mean value of ¢, the influence of the coefficient of variation of ¢ on
Pp is negligible, as shown in Fig. 5-36. And both of the mean value and the coefficient of

variation of a have the slightest influence on the failure probability of cover cracking.
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Fig. 5-37 Influence of v, on Pp

5.3.3.3 Influence of the distribution type of variables

The influence of the distribution type on Py, is different from the analysis on Py, as shown
in Figs. 5-38 to 5-45. For most influence factors, the result of P, when influence factors
obey gumbel distribution is very different from other cases, as shown in Figs. 5-38 to 5-
43. In Fig. 5-38 and 5-39, the gumbel distribution of n or E will decrease the failure
probability of cover cracking. On the contrary, the gumbel distribution of d, K and f; will
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increase the failure probability of cover cracking, as shown in Fig. 5-40 to 5-42.
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Fig. 5-41 Influence of the distribution of

Kon Pp

In Fig. 5-43, at the beginning of curve, the gumbel distribution of i will cause a great

Pp, after the turning-point, the gumbel distribution of 7 will decrease the Pp.

The influence of the distribution type of 7 is not obvious (Fig. 5-44), which is opposite

to the influence of the mean value of »n, while the influence of the distribution type of a
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on Pp is negligible, consistent with the influence of its mean value.
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5.4 Conclusion

After improving the analytical solutions of corrosion initiation and surface cracking of
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corroded RC structures, the stochastic models of corrosion-induced failure are developed
by using the proposed 3M method. With such models, the time when the structure
approaches an unacceptably probability of corrosion- or cracking-induced failure can be
obtained, and thus the required time of repair can be carried out with confidence. Based
on such models, the different effects of many influencing factors on the time-dependent
probability of corrosion initiation and surface cracking are also discussed. From the
- investigation of the present study, the following conclusions can be obtained.

(1) The proposed 3M method was proved to be much simpler and more efficient than
traditional methods like MC simulation in the stochastic analysis of corrosion initiation
and surface cracking.

(2) The increase of corrosion probability is slow, while the increase of cover cracking
probability is quite rapid. Thus taking measures to prevent the diffusion of chloride ions
is significant.

(3) The results clearly demonstrate that the distributions of influencing factors have
almost no effect on the failure probability of corrosion, whereas the mean of basic
variables or its coefficient of variation affects it to various extents.

(4) The gumbel distribution has a remarkable influence on the cover cracking
probability, while in the analysis of corrosion probability, the influence of gumbel

distribution is negligible.
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CHAPTER 6

Conclusions

Civil infrastructure facilities must be designed to satisfy the service requirement and
withstand environmental events such as earthquake and wind. In engineering design, an
important consideration is how to handle the unavoidable uncertainties of the
environmental events and ensure structural safety.

The traditional FORM and SORM are proved to be complicated and not accurate
enough. In this study, a simple and accurate 3M method, with wider applicable range and
less mathematical limitation was proposed. In the existing 3M methods, there is either
square root or antilogarithm in the equation of reliability calculation. In the proposed 3M
method, the exponential function was used to replace the function with square root and
antilogarithm. Then the proposed 3M method was applied to the calculation of simple
structures and systems, respectively. Its application was verified by several examples.

In current codes and guidelines, the load and resistance factors (LRF) are used for
reliability design. And the target reliability is used to ensure structural safety. Compared
with the first and second order reliability methods, the third-moment (3M) method offers
advantages in both simplicity and accuracy. However, it leaves much to be improved,
such as the one time iteration and applicable range limitation. With the proposed 3M
method, the computation process of load and resistance factors was simplified to no
iteration. Simultaneously, the accuracy of the proposed 3M method was ensured.

The number and the diversity of loads were also considered when the new formula of
target mean resistance was given. Analysis results show that the influence of the number
of load on the calculation of the target mean resistance is negligible, while the diversity
of loads has remarkable influence on the calculation of the target mean resistance. With
several examples, in which the influence of different number, mean value, coefficient of
variation, and distribution of loads was considered, the application of the new method
was verified. Finally, several load combinations, in which the snow load and wind load
were considered, were proposed to investigate the application of the proposed method.
The results show that comparing with other methods, the proposed method has either the

same or higher accuracy.
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~Based on the proposed 3M method, a full set of methods for evaluation of structural
durability were given. The analysis includes two parts: the corrosion initiation and the
cover cracking of RC structures, which are two main points to judge structural failure.
Firstly, the analytical models of corrosion initiation and cover cracking were improved,
respectively. In the analytical model of chloride-induced corrosion, the initial micro-
cracking, for its influence on the whole diffusion process.of chloride ions, was considered.
And the concept of the crack rate was proposed to qualify the influence level. Then in the
analytical model of cover cracking, the stress intensity factor afriving to the fracture
toughness was considered as the limit state of failure, which is more reasonable to
compare with judging failure with tensile strength. And the initial defect in concrete was
considered as an influence factor in the analysis of cover cracking. This is more
reasonable because many initial defects such as micro pore structures and random fine
cracks occur during the formation of the concrete mixture.

The failure probabilities of corrosion initiation and cover cracking calculated by the
proposed 3M method are compared with MC simulation. The results show that the
proposed 3M method has enough accuracy in the assessment of durability. Compared the
corrosion time and cover cracking time, after corrosion initiation the failure of cover
cracking increases rapidly. Therefore, preventing the diffusion of chloride ions is a good
way to prolong structural lifetime. The mean value, coefficient of variation, and the
distribution of influence factors are analyzed, respectively. The results show that the
coefficient of variation and the mean value of influence factors have very different
influence on the analysis of failure probability. There is not inevitable connection with
the mean value and the coefficient of variation of the influence factors. Moreover, the
distribution type of influence factors has almost no influence on the analysis of corrosion
initiation, while in the analysis of cover cracking analysis, the Gumbel distribution of
some influence factors affects the failure probability a lot.
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