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Abstract—The Ti(II)-mediated cyclization of 3-methyloct-2-en-7-yn-1-ol derivatives 2 proceeded stereoselectively to afford 1-methyl-2-
(1-alkylbut-3-enylidene)-1-vinylcyclopentanes 3 after treatment of the resulting alkenyltitaniums with allylbromide in the presence of 
CuCN, which was readily converted to 3a-methyl-2,3,3a,6-tetrahydro-1H-indenes 1 by the Ru-catalyzed ring-closing metathesis. © 2011 
Elsevier Science. All rights reserved 

——— 
* Corresponding author. Tel.: +81-45-481-5661; fax: +81-45-413-9770; e-mail: okamos10@kanagawa-u.ac.jp 

Construction of the 3a-methylhydrindane skeleton that is 
widely present in natural compounds such as steroids, 
vitamin D, higher terpenes and related natural products has 
received a great deal of attetion.1 Recently, metal-promoted 
or –catalyzed reactions have attracted interest as a selective 
means for synthesis of 3a-methylhydrindane from acyclic 
starting compound(s).2 Herein we report an efficient two-
step method for the synthesis from acyclic unsaturated 
starting compounds.  

Our synthetic plan for synthesizing 3a-methyl-2,3,3a,6-
tetrahydro-1H-indene (1) is summarized in Scheme 1 (R2 = 
Me), which involves divalent titanium-mediated enyne-
cyclization (intramolecular allyltitanation of alkyne) of 
enyne 2 followed by copper-catalyzed allylation of the 
resulting alkenyltitanium compound 4 and the subsequent 
Ru-catalyzed ring-closing metathesis reaction of the 
resulting triene 3. Regarding the first step of Scheme 1, we 
already reported that the reaction of 2 (R3 = H) with a 
divalent titanium reagent, Ti(O-i-Pr)4/2i-PrMgCl,3 proceeds 
in an intramolecular allyltitanation pathway to provide the 
corresponding cyclized product type 4 (R3 = H) in excellent 
yield.4 With the results, we expected that we could find 
appropriate conditions to control 1,2-diastereoselection of 
the reaction of compound 2 (R3 = Me) with Ti(O-i-Pr)4/2i-
PrMgCl. 5 

 

Scheme 1. Synthetic plan. 

First, we carried out the Ti(II)-mediated cyclization of 
enynes 2 (R3 = Me) having a different leaving group X 
such as OAc, OP(O)(OEt)2, OCO2Et, or Cl and the 
following copper-catalyzed allylation of the resulting 
alkenyltitanium 4 to see the efficiency. Thus, to a solution 
of 2 (1.0 equiv) and Ti(O-i-Pr)4 (1.3 equiv) in ether was 
added dropwise i-PrMgCl (2.6 equiv, 1.3 M in ether) at –40 
oC. After being stirred for 1.5 h at this temperature, to the 
resulting solution of alkenyltitanium 4 were added 
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allylbromide (1.5 equiv) and a THF solution of CuCN-
2LiCl (5 mol%) at –40 oC.4i After warming to room 
temperature over 3 h, usual aqueous work-up afforded 3. 
As can be seen from Table 1 summarizing the results, all 
reactions predominantly produced the cyclized compound 3 
with syn configuration regarding the methyl and R2 
groups.6 Although the reaction of Z-2a having an OAc or 
OCO2Et moiety as a leaving group resulted in poor yield 
and/or low stereoselectivity (entries 2 and 4), high 
selectivity and good yield of syn-3a was attained by using 
2a having OP(O)(OEt)2 or Cl, irrespective of the olefin 
geometry of the starting 2a (entries 5-8). Similarly, the 
reaction of enynes 2b-d having other alkyne substituents 
yielded the corresponding triene syn-3 selectively. The 
enynol derivative 2e with a secondary alkyl group as R2 
could also be converted to syn-3e with nearly complete 
selectivity, where a mixture of E- and Z-isomers was 
employed as the substrate. 

Table 1. Ti(II)-mediated cyclization and the following allylation of 2 to 3. 

 

aThe structure is shown above. bE:Z = 90:10. cA 1:1 mixture of 
diastereoisomers.  

To explain the diastereoselectivity observed in Table 1, we 
carried out MM2 calculations7 using simplified models A-
D for the possible titanacyclopentene intermediates derived 
from (E)- and (Z)-2, where R2, X, R1 in 2 and O-i-Pr 
moieties on the titanium atom were replaced by O-t-Bu, 

OMe, Me, and OMe groups, respectively (Scheme 2). As 
shown in Scheme 2, it was revealed that models A and C 
which can provide the product of the type syn-4, i.e. syn-3, 
are more stable in ~2 kcal/mol than the corresponding 
isomers B and D. The pseudo-axial orientation of the R2 
group (O-t-Bu) in models B and D (indicated by gray 
circles in Scheme 2) may cause their instability. Use of a 
better leaving group (X) enhanced the rate of the β-
elimination reaction of the titanacycle intermediates. 
Accordingly, it could increase the overall reaction rate and 
efficiency of the formation of 4. The rate enhancement of 
the β-elimination reaction from A or C by use of the better 
leaving group may be larger than that for B or D, 
respectively, and it may favorably effect predominant 
formation of syn-4. 

 

Scheme 2. Postulated reaction mechanism and MM2 calculation of 
models of titanacycle intermediates: aEnergy calculated as  RO, R1, R2 and 
X are MeO, Me, O-t-Bu and MeO, respectively. 
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With these results in hand, we next carried out the Ru-
catalyzed ring-closing metathesis reaction8,9 of the resulting 
triene 3 to 1 (Scheme 3). Thus, the triene 3 was treated with 
the first-generation Grubbs catalyst, Cl2(Cy3P)2Ru=CHPh, 
(3~5 mol%) in CH2Cl2 at room temperature and the 
following purification by column chromatography to 
provide 16 in good isolated yield. 

 

Scheme 3. Ru-catalyzed ring-closing metathesis of 3 to 1. 

2,7-Enynol derivatives 2a-d (R2 = Me, R3 = OTBS) thus 
utilized were synthesized according to the procedure 
summarized in Scheme 4. Thus, diynes 8 were obtained by 
the reaction of the alkynyllithium compound derived from 
the propynoic acid ethyl ester and LDA with the 
corresponding alkynylaldehydes 5 and the following 
silylation of the resulting alcohols. Treatment of 6 with 
Me2CuLi provided 7, 10 which were converted to 2 by the 
reduction with DIBAL and the following esterification or 
halogenation. 

 

Scheme 4. Preparation of 2a-2d. 

Meanwhile, 2e was prepared by the procedure depicted in 
Scheme 5. Thus, diynol derivative 8 was treated with Ti(O-
i-Pr)4/2i-PrMgCl to generate the corresponding 
allenyltitanium,3 addition of ethylidene malonate to which 
provided the Michael addition product 9 in 80% yield with 
a high diastereomeric ratio (94:6).11 The resulting diester 9 
was converted to benzyl ether 10 by decarboxylation and 
the following reduction, desilylation and benzylation. The 
1-alkyne 11 was carboxylated by treatment with n-BuLi 
and then ClCO2Et to give 11, which was isolated as a single 
diastereomer. After methylation of 11 was performed by 
treatment with Me2CuLi, reduction of the resulting β-
methyl-α,β-unsaturated ester with DIBAL afforded alcohol 
12, the TIPS group of which was replaced by a TMS 
moiety to give 13. Esterification of 13 with ClP(O)(OEt)2 
provided 2e (E:Z = 90:10). Although compound 2e thus 
synthesized was racemic, an optically active compound can 
be prepared by starting from optically active 9.11 

 

Scheme 5. Preparation of 2e. Reagents: (i) Ti(O-i-Pr)4 (1.5 eq), i-PrMgCl 
(3.0 eq), ether, -40 oC, 3 h; (ii) LiCl (2.7 eq), DMSO-H2O, 135 oC, 10 h; 
(iii) DIBAL (2 eq), ether, -20 oC, 1 h; (iv) cat. K2CO3, MeOH, rt, 2 h; (v) 
BnBr (1.5 eq), NaH (1.5 eq), THF-DMF, rt, 10 h; (vi) n-BuLi (1.5 eq) then 
ClCO2Et (1.8 eq), THF, -78 oC, 0.5 h; (vii) CuI (1.4 eq), MeLi (2.8 eq), 
THF, -40 oC, 3 h; (viii) TBAF (1.5 eq), THF, rt, 3 h; (ix) n-BuLi (2.3 eq) 
then TMSCl (2.3 eq), THF, 0 oC and then 1M HCl-MeOH, rt, 0.5 h; (x) 
ClP(O)(OEt)2 (2 eq), pyridine, rt, 0.5-1 h. 

Closely related reaction conditions to those for the 
synthesis of 3a-methylhydrindanes 2 were subsequently 
utilized for synthesis of a variety of 1,4-cyclohexadienes 
(Table 2), which are useful intermediates as a precursor of 
the arene ligand in organometallic compounds,12 a substrate 
of ene and/or Diels-Alder reactions13 and oxidation to the 
corresponding benzene derivatives. Table 2 summarizes 
representative results of the synthesis of 1,4-
cyclohexadienes 15 from acyclic unsaturated starting 
materials by the intra- or intermolecular Ti(II)-mediated 
cyclization/Cu-catalyzed allylation and the following Ru-
catalyzed ring-closing metathesis reactions of the resulting 
trienes 14. Entry 4 exemplified preparation of disubstituted 
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1,4-cyclohexadienes through the intermolecular Ti(II)-
mediated bis-allylation of alkynes. 

Table 2. Other representative results of synthesis of cyclic compounds 
having a 1,4-cyclohexadiene structure 

 

aStereochemistry was not confirmed. bReaction  was carried out in toluene 
at 70 oC for 3 days. 

In summary, we have developed an efficient two-step 
method for diastereoselective construction of 3-substituted 
3a-methyl-2,3,3a,6-tetrahydro-1H-indenes from acyclic 
unsaturated compound by the tandem Ti(II)-mediated 
cyclization/Cu-catalyzed allylation and Ru-catalyzed ring-
closing metathesis reactions. Further investigation 
including preparation of optically active compounds11 of 
the type 1 and their application to natural product synthesis 
is in progress. 
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