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The useful constructions of ,6-D-mannosidic, 2-acetamido-2­
deoxy-,6-D-mannosidic, and 2-deoxy-p-0-arabilW-hexopyranosidic
units from the same intermediate, 2,4-bis(O-trifluoromethanesul­
fonyl) derivative of ,6-D-galactoside, were achieved in a stepwise
inversion at C-4 and C-2 by using cesium acetate, BU4NBH4 and
BU4NN3 in good yields. Convenient and practical protections of,6­
D-mannoside to the straightforward synthesis of antennary oligo­
saccharides also achieved by using cesium trifluoroacetate.

Despite of the recent explosive growth of oligosaccharide syn­
thesis, the construction of ,6-o-mannosidic linkages remains a cru­
cial step, far from being adequately solved in preparative terms.
The various ,6-o-mannosyl donors available are accessible either by
multistage synthesis only, or lack appreciable ,6-selectivity in
glycosylations, or both'! Recent strategies for intramolecular
aglycon deliveryI,2 solve the ,B-selectivity problem, yet their practi­
cal utility for the synthesis of biologically relevant ,6-D-mannosides
remains to be demonstrated. The applications of the different
methodologies developed for C-2-epimerization of ,6-o-glu­
cosides3 and for the p-o-mannosidase-promoted mannosyl trans­
fer,4 which, although promising, has not attain the practically stage.
The present most relevant method for the construction of ,6-0­
mannosidic linkages appears to be an "indirect" one, involving ,6-D­
glycosid-2-uloses as the key intermediates. These oxidation and
reduction approaches have extensively usedS-13 despite of that the
stereoselectivity of the reduction is rarely very high. More recently,
3,4,6-tri-O-benzyl-a-o-arabino-hexopyranos-2-ulosyl bromide, a
versatile glycosyl donor for efficient generation of p-D-mannosidic
linkages, was reportedI4 as an excellent method.

In this paper, we would like to describe the efficient method for
construction of p-o-mannosidic, 2-acetamido-2-deoxy-p-D­
mannosidic, and 2-deoxy-,B-D-arabino-hexopyranosidic units,
those of which have been somewhat difficult to construct, in short
steps and high yields from 3,6-di-O-pivaloyl-2,4-bis(O-trifluoro­
methanesulfonyl)-p-o-galactoside. The stepwise inversions of the
bis(triflate) at C-4 and C-2 were achieved by the conditions em­
ployed. (Scheme 1) The selective protections of ,B-D-mannosidic
unit for synthesizing high mannose sugar chain were also achieved
by double inversion with cesium trifluoroacetate.

The key starting material, benzyl 3,6-di-O-pivaloyl-,B-o­
galactopyranoside (2) was prepared in the following way.
Glycosidation of 1,2,3,4,6-penta-O-acetyl-,B-o-galactopyranose
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Figure 1. N-Acetyl-,B-D-mannosaminide

with benzyl alcohol, in the presence oftrirnethylsilyl triflate as pro­
moter,IS gave benzyl 2,3,4,6-tetra-O-acetyl-,6-0-galactoside in
80% yield. This was de-O-acylated with NaOMe in methanol (pH
9) to give the corresponding benzyl ,6-D-galactoside (1) in quantita­
tive yield. Compound 1 was treated with bis(tributyltin) oxideI6

(1.5 equiv.) under reflux in toluene, and then with pivaloyl chloride
(3.0 equiv.) at r.t. in toluene to give the selectively protected deriva­
tive 2 in 85% yield. The pivaloyl group was used to distinguish it
from acetyl groups. Compound 2 was treated with trifluorometh­
anesulfonic anhydride (3.0 equiv.) and pyridine in CHzClz at 0 'c
then at r.t. to give bis(triflate) 3 in 98% yield. In this work, 3 was
prepared as a model compound, but naturally occurring com­
pounds with other aglycons such as terpenes, steroids, and carbohy­
drates (especially blocked j3-D-glucosaminide) may also be avail­
able as shown in Figure 1. Compound 3 was treated with CsOAc
(1.5 equiv.) and 18-crown-6 in toluene at r.t. to give 4-0-mono­
acetyl derivative 4, which is stable to purify on a column of silica
gel, in 84% yield. Then, 4 was treated again with CsOAc at r.t.
with ultrasonication (ca. 12 h) to give benzyI2,4-di-0-acetyl-3,6-di­
O-pivaJoyl-,6-o-mannopyranoside 5 in 94% yield, which was also
obtained directly from 3 with 3 equiv. of CsOAc under the condi­
tions with ultrasonication for 12 h in 93% yield. The above reac­
tion carried out under reflux conditions (ca. 1 h) also gave 5 in 90%
yield. In a similar way as mentioned above, 4 was treated with
BU4NBH4 or BU4NN3 in benzene with ultrasonication to give the
corresponding 2-deoxy derivative 6 in 82% yield or 2-azido-2­
deoxy derivative 7 in 91% yield. Then, 7 was reduced in the pres­
ence of 5% Pd-C and Hz in benzene (bubbling-through system)
with stirring, followed by acetylation to give benzyI2-acetamido-4­
0-acetyl-2-deoxy-3,6-di-0-pivaloyl-,B-o-mannopyranoside 8 in
88% yield. As mentioned above, the otherwise difficult construc­
tions of p-mannosidic linkage of 1,2-cis relationship and 2-<3eoxy-f3­
O-mannosidic linkage were achieved easily via our indirect method
involving stepwise nucleophilic substitution.

For synthesizing asparagine-linked sugar chains, proper pro­
tection of p-D-mannoside is required. Concerning this request, we
examined the selective protection of benzyl f3-D-mannoside by em­
ploying SN2 inversion with cesium trifluoroacetate, because selec­
tive cleavage of acetyl and pivaloyl groups was difficult. The reac­
tion of 3 with cesium trifluoroacetate and 18-crown-6 in toluene­
DMF (3:1) at 80 'c gave a mixture of2-0-, 4-0-, and 2,4-di-0-tri­
fluoroacetyl derivatives. The mixed products were treated with
aqueous sodium hydrogencarbonate in methanol gave benzyl 3,6­
di-O-pivaloyl-,6-D-mannoside 9 in 76% yield. Compound 9 was
then treated wi th CHz(OMe)z and PzOs in (CHzCI)z to give the corre­
sponding 2,4-bis(O-methoxymethyl) derivative in 93% yield.
Dcacylation of the above product with NaOMe in methanol gave ben­
zyl 2,4-bis(O-methoxymethyl)-,B-0-mannopyranoside 10 in quantita­
tive yield. This methodology to the straightforward synthesis of
antennary oligosaccharides, branched at the center ,6-0-mannosidic
unit, seems to be useful for synthesizing important sugar units.
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NMR <5=7.36-734 (5H, m, Ph), 5.37 (lH, dd, J4,3=J4,5=9.4Hz, H-4),
5.09 (lH, dd,J3,2=9.8Hz, H-3), 4.89 and 4.69 (lH x2, each d,JA,B=I1.0
Hz, -CHz-), 4.75 (lH, dd,J2,1=7.8Hz, H-2), 4.64(lH, d, H-l), 4.23 (Ill,
dd,J6,5=2.7Hz,J6,6'=12.5Hz, H-6), 4.12 (Ill, dd,J6',5=53Hz, H·6~, 3.70
(lH, ddd, H-5), 2.01 (3H, s, OAc), 1.25 and 1.18 (9H xl, each s, OPiv
x2), 5: syrup; IHNMR <5=7.36-7.34(5ll, m, Ph), 5.49 (lH, dd,J2,l=O.9
Hz, J2,3=3.4Hz, H-2), 5.30 (lH, dd, J4,3=d4,5=1O.0Hz, H-4), 4.96 (Ill,
dd, H-3), 4.88 and 4.65 (lH xl, each d,JA,B=12.3Hz, -CH2·), 4.62 (Ill,
d, H-1), 431 (IH, dd,J6,5=2.7Hz,J6,6'=12.2Hz, H-6), 4.18 (Ill, dd,J6',5=
6.1Hz, H-6~,3.46 (lH, ddd, H-5), 2.16 and 2.01 (3Hx2, eachs, OAcx2),
1.26 and 1.12 (9H xl, each s, OPiv x2), 6: mp 57-59°C (not recrys­
tallized); IHNMR <5=7.37-7.30(5H, m, Ph), 5.01 (lH, dd,J4,3=J4,5=
9.5Hz, H-4), 4.94 (lH, ddd,J3,2e=5.2Hz,J3,2a=11.5Hz, H-3), 4.87 and
4.60 (lH xl, each d,JA,B=11.9Hz, -CH2-), 4.64 (Ill, dd,Jl,2c=2.0Hz,
Jl,2a=9.6Hz, H-1), 4.25 (lH, dd,J6,5=2.7Hz,J6,6'=12.1Hz, H-6), 4.17 (lH,
dd,J6',5=5.8Hz, H-6~, 3.62 (lH, ddd, H-5), 2.32 (Ill, ddd,J2e,2a=12.5Hz,
H-2e), 2.01 (3H, 50 OAc), 1.75 (lH, ddd, H-Za), 1.25 and 1.14 (9H xl,
eachs, OPivxl), 7: syrup; IHNMR <5=7.37-7.35 (5H, m,Ph), 5.29 (lH,
dd, J4,3=J4,5=9.8Hz, H-4), 4.95 and 4.66 (lH x2, each d, JA,B=12.2Hz,
-aI2-), 4.89 (lH, dd, J3,2=3.9Hz, H-3), 4.64 (lH, d, Jl,2=1.0Hz, H-1),
4.27 (Ill, dd, J6,5=2.4Hz, J6,6'=12.2Hz, H-6), 4.12 (lH, dd, J6',5=5.9Hz,
H-6'), 4.05 (Ill, dd, H-2), 3.60 (Ill, ddd, H-5), 2.01 (3H, 50 OAc), 1.26
and 1.20 (9H x2, each s, OPiv xl), 8: mp 194-195 "C; IH NMR
<5=7.34-7.31 (5H, m, Ph), 5.67 (lH, d,JNH,2=8.8Hz, NH),5.29 (lH, dd,
J4,3=J4,5=9.8Hz, H-4), 4.89 (Ill, dd,J3,2=3.9Hz, H-3), 4.84and 4.61 (IH
x2, eachd,JA,B=12.3Hz, -CH2-), 4.76(lH, ddd,12,1=1.0Hz,H-2), 4.64
(Ill, d, H-1), 4.23 (lH xl, each d,J6,5=J6',5=4.4Hz, H-6 and H-6~, 3.60
(lH, ddd, H-5), 2.03 and 2.02 (3H x2, each s, OAc and NAc), 1.27 and
1.21 (9H x2, each s, OPivx2), 9: mp 45-46 "cenot recrystallized); IH
NMR <5=7.36-7.30 (5H,m, Ph), 4.90 and 4.65 (lHx2, eachd,JA,B=120
Hz, -CH2-), 4.73 (lH, dd, J3,2=3.2Hz, J3,4=9.8Hz, H-3), 4.58 (Ill, d,
Jl,2=0.9Hz, H-1), 4.49 (Ill, dd,J6,5=2.7Hz,J6,6'=12.0Hz, H-6), 4.36 (lH,
dd,J6',5=6.1Hz, H-6'), 4.08 (lH, ddd,l2,OH=2.4Hz, H-2), 3.92 (Ill, ddd,
J4,5=9.5Hz, J4,OH=4.9Hz, H-4), 3.94 (lH, ddd, H-5), 2.52 and 2.36 (lH
x2, each d, OH x2), 1.25 and 1.24 (9H x2, each 50 OPiv xl), 10: mp
119-120 "C; IH NMR <5=7.37-7.29 (5H, m, Ph), 4.93 and 4.65 (IH
x2, each d,JA,B=12.2Hz, -CH2-), 4.90 and 4.83 (lH xl, each d,JA,B=6.7
Hz, -CH2-),4.83 and 4.71 (lHx2, eachd,JA,B=6.7Hz,-CH2-),4.56 (lH, d,
Jl,2=1.0Hz, H-1), 4.02 (lH, dd, 12,3=3.4Hz, H-2), 3.91 (lH, m, H-6),
3.88 (lH, d,JoH,3=5.8Hz, 3-0H), 3.82 (Ill, m, H-6~, 3.68 (Ill, dd,J4,3=
J4,5=9.5Hz, H-4), 3.58 (lH, ddd, H-3), 3.46 and 3.44 (3Hx2, each 50 OMe
x2), 3.30 (lH, ddd, J5,6=2.8Hz,J5,6'=5.4Hz, H-5), 218 (Ill, m, 6-0H).
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