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Abstract

An invariant toward a classification of curves' X with a birationally very

ample arid special invertible sheaf L is proposed, and an extremal pair

(X, L) by means of the invariant is a smooth plane curve X with

tJX(I) corresponding line sections and vice versa. For pairs (X, L)

next to extremal ones, all but one exception is characterized by the

image <PL(X) to be Ii plane singular curve with aligned conductors. The

heart of the paper is to study such a singular plane curve with its

normalization involving projective geometry and the theory of adjoint

curves.

o. Introduction

One of the essential parts in the proof of Castelnuovo's genus bound

on a nondegenerate curve Y in ]pI' with r ~ 3 IS the following

observation: Let X ~ Y be the normalization of Y, and L := \jI*c?y(I).

Then we have h1(X, Lm ) = 0 if m ~ [d - 2], where d:= deg L is the
r-l

degree of Land r := r(L) is the projective dimension of the linear system

IL I corresponding to HO(X, L) (see [2, III, Section 2] or [11, III, Section
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2, Theorem 1]). So it seems natural to study the quantity

for a birationally very ample and special invertible sheaf L on a smooth

curve X. Here a birationally very ample invertibl~ sheaf L means that the

rational map <I> L : X ~ pr corresponding to IL I is birational to the

closure of its image, which may be a morphism or it may not.

Although we know the estimation meL) ~ [d - 2] if l' ~ 3, . the
1'-1

following fact may he interesting: We have nt(L) ~ d - r for any

birationally very ample invertible sheaf L on a slnooth curve X, and

equality holds if and only if the curve is a slnooth plane curve and

L = V x(l) which is the invertible sheaf corresponding to line sections of

X c p2. We give a proof of the assertion in Section 1.

Motivated by the fact, we propose classifying the birationally very

ample and special invertible sheaves according to the quantity

eeL) := deg L -: r(L) - meL),

which has been already introduced implicitly in [7, Section 4], and we

describe the birationally very ample and special invertible sheaf L with

e(L) = 1 in Section 2.

In this description, we meet a plane curve Y whose conductors lie on a

line (see, Theorem 2.7). If the invariant eeL) is promising, there must be

a similarity between a plane curve with aligned conductors and a smooth

one because they are just neighbours in the sense of the invariant. One of

the remarkable properties of a smooth plane curve X of degree d ~ 4 is

the variety of special divisor ~VJ(X) consists of one point, which

corresponds to the linear system cut out by lines. A generalization of the

fact to a singular curve of degree d with only a small number of ordinary

nodes or cusps as its singularities, which is a neighbour of smooth curves

in another sense, was given by Coppens and Kato [4, Theorem 2.4]. As a

matter of fact, they didn't say about the net explicitly, but one can easily
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derive from it the same conclusion on Wl(X) for the normalization X of

the singular curve under the same assumption in their theorem.

A major part of the paper is devoted to study the linear system on the

normalization X which is cut out on Y by lines, especially its uniqueness,

for a plane curve Y with aligned conductors.

In order to see the uniqueness, we need a lemma in projective

geometry, which is analogous to [2, Appendix A, Exercise 17] and [5,

Proposition 1]. We handle the projective geometry in Section 3.

Although the completeness of the linear system is shown at Lemma

2.6, the proof seems somewhat ad hoc, and does not apply to the case of

characteristic 2. So we give a more theoretical proof of the fact in Section

4, which is based on a result of the theory of adjoint curves. The result is

a generalization of [2, Appendix A, Exercise 24], and we treat the matter

in Appendix.

We work over an algebraically closed field k. We· do not put any

restriction on the characteristic of I?, except the results of Lemma 1.2,

namely Theorem 1.1, Lemma 2.1, Lemma 2.6 and Theorem 2.7, for which

we assume that the characteristic of /?, is !lot 2.

1. A Characterization of the Smooth Plane Curve

Throughout this paper, X denotes a complete, connected, smooth

curve of genus 9 2 2 over l?-. The following is our starting point.

Theorem 1.1. Assume that the characteristic of h is not 2. Let L be an

invertible sheaf of degree d on X with hO(X, L) = l' + 1. If Lis birationally

very ample, then m(L) ~ d - 1', and equality holds if and only if L is very

ample with r = 2, that is, $L (X) is a smooth plan,e curve of degree d,

To show the theorem, we need Castelnuovo's genus bound in our

situation.

Lemma ':1.2. Assume that the characteristic of the ground field h is not

2. Let 9 be the genus of the normalization of a nondegenerate irreducible

curve Y of degree d 2 3 in p3. Then we have
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j
!d2 - d + 1
4

gs .

~ (d
2 -1) - d + 1

if d is even

if d is odd.

Proof. Hartshorne's proof [8, IV, Theorem 6.4] of Castelnuovo's

inequality is effective for a nondegenerate space curve Y with the

property that a general secant of Y is not a multisecant, even if Y is not

smooth.

If Y fails to enjoy the property, then Y must be strange by. [8, IV,

Proposition 3.8]. (Note that its proof is also effective without the

smoothness assumption on Y.) Thanks to Bayer and Hefez [3, Corollary

7.4], we know an upper bound of the genus 9 of the normalization of a

strange curve Y in terms of its degree as follows: Let q be the inseparable

degree of the natural morphism from the conormal variety of Y to the

dual variety, which is a positive power of the characteristic of k, and let s

be the separable degree of the morphism. Then t:= d - sq is the

remainder of the division of d by q, i.e., 0 s t < q, and we have

1
9 s - (s - l)(d + t - 2).

2

Since the characteristic of h is not 2, we have q ~ 3, and hence

d Addi' . 11 .. b' h d -1 S hs s -. tiona y It IS 0 VlOUS t at t s --. 0 we ave
3 2

9s .!. (d -1)(~d -~)
2 3 2 2'

which is more restrictive than the desired inequality.

Proof of Theorem 1.1. If the linear system IL I has a base point Q,

then we have 111.(L) s m(L(-Q)) and deg L(-Q) - r(L(-Q)) < deg L - r(L).

So we may assume that IL I has no base points.

Case 1. If h1(L) = 0, then d - r = 9 ~ 2. Hence the strict inequality

holds because m(L) = 1.
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Case 2. Next, we consider the case hI(L) > O. Assume that meL) ~

d - r. Since Lm~I is special, we have

29 - 2 ~ (m - 1) d ~ (d - r - 1) d. (1)

Hence, by Clifford's theorem which says r ~ d, we have 29 - 2 ~
2

(~ -1) d, that is,

1 ? 1
9 ~ - d~ - - d + 1.

4 2
(2)

We further assume that r ~ 3, and consider the image of <PL(X) by a

generic projection JPr ~ p3. Applying Castelnuovo's bound to the image

curve, we have

(3)

But inequalities (2) and (3) are not compatible. Hence r must be 2, and

9 ~ (d - 1) (d - 2) by (1). Therefore, the only possibility of the inequality
2

meL) ~ d - r holding is the case where <PL(X) is a smooth plane curve of

degree d. In this case, each equality in (1) holds. In particular, m(L) =

d - r. Except for this case, we have meL) < d - r.

Remark 1.3. The inequality meL) ~ d - l' may not hold without the

birationally very ampleness of L. In fact, if M is the invertible sheaf with

IM I= 9~ on a hyperelliptic curve of genus 9,then m(M) = 9 - 1.

2. A Quantity Toward the Classification

2.1. pefinition of eeL)

As was mentioned in Introduction, we introduce a quantity for a

birationally very ample invertible sheaf L on X:

;".:-.

de!
eeL) = deg L - r(L) --.: m(L). (4)
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The quantity can be also written as

eeL) = 9 - h1(L) - In(L) (5)

by the Riemann-Roch theorem. In particular, if h1(L) = 0, then eeL) =

9 - 1. As for a special L, we have the following:

Lenuna 2.1. Assume that the characteristic of k is not 2. Let L be a

birationally very ample invertible sheaf with hI (L) > O. Then we have

o ~ e(L) ~ 9 - 3.

Proof. The left-hand inequality is just a part of Theorem 1.1. Since

h1(L) > 0 implies meL) ~ 2, we have eeL) ~ 9 - 3 by (5).

Example 2~2. For the canonical sheaf (OX' we have e((0x) = 9 - 3;

more precisely, eeL) = 9 - 3 if and only if h1(L) = 1.

We intend to classify birationally very ample and special invertible

sheaves L on a smooth curve by e(L), and the characterization of L with

e(L) = 0 has been done in the previous section. So the next task should

be to characterize L with e(L) = 1. To describe the image ~L (X) for L

with e(L) = 1, we need some terminology in the theory of singular curves.

2.2. A Plane Curve with Singularities

\jI

Let Y be an irreducible curve of degree d > 1 in p2, and X ~ Y the

normalization of Y. We always assume that Y has a singular point and

denote by Sing Y the set of singular points of Y. Let

C := Annoy (\If*Ox lOy)

be the sheaf of conductors of Y. Note that C is an ideal both of Oy and of

\If*Ox. Obviously, the support of C on Y is just Sing Y. We denote by D

the subscheme Spec Oy Ie of Y, and by C the D-scheme Spec \If*0 X Ie. So

we have a Cartesian diagram
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c y X

-l- -l-\V

D y Y.

Let 0 be the length 'of \V.Vx IVy, and op := dimk \V.VX, p jVy, p. So

o is, by definition, LpeSingy op. An important result of Gorenstein [6,

Theorem 10] is

(6)

hence the length of D is 0 and that of C is 20.

Let K be the constant sheaf of the function field of Y. Then those

sheaves are subsheaves of K, and there is a sequence ·of V y -modules:

If we regard D as a generalized divisor on Y, we understand Vy(-D) to

be C. Since each torsion-free V y -module is reflexive [9, Lemma 1.1] and

C == 'Ho1nVy(\V.Vx, V y ), we haveVy(D) = \V.Vx .

The next lemma is a generalization of [6, Theorem 8].

Lenuna 2.3. For an invertible sheaf M on Y, we have

Proof. Since \V : X ~ Y is an affine morphism, the sequence

is exact. Since C = Spec \V.VX IC is a Y-scheme via \V, we have \V.Vc ==

\V.VX IC. Hence

Thus we have

by the projection formula.
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Since Y is in p2, we have the twisting sheaf Oy(l) corresponding to

the linear system cut out by lines on. Y. Another important result of [6] is

that

(7)

where ro X is the canonical sheaf on X.,

In particular, together with (6), we can compute the genus 9 of X as

2g - 2 = d(d - 3) - 2cS;

and together with Lemma 2.3, we have

° ° .H (X, rox) ~ H (Y, Oy(d - 3)(- D». (8)

We add a small historical remark. Gorenstein originally defined 0 as

hO(y, Oy(n» - hO(y, Oy(n)(- D»

for large n [6, p. 431], which means that 0 denotes the length of Oy IC.
Nowadays, however, people use 0 for the length of '4'.0X lOy (see, [8, IV,

Exercise 1.8] or [10, IV]). Anyhow, no confusion may occur in our case

because of (6).

2.3. Characterization of L with e(L) = 1

Now, we introduce a new class of singular plane curves, which is

necessary for the description of L with 8(L) = 1.

Definition 2.4. The sheaf of conductors C of Y is said to be aligned if

the scheme of conductors D is a subscheme of a line. In this case, we also

say that the conductors of Y is aligned.

We can paraphrase the definition in several ways.

Lenuna 2.5. The following conditions are equivalent:

(i) the sheaf of conductors C of Y is aligned;

(ii) there exists an injective Oy -homomorphism Oy(-l) Y C;
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(iii) hO(y, V y (l)(- D)) > O.

The proof is easy, so we skip it.

Lemma 2.6. Assume that the characteristic of k is not 2, and the

normalization X of a plane curve Y is of genus g ~ 2. Let L be the

invertible sheaf 'I'*V y (l). If the conductors of Y is aligned, then r(L) = 2

and 8(L) = 1.

Proof. Since hO(Y, V y (l)(- D)) > 0 by Lemma 2.5 and

by Lemma 2.3, there is an effective divisor E on X such that

L(-6) ~ Vx(E). On the othel' hand, since rox = Ld - 3(_ C) by (7), we

have Ld - 4 = rox(- E). Hence we have h1(Ld - 4 ) > 0, which implies

m(L) = d - 3 because Ld - 3 is the nonspecial invertible sheaf rox(C).

Therefore,

8(L) = d - r(L)- (d - 3) = 3 - r(L).

Since 8(L) ~ 1 by Theorem 1.1, we have r(L) :5: 2, and equality must hold

because r(L) ~ 2 in general. This completes the proof.

Theorem 2.7. Assume that the characteristic of k is not 2. Let L be a

birationally very ample invertible sheaf on a smooth curve X of genus

g ~ 3. Then 8(L) = 1 if and only if either

(1) X is a nonhyperelliptic curve ofgenus 4 with L = rox' or

(2) the linear system IL I is free from base points, r(L) = 2, and

<PL(X) is a singular plane curve with aligned conductors.

Proof. The "if' part is just Example 2.2 and Lemma 2.6. So we have

to prove the "only if' part. Since g ~ 3, 8(L) = 1 implies h1(L) > o. In

particular, X is nonhyperelliptic because no special linear system on a

hyperellip~ic curve is birationally very ample.
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Suppose that IL I has a base point. Let B be the base locus of IL I.

Then we have

o ~ 8(L(-B)) ~ 8(L) - deg B = 1- deg B;

therefore, deg B = 1 and 8(L(-B)) = O. From Theorem 1.1, X is a smooth

plane curve with a certain degree, say e, and L(-B)::::: Vx(l). Note that

e ~ 4 because 9 ~ 3. Hence

L(e-3)::::: Vx(e - 3) @ Vx((e - 3)B)::::: rox((e - 3)B),

which means L(e-3) is nonspecial. Hence we have m(L) ~ e - 3. Note that
• I (~ • :

deg L = e + 1 and r(L) = r(L(-B)) = 2. So, we have 8(L) ~ 2, which

contradicts with our assumption 8(L) = 1. Therefore, IL I has no base

points.

Now, we denote by d the degree of L, and by Y the image curve

~L(X), Note that ~L : X 40 Y is the normalization of Y. So, in order to

avoid the confusion of notation, we denote by \jf instead of ~L.

Furthermore, we assume that (X, L) is not in case (1). Then we have

r ~ d -1 by Clifford's theorem because the linear system IL I is neither
2

canonical nor g~. By using the very same argument as we did in Case 2

in the proof of Theorem 1.1, we can show that r(L) = 2. In fact, since

2g - 2 ~ (m - 1) d

= (d - r - 2) d (because d - r - m = 1)

12 3
~ -d --d
22'

we have 9 ~ .!. d 2
- ~ d + 1. On the other hand, if r ~ 3, the genus 9

4 4

must be less than or equal to .!. d 2
- d + 1 by Castelnuovo's bound, which

4

is a contradiction.
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In order to show the sheaf of conductors C to be aligned, we prove

that hO(y, V y (l)(- D)) > 0 (see, Lemma 2.5). Since we already know that

r(L) = 2 for the L of degree d with 8(L) = 1, we have meL) = d - 3.

Hence hO(X, COx Q9 L-(d-4)) > O. On the other hand, since COx Q9 L-(d-4)

~ (\jf*V y (l))(- C) by (7), the positivity means hO(X, \jf*(Vy (l))(- C)) > O.

Hence we can conclude that hO(y, V y (l)(- D)) > 0 by Lemma 2.3.

Before closing this section, we explain some observations about a

singular point of a curve with the conductor at the point lying on a line.

Example 2.8. (a) If 8p = 1 for every singular point P of Y, the

conductors of Yis aligned if and only if those singular points are collinear.

(b) If Sing Y = {P} and 8p = 1, then the conductor of Y lies on an

arbitrary line passing through P, and vice .versa. We give here an

example of a singular point P with 8p > 1 whose conductor lies on a line.

Since the problem is local, it is enough to explain it in affine situation. Let

P = (0, O)EAz and El(X, y)yZ = EZ(X, y)xm a local equation of Y near

P, where El (x, y) and E2(x, yr are polynomials with El (0, 0) 102(0, 0) ::1= O.
. ... r"~ [ 1

[;] ['2n..J mThen Cp = (y, x ) V y p, where means the integer part of -.
2

Hence Cp lies on the line y = O.

Let P = (0, 0) E A 2 be a point of a plane curve Y with an affine

equation f(x, y) = O. The multiplicity ~p(Y) of Y at P is the largest

integer m such that f(x, y) E (x, y)m in k[x, y].

Lemma ~.9. If the conductor Cp at a sir/'gular point P of Y lies on a

line, then we have ~p(Y) = 2.

Proof. We may assume that P = (0, 0) E l1. 2 and the conductor Cp

lies on the line y = O. Furthermore, since the valuation vp is upper

semi-continuous on the vector space kx + hy C Il(X) for any j5 E \jJ-l(p),



32 MASAAKI HOMMA and AKIRA OHBUCHI

we may assume that the function L belongs in (\II.Ox)p c k{X) after
x

replacing x by a suitable linear form ax + by with a :1= O. Since y E Cp,

2
we have LEVy p. Hence, there are polynomials g{x, y) and E{X, y)

x '

with E{O, 0):1=0 such that E{X, y)y2 - xg{x, y) = 0 on Y. Let Z be the

one-diimensional scheme defined by the above equation. Since the

coefficient of y2 in the equation is E{O, 0), which is not zero, J.l.p{Z) s 2.

Since J.l.p{Z) ~ J.l.p{Y), we have J.l.p{Y) = 2.

3. A Lemma in Projective Geometry

The purpose of this section is to prove the following theorem, which

concerns geometry in projective plane. Throughout this section, we fix a

projective plane p2 over an algebraically closed field k. For a

O-dimensional subscheme D of p2, we denote by Supp D the set of closed

points of D.

Definition 3.1. We say that a O-dimensional subscheme D c p2

imposes independent conditions on curves of degre~ v, if the natural map

is surjective.

Theorem 3.2. Let ri and c be positive integers with n ~ 5, D a

O-dimensional subscheme of p2 whose length c is less than or equal to

min{; , n - 4}. Assume that thete is a line pI c p2 such that D is a

closed subscheme of the line. Let PI, ..., ~t-l are distinct points in

p2 \ pl. Then the scheme D + PI + ... + ~t-l fails to impose independent

conditions on cutves of degree n - 3 if and only if either PI' ... , Pn - l ate

collinear, or there ate n - 2 points of {PI' ... , ~t-d such that these points,

together with a point of Supp D, are collinear.
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The "if' part is easy. Because, in general, if n - 1 distinct points

RI , ... , Rn - l are collinear, then the natural map HO(p2, V!p2(n - 3)) ~

E9~~11 kR;. is not surjective, where kR;.(~ k) is the residue field at Ri ·

From now on, we turn to the proof of the "only if' part. When n = 5,

since the scheme D must be a reduced point by the assumption on 8, the,-
conclusion comes from [2, Appendix A, Exercise 19]. Therefore, we may

assume that 11 ~ 6.

Let SUfP D = {QI' ... , Qm }· We want to show that if
\ ' ,

(i) PI, ... , ~~-l are not collinear, and

(ii) for any Qi E Supp D and any Pj, the 11 -1 points Qi, PI' ... ,

Pj, ..., ~~-l are non-collinear, then

(9)

is surjective.

Step 1. In this step, we describe the ring HO(O D+P
1
+--+Pn-

1
) and give

a paraphrase of the problem.

Choose a complement of a line A 2 c p2 with coordinates x, y so that

(ii) the affine line A 2 npI is defined by the equation y = 0, where

pI is the line containing D.

Note that we can use x as a coordinate function of the affine line. Let

X(Qi) = ai (i = 1, ... , m), and lengthQiD = 8i . Then we have

/1l.

HO(OD) = k[x]/ IT (x - ad8i
.

i=1

Moreover, let x(Pj ) = c,j and y(Pj ) = llj' Then we have
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~ (k[XI! Q: (x - ad'] EB [~k[X' yl!(x - ~l' y -llj)} (10)

We denote by k[x, y ]~n-3 the vector space of polynomials in x and y of

degree ::;; n - 3. Then homomorphism (9) coincides with the

homomorphism

given by

<t>(h(x, y)) = (h(x, 0); h(l;;l' TJl), ... , h(l;;n-l, TJn-l))' (12)

Later on, we will also denote by h(Pj ) the value h(l;; j, TJ j )

interchangeably.

Let us introduce further notation. For y = 1, ... , m and ~ = 0, 1, ... , by

- 1, we denote by

fyp := (x - uy)p I1 (x - Ui)8i .

iwith
i#y

Furthermore, we specify some elements in HO(tJD+Pl+"+P,~_l) via the

identification (10),

fy~ = (fyp; 0, ... , 0)

(

1 j-l j j+l n]
ej:= 0; 0, ... , 0,1: 0, ... , 0 .

Then

{fy~ I y = 1, ... , m, ~ = 0, 1, "'J by - I} U{ej I j = 1, ... , n - I}



PLANE CURVES WITH ALIGNED CONDUCTORS 35

form k-basis of HO (0 D+P
1
+..+Pn-

1
)' So, to prove the surjectivity of (9), it

suffices to show that each of those vectors is the image of a polynomial in

k[x, Y]~n-3 by<t>.

Step 2. We prepare two lemmas in projective geometry. Since both

lemmas are elementary, we only formulate them without giving their

proof.

Definition 3.3. Four points in p2 form a quadrangle if no 3 of the 4

points is collinear.

Lemma 3.4. Let S be a subset of p2 consisting s points with s ~ 4.

Then no 4 points of S form a quadrangle if and only if S contains s - 1

collinear points.

Lemma 3.5. Let {PI' P2 , P3, P4} be a quadrangle in p2, and S be a

finite set of points of p2 \ {PI' ... , P4}. Then there is a quadric form q on

p2 such that q(Fi) = 0 for i = 1, ... , 4 and q(Q) :t 0 for any Q E S.

Step 3. In this step, we prove that each ej is the image of a

polynomial in k[x, y ]~n-3' Without loss of generality, we may assume

that j = 1.

Case 3.1. Suppose that the set of n - 2 points {P2 , ... , ~t-2} contains

a quadrangle, say ~t-4' ~t-3' Pn - 2 , ~t-l' Then we can find a polynomial

q of degree 2 such that q(~t-4) = ... = q(~t-l) = 0 and q(PI):t 0 by I

Lemma 3.5. For each) with 2 :$; j :$; n - 5, we can choose a polynomial £ j

of degree 1 so that £/Pj ) = 0 and f j(Pd :t O. Then the polynomial

rrn- 5
hex, y) := yq j=2 f j is of degree n - 3, and hex, y)/h(PI ) has the

desired property, i.e., <t>(h(x, y)/h(PI » = el'

Case 3.2. Next suppose that {P2 , ... , ~t-d does not contain a

quadrangle. Then by Lemma 3.4 the set must contain 11, - 3 collinear

points, say P3 , ... , Pn-I' Let P. be a polynomial of degree 1 with

f(P3 ) = ... = £(~t-I) = O.
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Subcase 3.2.1. Suppose that £(Pl )"* O. Choose a linear polynomial

£' so that t(P2 ) = 0 and t(Pl )"* O. Then the polynomial yU' is of

.degree 3 (~n - 3 because n 2 6), and «1>(y££') = eel for a nonzero

constant e.

Subcase 3.2.2. Suppose that £(Pl ) ~ O. By our two assumptions on

the configuration of {PI, ..., ~t-d U Supp D, the intersection point of the

line £ = 0 and y = 0 is not a point of Supp D, and £(P2 ) "* O. Let £0 be

a linear polynomial which defines the line P2P3 . Hence £o(Pl ) "* O.

Divide the set of points {P4 , P5 , ... , P3+8 } into m(= #Supp D) subsets

as

P4+81 +..+8 1 'm-

Note-that the set at A-th row consists of the 01.. points

Here, recall 01.. = lengthQ;l..D. For each j with 4 + 01 + ... + 01..-1 ~ j ~ 3

+ 01 + ... + 01..' we consider the polynomial of degree 1

which is an equation of the line PjQA.' Then £ j(x, 0) = (x - UA.), £/Pj )

= 0 and £j(PI> "* O. In particular, IT~::£/x, 0) = IT:
l

(x - Ui)8 i . For

each Pj of the remaining n - °-4 points P4+8 , ... , ~L-l' we choose a

polynomial £j of degree 1 so that £j(Pj ) = 0 and £/PI> "* O. Then

h := £oIT'~-~£j is of degree n - 3, and «1>(_(hJ= el'
l= h PI)
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We devote the remainder of this section to showing the t,p 's to be in

the image of <1>. Without loss of generality, we may assume that y = 1.

Step 4. In this step, we explain a technicallelllUla.

Lermna 3.6. If /.ue findpolYllomials glP in x, y for '13 = 0, 1, ... , 81 - 1

such that deg glP ~ II. - 3, glP (Si' T];) = 0 (i = 1, ... , n - 1), and

with a nonzero constant c~), then the hp ,s are in the image of <1>.

Proof. Since <I>(glP) = (glp(X, 0); 0, ... , 0) and (13), we have..

Step 5. Let {11(1), ... , l1(e)} c Il x be the set of possible values of the

y-coordinates of PI> ... , ~t~l' that is, e is the number of different values

among 111' ... , 11n-1' In this step, we consider the case e ~ n - 2 - 8. Let

h(x, y) := fl l3(x) n;=l (y -l1(i)). Then deg h ~ 8 - 1 + e ~ n - 3 by the

assumption, and <I>(h) = (h(x, 0); h(P1 ), ... , h(~t-d) = CrIp for some

nonzero constant c.

Step 6. We handle the case e ~ n -1 - 8 by dividing it into several

subcases. Note that e ~ 8 -1 because n ~ 28 by an original assumption

on 8. Without loss of generality, we may assume that
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l1(i) = Y(~L-i) (i = 1, ... , e).

where (cI' ... , C8-1) is the solution of

Then we have that

fl13(~L-I)

fl13(Pn- 2 )

and

deg h13(x, Y) = 8 -1, (14)

(15)

(16)

Now, we look at the configuration of the remaining n - 8 points

PI' ... , Pn - 8 ·

Case 6.1. Suppose that the set {PI> ... , ~L-8} contains a quadrangle.

We may assume that PI, P2 , P3 , P4 form a quadrangle. Choose a quadric

polynomial q so that q(PI ) = ... = q(P4 ) = o and q(QI) *- O. Furthermore,

for each ~ with 5 ~ i ~ n - 8, choose a polynomial f. i of degree 1 so that

~ nn-8
Pi(~) = 0 and f.i(QI) *- O. Then the polynomial h:= flPq i=5 Pi is of

degree n - 3 because of (14), and h(PI ) = ... = h(~L-I) = 0 because of

(16). Since q(QI) n~'::Pi(QI) *- 0 and (15), the polynomial h(x, 0) is of

the form (13) in Lemma 3.6. So this case has been settled.
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Case 6.2. Suppose that the set {PI' ... , ~t-o}' does not contain any

quadrangles. Since n - cS - 1 points of the set are collinear by Lemma 3.4,

we may assume that PI, ... , ~t-O-l are collinear. We denote by L the line

containing those n - cS - 1 points.

Subcase 6.2.1. Suppose that L does not contain QI' Let .e = 0 be an

equation of L, and .e n-o a polynomial of degree 1 with .en-o(~t-o) = P
and .en-o(QI):I= o. From (14) and the original assumption cS S n - 4,

deg AfJe.e n-o = cS + 1 S n - 3. Because of our choice of the polynomials,

AfJU n-o has the desired properties described in Lemma 3.6.

Subcase 6.2.2. Finally suppose that QI E L. Since PI, ... , ~t-o-l'

QI ELand the line L is not parallel to the line y = 0 in the .A2
, the

y-coordinates of these points, are mutually different. In particular, since

17, - cS - 1 ~ cS - 1 by one of our original assumptions, the y-coordinates of

PI' ... , Po-1 are different.

Now, we rechoose the coefficients cI' ... , CO-I of h, fJ by the solutions

of

(Y(Fi)j )l~i.~O-l [CJ ] = [f1jl (1"; l] ..
l~J~o-l .

. . .

: j: i

Then we have that (14), (15), and

hfJ(Fi) = 0 (i = 1, ... , cS -1).

For the configuration of the remaining n- cS points Po, Po+I' ... ,

~t-l' there are three possibilities:

(i) the set {Po, ... , ~t-l} contains a quadrangle;

(ii) there is a line M on which n - 8 - 1 of the n - 8 points lie, but

QI does not lie on the line M;



40

on.

MASAAKI HOMMA and AKIRA OHBUCHI

(iii) there is a line M which n - & -1 of the n - & points and QI lie

If the first or the second case happens, we can find a desired

polynomial by the same argument to Case 6.1 or Subcase 6.2.1

respectively. So we have to consider the third case, and treat the case in

the next step.

Step 7. First we show that the line L, which Pf, , ~t-O-l lie on, and

the line M, which n - 5 -1 of the n - 5 points Po, , Pn - l lie on, meet

exactly at Q1' Since 5 ~ (n - 5 - 1) + 1, the union {PI' ..., ~t-o-d with

{Po' ... , ~t-d covers {PI' .. " ~t-d· Hence, if L = M, then the line

contains at least n - 2 points of {PI' ... , ~t-l}, which contradicts with the

original assumption because QI is on the line.

In particular, {PI' ..., ~t-O-l} n{PO' ... , ~t-l} is empty or consists of

one point. Since

we have n = 25 or 25 + 1. We consider the two case~ separately.

Case 7.1. If n = 25 + 1, then

Note that neither of the two lines Land M is parallel to the line y = O.

Let £1 = 0 and £2 = 0 be equations of Land M respectively. We choose

cI' ,.. , Co E k as the solutions of

(y(~)j)1$i.$8[el ] = [r,P(Pi)/i 2(P;l]
lSJ$8 . .

. ,

: j : i

and dl , ... , do E I?- as those of
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{y{Po+i )J )l~i.~O [dj ] = [r,p (PS+i l/11 (PS+i l] .1_1_0 "
. .
: J : i

Let

Then we have h{x, 0) = fl~' h{~) = 0 (i = 1, ... , 11, -1), and deg 11, ~ 8 + 1

~ 11, - 3 because 8 ~ 11, - 4. Therefore, we have <1>{h) = lIP'

Case 7.2. Lastly we consider the case 11, = 28. We may assume that

L 3.P1 , ... , Po- I and M 3 Po+1 ' ... , PZo - 1 ' 0Ne don't know where Po" is.)

We choose the constants CI, ... , co-I, d1, ... , d8- 1 by the same way with

the previous case. Moreover, we choose a polynomial f 8 of degree 1 so

that f 8(P8 ) = 0 and p.o(Qd :f- O. Then the polynomial

is of degree ~ 8 + 1 (~ 11, - 3), and <1>(11,) = ClIP for a nonzero constant c.

We have completed the proof of Theorem 3.2.

4. Plane Curves with Aligned Conductors

Now, we go back to the circumstances in Section 2. The aim of this

section is to study the linear system 92 cut out on X by lines for a

singular plane curve Y of degree d whose conductors ;is aligned. As is the

same usage in Section 2, 8 denotes the length of the scheme of conductors

D = Spec Oy Ie.

Lenuna 4.1. If the conductors of Y is aligned, then we have 28 ~ d.

Proof. From Lemma 2.5, together with Lemm£l 2.3, we have

hO(X, 'V*Oy(l)(- C)) > O. Hence deg 'V·Oy(l)(- C) ~ 0, which means

d - 28 ~ O.
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Theorem 4.2. Assume that the conductors of Y is aligned.

(a) If either d ~ 5, or d = 4 and 8 = 1, then the linear system

\jJ*1 Oy(l) I is complete.

(b) If either d ~ 7, or d = 6 and 8 s 2, or d = 5 and 8 = 1, theTt the

complete linem' system \jJ*1 Oy(l) I is the unique g~ on X.

Proof. We denote by pI the line containing the scheme of conductors

D of Y, and by p the closed immersion D 4 pl. (When Sing Y consists of

one point P with 8p = 1, we fix an arbitrary line pI passing through P.)

(a) We already established the completeness of the linear system at

Lemma 2.6 if the characteristic of Il is not 2, however, here we give a

more conceptual proof of the completeness, which works in an arbitrary

characteristic.

By Theorem A.4 in Appendix, it suffices to show that

is surjective. It is obvious that the surjectivity is equivalent to that of

Since length D = 8, we have 'I D, pI ::: Opl (-8). Hence the morphism p*

fits in the exact sequence

Therefore, the morphism p* is surjective if and only if 8 s d - 3. By

Lemma 4.1, the condition is equivalent to either d·~ 5 or d = 4 and

o= 1 under the assumption d ~ 4.

(b) Let g~ be a linear system on X of degree d and of projective

dimension 2. We have to show that g~ = \jJ*1 Oy(l) I.



PLANE CURVES WITH ALIGNED CONDUCTORS 43

The first claim is that even if the g~ has base points, we may assume

that

(i) the image of each base point by \jJ not to lie on the line pI, and

(ii) the divisor of base points of g~ to have no multiple points.

To show the claim, let B be the divisor of base points of gJ, and

b := deg B. Choose general points QI' ... , Qb E X and consider the linear

system gJ.(- B) + QI + ... + Qb, which is also a linear system of degree d

and of projective dimension 2. Moreover, the linear system satisfies

conditions (i) and (ii). If we can prove that gJ(- B) + QI + .:. + Qb =

\jJ*1 Oy(l) I, then the linear system is free from base points, that is, b = O.

So gJ itself coincides with \jJ*1 Oy(l) I.

By the above assumption, we can choose a general member

PI + ... + Pd E gJ. such that PI, ... , Pd are distinct points of X \ \jJ-ICPI).

Since the linear system is of projective dimension 2, there are two points

in the d points, say PI, Pz, such that

diml P3 + ... + Pd I = O.

In particular,

Note that we can regard each Pi as a point of Y \ pl.

The second claim is that the natural map

(17)

(18)

is not surjective for ·i = 1 and 2. To show the claim, without loss of

generality, we may assume that i = 2. Suppose that p; was surjective.

Then, by observing the commutative diagram
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with exact row, we would have

On the other hand, since

by Lemma 2.3 and PI,"" Pd E Y \ Sing Y c X, we have

because the diagram

HO(y, Vy(d - 3)(- D))

/

is commutative. Since (\jI*Vy(d - 3)) (- C) ~ ffix, we have

(by Riemann-Roch)

=g-d+2 (by (18».
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Hence the supposed surjectivity of p* contradicts with the correct

dimension of

Therefore, considering Lemma 4.1, we can apply Theorem 3.2 for D

and the d - 1 points P2 , P3 , ... , Pd , and we know that

(la) P2 , ... , Pd are collinear, or

(lb) there is a point Qi E Supp D such that Qi and some d - 2

points of {P2 , ... , Pd } are collinear.

(2a) PI, P3 , ... , Pd are collinear, or

(2b) there is a point Qj E Supp D such that Qj and some d - 2

points of {PI> P3 , ... , Pd } are collinear.

Hence, logically, there are the four possibilities of the ciTcumstances

Case 1. (la) and (2a) occur,

Case 2. (la) and (2br'occur,

Case 3. (lb) and (2a) occur,

Case 4. (lb) and (2b) occur.

If (la) and (2b) occur at the same time, then the line determined by

(la) coincides with that by (2b) because d ~ 5. Let L be the line. We

denote by (Y.L) the intersection number of Yand L, and by i(Y.L; P) the

intersection multiplicity of Yand L at P. Then we have

d

d = (Y.L) ~ Li(Y.L; Ii) + i(Y.L; Qd
i=2

~ (d -1) + 2,
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which is a contradiction. So Case 2 is not the case, and neither is Case 3.

Next, we consider Case 4. Let £1 and £2 be lines determined by the

conditions (lb) and (2b) respectively. When d ~ 6, since £1 and £2 have

at least two common points,· the two lines must coincide and Qi = Qj'

When d = 5, the set Lt n£2 n{PI, ..., P5 } contains at least one point.

Since we assumed 8 = 1 for d = 5, the equality Qi = Qj is automatically

satisfied. Hence Lt = £2' If d - 1 points of {PI' ... , Pd } lie on the line, we

come to a contradiction by the same argument in Case 2. If the line, say

£, contains exactly d - 2 points of {PI' ... , Pd }, these points must be

{P3 , ... , Pd }. Since Qi is a singular point of a degree d curve Y, we have

Hence, the linear system IP3 + ... + Pd I on X contains the g~-2 cut out

by lines through Qi' which contradicts with (17). Therefore, the only

possibility is Case 1, which means PI, ... , Pd are collinear.

5. Supplement

In Theorem 4.2, we excluded a few cases from consideration. Taking

account of Lemma 4.1, the remaining cases for the completeness of

\jI*1 V y (l) I are" d = 4 with 8 = 2" and" d = 3 with 8 = 1," and for the

uniqueness of g~ "d = 6 with 8 = 3," "d = 5 with 8 = 2," "d = 4 with

8 = 2," "d = 4 with 8 = 1" and" d = 3 with 8 = 1. "

Here we discuss both problems for those cases.

The case "d = 3 with 8 = 1"..

In this case, 9 = O. Hence any g~ is not complete, and the g~ 's form

a one-dimensional family.

The case" d = 4 with 8 = 2"

In this case, 9 = 1. Hence any gJ is not complete, and the gJ's form

a two-dimensional family.
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The case "d = 4 with 8 = 1"

In this case, 9 = 2. By the Riemann-Roch theorem, any g~ on the

curve X is complete. Since any invertible sheaf M of degree 4 with

haeM) = 3 on X can be written as M:::: rox(P + Q) for some P, Q E X,

the g~ 's form a two-dimensional family.

The case" d = 5 with 8 = 2"

The curve X is of genus 4. The completeness of \jI*1 Oy(l) I is

guaranteed by Theorem 4.2(a), though we can know it from another

reason. Actually, any gg on X must be complete because of Clifford's

theorem, and the family of the gg's coincides with {I K(-P) II P E X} by

the Riemann-Roch theorem, where K is a canonical divisor.

The case" d = 6 with 8 = 3"

The linear system \jI*1 Oy(l) I is complete by Theorem 4.2(a). For the

uniqueness, we need a little more argument.

Proposition 5.1. If d = 6 and 8 = 3, then the complete linear system

\jI*1 Oy(l) I is the unique g~.

Proof. Note that the genus 9 of the curve X is 7. First we show that

X is neither hyperelliptic, trigonal nor elliptic-hyperelliptic. If we fix a

non-singular point on Y, we can get a pencil g~ on X cut out by lines

through the point. Since the existence of g~ is incompatible with that of

g~ because of the inequality of Castelnuovo-Severi (see, [1, Theorem 3.5]

or [2, VIII, Exercises C-l]), X is nonhyperelliptic. If we consider the pencil

on X cut out by lines through an assigned singular point of Y, then we .

have g~ because the multiplicity of Y at the point is 2 by Lemma 2.9.

Hence X is not trigonal because of the inequality of Castelnuovo-Severi.

By the same reason, we know that there are no morphisms of degree 2

from the curve X to an elliptic curve because of the existence of g~.
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Next, we show that any g~ is free from base points, and the

morphism associated to the linear system is birational onto its image~ Let

B be the set of base points of the g~. If deg B was greater than 1, X would

be trigonal or hyperelliptic. So deg B ~ 1. If deg B = 1, we have a linear

system g~, and the linear system is very ample by the same reason.

Hence, the genus of X must be 6, which is a contradiction. Therefore, the

g~ has no base points, and we have a morphism ~ 2 ;- X ~ p2. If the
96

morphism was not birational onto ~ 2 (X), the curve X would be either
96

elliptic-hyperelliptic or trigonal.

Let Q1 + ... + Q6 be a general member of the g~ , and

M = 0X(QI + ... + Q6)' We may assume that g~(- Ql) and gg(- Q2) are

free from base points because ~ 2 is birational. Let V be the
96

2-dimensional subspace of HO(X, M(- Ql)) corresponding to the linear

system g~(- Q1 ). (Note that we have not yet known the completeness of

the g~.) Let us consider the natural map

Case 1. Ker f.l. = (0).

In this case, since

and

deg \jJ*(Oy(I)) @ M(- Qd = 11(= 2g - 3),

there is a point REX such that
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On the other hand, \jI*(Oy(l))(- C)::::: Ox' since hO(\jI*(Oy(l))(-- C)) > 0

by Lemma 2.5 and deg \jI*(Oy(l))(- C) = 0 by our assumption. Hence we

have

which means that

in particular \jI(Qz), ..., \jI(Q6) are collinear.

Case 2. Ker ~ :t: (0).

Since

by the base-point-free pencil trick, the non-triviality of Ker ~ implies that

there is a point REX such that Qz + ... + Q6 + REI \jI*(Oy(l)) I.

Therefore, \jI(Qz), ... , \jI(Q6) are collinear in either case occurs. The

same thing is true for Ql' Q3' , Q6' SO we have \jI(Ql), ... , \jI(Q6) are

collinear, which means 0X(QI + + Q6)::::: \jI*(Oy(l)).

Appendix

Throughout this appendix, Y denotes an irreducible curve of degree

d > 1 in pZ with Sing Y :t: 0, and X ~ Y the normalization of Y. We

:do not assume the conductors, of Y to be aligned. The purpose of the

appendix is to explain a necessary and sufficient condition for the linear

system \jI*1 Oy(l) I to be complete.

Lemma A.I. Let Z be a finite subscheme of Y. Then
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1,S surjective for any positive integer n. Moreover, if n < d, then the

morphism is an isomorphism.

Proof. Let us consider the commutative diagram

0 0

-l- -l-

HO(V IP2 (n)® I z) u HO(Vy(n)(- Z))~

-l- -l-

o ~ HO (V 1P2 (n :- d)) ~ HO(V IP2 (n)) ~ HO(Vy(n)) ~ 0

-l- -t -l-

o ~ 0 HO(Vz ) HO(Vz ) ~ 0

-l-

0

where all rows and columns are exact. Hence, by the snake lemma, the

morphism u is surjective. Moreover, since Ker u ~ HO(V p2 (n - d)), u is

an isomorphism if n < d.

Corollary A.2. For the scheme of conductors D of Y, we have

for n with 1 s n < d.

Proof. This is just a combination of Lemmas 2.3 and A.I.

Remark A.3. The scheme of conductors D of Y imposes independent

conditions on curves of degree d - 3. In fact, by Corollary A.2,
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=Pa(Y) - 8

Hence the natural map

is surjective.

We have come to the goal of the appendix.

Theorem A.4. The linear system g~ cut out on X by lines, that is to

say the linear system \jI*1 Vy(l) I, is complete if and only if the scheme of

conductors D of Y imposes independent conditions on curves of degree

d - 4.

Proof. Our linear system g~ on X corresponds to the image of the

natural map'

Hence, the g~ is co"mplete if and only if hO(X, \jI*Vy(l)) = 3, which is

equivalent to the condition

'", .~:"':';'

by the Riemann-Roch theor~m.:From the Serre duality, together with (7),

we have

and from Corollary A.2,
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On the other hand, we have

1
= - (d -l)(d - 2) - () - d + 2

2

=9 - d + 2.

To sum up: we have that the 92 is complete if and oniy if the natural map

is surjective.
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