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o. Introduction

Just as in the case of smooth curves, an integral projective curve X, which may

have singular points, of arithmetic genus 9 ::2: 2 is said to be hyperelliptic if there

is a finite morphism X --+ pI of degree 2. However, there is a phenomenon which

never happens in the case of smooth hyperelliptic curves; that is, the degree-two

morphism may be inseparable. A hyperelliptic curve with this property is said

to be of insepa:mble type. The complete picture of singular hyperelliptic curves

can be found in [3].

On the other hand, any (singular or nonsingular) hyperelliptic curve is

Gorenstein ([4, Th. 15], [3, (2.2)]), i.e. the duali7,ing sheaf of the curve is

invertible. The purpose of this short note is to give a characterization of hy­

perelliptic curves of inseparable type in the category of Gorenstein curves in

t.erms of the separable gonality of a curve, which is defined to be the smallest

possible degree of a flIlite separable morphism from the curve to the projective

line. Our result should be placed in a more general context of a divisor theory

of a Gorenstein curve; however,'here we will give a makeshift proof to it.

Throughout this note, we will assume the ground field K to be algebraically

closed.

1. The inequality ks ::; g + 1

Let X be an integral projective curve of genus g. We will show that ther'e is a

.finite sepamble rrw1phisrn X --+ pI oj degree less than or equal to 9 + 1.
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In fact, let us take pairwise distinct 9 + 1 smooth points PI, ... ,P9+I of X.

Then we have hO(Ox(PI + ... + Pg+d) ~ 2 by the Riemann-Roch theorem.

Hence there is a non-constant function J : X --t pI whose pole divisor (J)oo is

at most PI + ... + Pg+I . Since 'Up(J) = -1 for any P E (1)00 , the morphism J

is separable.

o

Therefore we can define the separable gonaliLy ks = ks (X) of X in the way

which was mentioned in Introduction.

2. Main result

Qur theorem is as follows.

Theorem. Let X be a Gorenstein cur've oj genus 9 ~ 2. Then

FuT'lher'm0 'te; equality occur's iJ and. only iJ X is hyper'elliptic oj insepaT'{},ble type.

Proof. The first part of the assertion has been proved in the previous section,

First we will show that

for a hyperelliptic curve X of inseparable type. By definition, there are two par­

ticular finite morphisms from X to pI; one, say x, is an inseparable morphism

of degree 2 and the other, say V, is separable of degree ks ' Since the function

fleld of X is K(x, V), the morphism

(x,v): X --t pI X pI

is birational onto its image. Hence we have

by virtue of Castelnuovo's inequality.
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Next we will show that
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if X is a Gorenstein curve tJlat is hyperelliptic of separable type (i.e. the degree­

two morphism is separable) or nonhyperelliptic. By deflIlition, ks(X) = 2 if X

is hyperelliptic of separable type. Let X be a nonhyperelliptic Gorenstein curve.

Then the canonical linear system is very ample ([4, Th. 17], 2, (1.6)], [5, (3.3)]),

that is, X can be embedded in pg-I as a curve of degree 2g - 2. Hence, by

using Bertini's theorem [1, II (8.18) and (8.18.1)]' we can flIld pairwise distinct

2g - 2 smooth points PI,' .. ,PZg - Z so that

Hence h,O(Ox(PI + ... + Pg )) ::::: 2. Therefore we can conclude that ks :::; 9 by

the same argument in Section 1.

D

Rem.ark. The first part of the statement of Theorem holds without assuming

X to be Gorenstein, but the second part does not.

In fact, let us consider the curve l~ obtained from the projective line pI by

replacing the local ring Opl,o by

where l is a uniformizing function OIl pI so that lOP1,0 is the maximal ideal of

OP1,0, If 9 ::::: 2, then ~ is a non-Gorenstein curve of genus g. Looking at the

local ring of ~ at 0, we know that every nonconstant function }~ -+ pI is of

degree greater than g. Hence l~ is a IlCmhyperelliptic curve with ks(~) = 9 +1.
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