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Abstract

For a Hermitian curve H in projective plane P
2 and an arbitrary

point P of P
2, we find out the Galois group of the projection H → P

1

with center P . To achieve this aim, we discuss the Galois group of
an equation and that of a finite separable morphism between curves in
slightly more general context. Moreover, we compute the genus of the
so-called Galois-closure curve H̃P .
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1 Introduction

The Galois group of a linear projection of a curve has been studied for the
past decade by Miura and Yoshihara (e.g. [9, 10, 11, 15, 16]). They are mainly
concerned with the characteristic 0 case. If we consider the Galois group in
positive characteristic, unusual phenomena may occur even if the center of the
projection is a point. In fact, we saw it by an example when the projection is
a Galois covering, which is explained in Theorem 1 below. Recently, Fukasawa
studied the matter of Galois points in positive characteristic in general [3, 4,
5, 6].

Let C be a nonsingular plane curve of degree d ≥ 4 over an algebraic
closed field k. For an assigned point P of P

2, the projection πP : C → P
1 with

center P gives rise to the field extension k(C)/k(P1), where k(C) and k(P1)
are the function fields over k of C and P

1 respectively. We know the extension

1Partially supported by Grants-in-Aid for Scientific Research (17540045 and 19540058),
JSPS.
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k(C)/k(P1) is separable by [8]. The Galois group GP of the Galois closure

of k(C)
π∗

P←↩ k(P1) is the object of our study. When the extension k(C)/k(P1)
via π∗

P is Galois, the center P of the projection is called a Galois point for C.
Since the automorphism group of C is finite and each automorphism, which
gives rise to a linear transformation of P

2, has finitely many fixed points, the
number of Galois points for C is finite. When P is not Galois, C̃P denotes the
nonsingular projective curve corresponding to the Galois closure of k(C)/k(P1)
via π∗

P .
Before stating our results, we explain what we already know in character-

istic 0. In [15, 16], Yoshihara showed that the number of Galois points on C is
0 or 1 or 4 if d = 4 and it is 0 or 1 if d ≥ 5; and the number of Galois points
outside C is 0 or 1 or 3. Moreover, he showed that if P is a general point of
C, then GP is the symmetric group Sd−1 of degree d−1 and the genus of C̃P is
(d−1)!(d+2)(d−3)/4+1; and if P is a general point of P

2\C, then GP is the

symmetric group Sd of degree d and the genus of C̃P is (d−1)!(d2−d−4)/4+1.
Our purpose is to observe the behavior of a Hermitian curve in the frame-

work of Yoshihara’s theory, which may suggest the difference between the
phenomena in characteristic 0 and those in characteristic p > 0.

Let p be a prime number and q = pe with q ≥ 4. We denote by Fq2 the
field of q2 elements, and by k the algebraic closure of Fq2 . We consider a plane
curve H given by

yq + y = xq+1, (1)

where x and y are inhomogeneous coordinates of the ambient projective plane
P

2 over k. When we choose Fq2 as a field of definition of H , the curve is called
a Hermitian curve.

In the previous paper [7], we proved the following fact.

Theorem 1 The field extension k(H)/k(P1) by means of πP is Galois if and
only if P is Fq2-rational. Moreover we have

(a) GP
∼
=

e⊕ Z/pZ if P ∈ H(Fq2);

(b) GP
∼
= Z/(q + 1)Z if P ∈ P

2(Fq2) \H(Fq2),

where P
2(Fq2) and H(Fq2) denote the set of Fq2-rational points of P

2 and H
respectively.

In this paper, we show the following theorem.

Theorem 2 (a) If P ∈ H \H(Fq2), then GP is isomorphic to

AGL(1, Fq) = {σ : Fq → Fq | σ(z) = αz + β, α ∈ F
×
q , β ∈ Fq}

and the genus of H̃P is (q − 1)2q/2.
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(b) If P ∈ P
2 \ (H ∪ P

2(Fq2)), then GP is isomorphic to the projective general

linear group PGL(2, Fq) of P
1(Fq), and the genus of H̃P is q(q3−q−2)/2.

In order to prove Theorem 2, we prepare two properties of a Galois group
in slightly more general setting than our original one. The first property is
algebraic, which is discussed in Section 2, the second one is geometric, discussed
in Section 3. Both of the properties are modification of what Ballico and Hefez
[2] or Rathmann [13] proved. In Section 2, we use Abhyankar’s method of
throwing away roots [1] to find the Galois group of an equation coming from

πP , which is an important step for computing the genus of H̃P . Sections 4 and
5 are devoted to the proof of Theorem 2.

2 Galois group of an algebraic equation

In the first half of this section, we consider a polynomial f(X) of degree d > 0
over a field K which has no multiple roots but is possibly reducible. Let
{α1, . . . , αd} be the set of roots of f(X) in the algebraic closure K̄ of K, and
G(f/K) the Galois group of K(α1, . . . , αd)/K. The Galois group G(f/K)
acts on {α1, . . . , αd} transitively if f(X) is irreducible over K.

We introduce a non-common terminology.

Definition 2.1 For f(X) ∈ K[X], we construct successive pairs

{(Ki, fi(X))}i=0,1,... ,μ

each of which consists of a field Ki and a polynomial fi(X) with fi(X) ∈ Ki[X]
inductively as follows.
(0) Put K0 = K and f0(X) = f(X);
(1) After we constructed pairs {(Ki, fi(X))}i=0,1,... ,ρ up to the ρ + 1st step,

(1a) the construction terminates, if either fρ(X) is reducible over Kρ or deg fρ =
0.

(1b) If fρ(X) is irreducible, put Kρ+1 = Kρ[Y ]/(fρ(Y )) and Ȳ = Y mod fρ(Y )
in Kρ+1. Then X − Ȳ divides fρ(X) in Kρ+1[X], that is, there is a poly-
nomial g(X) ∈ Kρ+1[X] such that fρ(X) = (X − Ȳ )g(X). We put
fρ+1(X) = g(X).

The number μ is called the splitting height of f(X) over K.

It is obvious that the splitting height of f(X) is at most the degree of f(X),
and it is 0 if and only if f(X) is reducible.
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Lemma 2.2 Let f(X) be the polynomial of K[X] considered in Definition 2.1.
Let ρ be a nonnegative integer with ρ ≤ μ, where μ is the splitting height of
f(X) over K. Then for any ρ roots {αi1 , . . . , αiρ} of f(X) we have Kρ

∼=
K(αi1 , . . . , αiρ) over K and dimK Kρ = d!/(d− ρ)!.

Proof. We prove this by induction on ρ. Suppose that Kρ−1
∼= K(αi1 , . . . , αiρ−1)

and dimK Kρ−1 = d!/(d− ρ + 1)!. By the construction of successive pairs,

f(X) = (X − αi1) · · · (X − αiρ−1)fρ−1(X)

in Kρ−1[X] via the isomorphism Kρ−1
∼= K(αi1 , . . . , αiρ−1). Since f(X) has no

multiple root, fρ−1(αiρ) = 0, which means fρ−1 is a minimal polynomial of αiρ

over Kρ−1 because fρ−1(X) is irreducible over Kρ−1. Therefore

Kρ
∼= Kρ−1[X]/(fρ−1(X)) ∼= Kρ−1(αiρ)

∼= K(αi1 , . . . , αiρ)

and

[Kρ : Kρ−1] = deg fρ−1(X) = d− ρ + 1.

Hence dimK Kρ = (d− ρ + 1) d!
(d−ρ+1)!

= d!/(d− ρ)!. �

The following proposition is a polynomial version of [13, Prop. 1.5].

Proposition 2.3 (Abhyankar’s MTR) Let f(X) ∈ K[X] be an irreducible
polynomial of degree d and {α1, . . . , αd} the set of roots of f(X) in K̄, which
are distinct elements. For ν ∈ Z with 0 ≤ ν ≤ d, the following conditions are
equivalent:

(i) dimK K[α1, . . . , αν ] = d!
(d−ν)!

;

(ii) dimK K[αi1 , . . . , αiν ] = d!
(d−ν)!

for an arbitrary ν roots {αi1, . . . , αiν} ⊂
{α1, . . . , αd};

(iii) the splitting height of f over K is at least ν;

(iv) G(f/K) acts ν-fold transitively on {α1, . . . , αd}.
Proof. When ν = 0, there is nothing to do. (ii)⇒(i) is obvious, and (iii)⇒(ii)
follows from Lemma 2.2.

(i)⇒(iii). Put Kρ = K[α1, . . . , αρ] for ρ ≤ ν. Since the roots α1, . . . , αν of
f(X) are in Kν , we have the decomposition f(X) = (X−α1) · · · (X−αν)g(X)
in Kν [X]. Put

fρ(X) =

{
(X − αρ+1) · · · (X − αν)g(X) if ρ < ν

g(X) if ρ = ν.
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We prove that if ρ < ν, then fρ(X) is an irreducible polynomial over Kρ. For
ρ = 0, it is obvious because f0(X) = f(X) ∈ K[X]. Since α1, . . . , αρ ∈ Kρ

are roots of f(X), we have a polynomial in Kρ[X] of degree d − ρ that is the
quotient of f(X) by (X−α1) · · · (X−αρ), which is just fρ(X). Since αρ+1 is a
root of f(X), it is a root of fρ(X). On the other hand, since Kρ+1 = Kρ[αρ+1]
and

[Kρ+1 : Kρ] =
d!

(d− (ρ + 1))!

/ d!

(d− ρ)!
= d− ρ

by the assumption (ii), fρ(X) is a minimal polynomial of αρ+1 over Kρ, and
irreducible particularly.

(iii)⇒(iv). Let {αi1 , . . . αiν} and {αj1, . . . αjν} be two sets of ν roots of
f(X). By construction of the successive pairs {(Ki, fi(X))}i=0,1,... ,ν in the
proof of Lemma 2.2, we have a commutative diagram

K[αi1 , . . . αiρ−1 ][αiρ ]
∼= Kρ = Kρ−1[X]/fρ−1(X) ∼= K[αj1 , . . . αjρ−1][αjρ ]

↑ ↑ ↑
K[αi1 , . . . αiρ−1 ]

∼= Kρ−1
∼= K[αj1 , . . . αjρ−1]

for any ρ ≤ ν. Note that αiρ is a root of fρ−1(X) if we regard fρ−1(X)
as a polynomial over K[αi1 , . . . αiρ−1] via the isomorphism at the lower left
in the diagram; and so is αjρ if we regard fρ−1(X) as a polynomial over
K[αj1 , . . . αjρ−1] via the isomorphism at the lower right. Hence there is an
isomorphism σ : K[αi1 , . . . αiρ ] → K[αj1 , . . . αjρ] over K so that σ(αiρ) = αjρ

(ρ = 1, 2, . . . , ν). This σ can be extended to an element of G(f/K).
(iv)⇒(i). Since

dimK K[αi1 , . . . αiν ] = #{σ : K[αi1 , . . . αiν ] ↪→ K̄ | σ is an embedding over K},
and σ(αi) is a root of f(X), we have

dimK K[αi1 , . . . , αiν ] ≤ ν!

(
d

ν

)
(2)

in general. The ν-fold transitivity of the action G(f/K) on {α1, . . . αd} implies
that the equality in (2) is attained. �

As applications of Proposition 2.3, we handle two concrete polynomials,
which are already discussed in [13, the proofs of 2.15 and 2.17].

Lemma 2.4 Let K be a field containing Fq, and

f(X) = Xq+1 + AXq + BX + C ∈ K[X].

Suppose f(X) is irreducible. Then f(X) is separable and the Galois group
G(f/K) of f(X) over K is a subgroup of the projective general linear group
PGL(2, Fq) of P

1(Fq). Moreover the action G(f/K) onto the roots of f(X) is
3-fold transitive if and only if G(f/K) = PGL(2, Fq).
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Proof. Since f ′(X) = Xq + B, f(X) is separable. Let x be a root of f(X).
Putting U = X − x, we have

f(X) = U(U q + (x + A)U q−1 + (xq + B)).

Put V = 1/U . Then the equation U q +(x+A)U q−1+(xq +B) = 0 is equivalent
to

(xq + B)V q + (x + A)V + 1 = 0. (3)

In fact, xq + B = f ′(x) 
= 0 as we saw. Choose a root of (3), say v, and put
W = V − v. Then the polynomial in V is equal to

W ((xq + B)W q−1 + (x + A)).

Choose a root of the equation

(xq + B)W q−1 + (x + A) = 0 (4)

on W , say w. Hence the set of roots of (4) is {zw | z ∈ Fq \ {0}}, and those of
(3) is {v + zw | z ∈ Fq}. Therefore the set of roots of f(X) is

{x} ∪ {x +
1

zw + v
| z ∈ Fq} = {x +

z2

z1w + z2v
| (z1, z2) ∈ P

1(Fq)}. (5)

Now we describe the action of G(f/K) to the set (5). Let σ ∈ G(f/K). Since
σ(x), σ(x + 1

v
) and σ(x + 1

w+v
) are also in the set (5) and distinct, we can find

α′, γ′, β ′, δ′, ε′, ζ ′ ∈ Fq so that

σ(x) = x +
γ′

α′w + γ′v

σ(x +
1

v
) = x +

δ′

β ′w + δ′v

σ(x +
1

w + v
) = x +

ζ ′

ε′w + ζ ′v
.

Since (α′, γ′) 
= (β ′, δ′) as elements of P
1, there are k, l ∈ Fq with(

α′ β ′

γ′ δ′

)(
k
l

)
=

(
ε′

ζ ′

)
,

where both the solutions k and l are nonzero because (α′, γ′) 
= (ε′, ζ ′) and
(β ′, δ′) 
= (ε′, ζ ′) as elements of P

1. Put α = kα′, β = lβ ′, γ = kγ′ and δ = lδ′.
Then

σ(x) = x +
γ

αw + γv
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σ(x +
1

v
) = x +

δ

βw + δv

σ(x +
1

w + v
) = x +

γ + δ

(α + β)w + (γ + δ)v
.

Hence we have

σ(v) =
1

σ(x + 1
v
)− σ(x)

=
(αw + γv)(βw + δv)

(αδ − βγ)w

σ(w) =
1

σ(x + 1
w+v

)− σ(x)
− σ(v) =

(αw + γv)2

(αδ − βγ)w
.

Then, by direct computation, we have

σ(x +
z2

z1w + z2v
) = σ(x) +

z2

z1σ(w) + z2σ(v)

= x +
γz1 + δz2

(αz1 + βz2)w + (γz1 + δz2)v
,

in other words, σ gives rise to the projective transormation

P
1(Fq) �

(
z1

z2

)
�→

(
α β
γ δ

) (
z1

z2

)
∈ P

1(Fq)

via the identification (5) of the set of roots of f(X) with P
1(Fq). It is ob-

vious that this correspondence G(f/K) → PGL(2, Fq) is an injective group
homomorphism. If this homomorphism is surjective, G(f/K) acts on the set
of roots of f(X) 3-fold transitively because the action of PGL(2, Fq) to P

1(Fq)
is 3-fold transitive. Conversely if G(f/K) does so, then

dimK K[x, v, w] = (q + 1)!
/
(q + 1− 3)! = (q + 1)q(q − 1)

by Proposition 2.3. Since the order of PGL(2, Fq) is also (q + 1)q(q − 1), the
injective homomorphism is an isomorphism. �

By argument similar to the proof of the above lemma, we can show the
following fact.

Lemma 2.5 Let K be a field containing Fq, and

f(X) = Xq + AXq−1 + B ∈ K[X].

Suppose f(X) is irreducible. Then f(X) is separable and the Galois group
G(f/K) of f(X) over K is a subgroup of

AGL(1, Fq) := {σ : A
1(Fq)→ A

1(Fq) | σ(z) = αz + β, α ∈ F
×
q , β ∈ Fq}.

Moreover the action G(f/K) onto the roots of f(X) is 2-fold transitive if and
only if G(f/K) = AGL(1, Fq).
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Proof. Since f(X) is irreducible, B 
= 0. Hence f(X) has no multiple roots,
and the equation f(X) = 0 is equivalent to the equation

BY q + AY + 1 = 0 (6)

under the condition Y = 1/X . Choose a root of (6), say y, and put V = Y −y.
Then we have

V (BV q−1 + A) = 0.

Choose a root of the equation

BV q−1 + A = 0, (7)

say v. Then the set of roots of (7) is {zv | z ∈ Fq \ {0}}. So the set of roots
of f(X) is {

1

zv + y
| z ∈ Fq

}
. (8)

Hence the splitting field of f(X) over K is K[y, v]. Let σ ∈ G(f/K). Since σ
acts on the set (8), we can find α and β ∈ Fq so that

σ

(
1

y

)
=

1

βv + y

σ

(
1

v + y

)
=

1

(α + β)v + y
.

Hence σ(y) = βv + y and σ(v) = αv. Hence for z ∈ Fq,

σ

(
1

zv + y

)
=

1

(αz + β)v + y
,

in other words, we have a map

G(f/K) � σ �→ αz + β ∈ AGL(1, Fq).

It is easy to see that this map is an injective group homomorphism.
If this group homomorphism is an isomorphism, G(f/K) acts on the set

(8) 2-fold transitively because AGL(1, Fq) acts on Fq 2-fold transitively. Con-
versely if G(f/K) does so,

dimK K[y, v] = q!/(q − 2)! = q(q − 1)

by Proposition 2.3. Since #AGL(1, Fq) = q(q − 1), the injective group homo-
morphism G(f/K)→ AGL(1, Fq) is an isomorphism. �
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3 Galois group of a separable morphism of

curves

Throughout this section, we fix the following situation.

Setup 3.1 Let X and Y be irreducible curves over an algebraically closed
field k. We consider a finite separable morphism π : X → Y of degree d. The

morphism gives rise to the field extension k(X)
π∗
←↩ k(Y ), which is separabele of

degree d. The Galois group of the Galois closure of k(X) over k(Y ) is denoted
by G. Let y ∈ Y in general position, and π−1(y) = {x1, . . . , xd}. Then π is
unramified at each xi. Hence the natural morphism

π∗
xi

: f.f.(ÔY,y)
∼−→ f.f.(ÔX,xi

).

is an isomorphism. Here R̂ denotes the completion of a local ring R with
respect to the maximal ideal, and f.f.(R) the field of fractions of an integral
domain R. We denote by τxi

= (π∗
xi

)−1. Then we have a commutative diagram

k(X) → f.f.(ÔX,xi
)

τxi→ f.f.(ÔY,y)

π∗ ↖ ↗
k(Y ) ,

(9)

where all morphisms are natural inclusions. Let L be the composite field
of τxi

(k(X)) (i = 1, . . . , d) in f.f.(ÔY,y). Hence L is the Galois closure of
τxi

(k(X))/k(Y ) for any i. We denote by τxi
again the embedding of k(X)

into L coming from (9). It is obvious that the set of embeddings k(X) into
L over k(Y ) is {τxi

| i = 1, . . . , d}. On the other hand, since G acts on L by
definition, the composition στxi

of τxi
and σ ∈ G is also an embedding of k(X)

into L. So we can find xσ(i) such that στxi
= τxσ(i)

. This gives a represtntation
of G as a subgroup of the permutation group Per(x1, . . . , xd) of {x1, . . . , xd}:

G ↪→ Per(x1, . . . , xd). (10)

If we choose an element α ∈ k(X) such that k(X) = k(Y )[α], then (10) is
equivalent to the representation using the roots of the minimal polynomial of
α.

The following property of G is a modification of [2, Prop. 3]. In the propo-
sition, Reg X denotes the open subset of a curve X consisting of nonsingular
points.

Proposition 3.2 Under Setup 3.1, assume that there is a point η ∈ Reg Y
and an integer l with 0 < l < d such that
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(1) π−1(η) = {ξ0, ξ1, . . . , ξd−l} ⊂ Reg X

(2) π is unramified at ξi for 1 ≤ i ≤ d− l.

Then there is a subgroup G′ of G such that under suitable re-numbering {x1, . . . , xd}
appeared in Setup 3.1,

(a) G′ acts on {x1, . . . , xl} transitively, and

(b) an arbitrary element of G′ fixes xj for any j > l.

Proof. The proof is the essentially same with that of [13, Prop. 1.11]. Choose
an affine open subset Spec B ⊂ Reg Y such that η ∈ SpecB and π−1(SpecB) ⊂
Reg X. Since π−1(Spec B) is affine, we denote it by SpecA. Since A is integral
over B, we can choose α ∈ A such that A = B[α] and the minimal polynomial
f(T ) of α over k(Y ) = f.f.(B) belongs B[T ]. Let Bη be the local ring at

η ∈ SpecB with maximal ideal mη, and B̂η the mη-adic completion of Bη. Let

f(T ) = f0(T ) · · ·fs(T ) be the irreducible decomposition of f(T ) in f.f.(B̂η)[T ].
So we have

f.f.(B̂η)⊗B A = f.f.(B̂η)[T ]
/
f(T ) =

s⊕
i=0

f.f.(B̂η)[T ]
/
fi(T ) (11)

by the Chinese remainder theorem.
On the other hand, it is not hard to see that

f.f.(B̂η)⊗B A
∼
=

d−l⊕
i=0

f.f.(Âξi
), (12)

where Âξi
is the completion of the local ring Aξi

at ξi ∈ X. For details, consult

[12, Sections 16 and 17]. Since f.f.(B̂η)⊗B A is Artinian, two decompositions
(11) and (12) into fields must coincide. Hence s = d− l, and

f.f.(B̂η)[T ]
/
fi(T )

∼
= f.f.(Âξi

) (i = 0, 1, . . . , d− l)

after renumbering the polynomials. Since π is unramified at ξi for i = 1, . . . , d− l,
f.f.(B̂η) = f.f.(Âξi

), which means deg fi(T ) = 1. Hence there is an element

αi ∈ f.f.(B̂η) so that fi(T ) = T − αi. Since f0(T ) = f(T )
(T−α1)···(T−αd−l)

is a

polynomial in

f.f.(B)[α1, . . . , αd−l][T ] = k(Y )[α1, . . . , αd−l][T ]

and irreducible over f.f.(B̂η), it is also irreducible over k(Y )[α1, . . . , αd−l]. Let
G′ be the Galois group of the extension L

/
k(Y )[α1, . . . , αd−l], which is, need-

less to say, Galois. Then G′ can be regard as a subgroup of G and has required
properties. �
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4 Projection from a point on the Hermitian

curve

First we give a lemma on a permutation group.

Lemma 4.1 Let G be a group acting the d-symbols {x1, . . . , xd} transitively.
If there is a subgroup G′ of G such that

(1) σ′(xd) = xd for any σ′ ∈ G′, and

(2) G′ acts on {x1, . . . , xd−1} transitively,

then the action of G to {x1, . . . , xd} is 2-fold transitive.

Proof. For arbitrary two symbols xi and xj , we can find an element σ ∈ G so
that σ(xi) = x1 and σ(xj) = xd. In fact, if xj = xd, then we can find σ′ ∈ G′ so
that σ′(xi) = x1 from the assumption (2). When xj 
= xd, first choose σ ∈ G
so that σ(xj) = xd. Then choose σ′ ∈ G′ so that σ′(σ(xi)) = x1. Hence σ′σ
has the required property. �

Now we go back to the original situation described in Introduction. In this
section, we prove the first part of Theorem 2. We handle the Hermitian curve
in more concrete way. So we prepare some additional notation. The line at
infinity with respect to the inhomogeneous coordinates x, y in (1) meets H at
only one point, which is denoted by P∞. For a point P ∈ H \{P∞}, we denote
by P = Pa,b when x(P ) = a anf y(P ) = b. Then bq + b = aq+1 holds. It is easy
to see that the tangent line at Pa,b to H is given by

aqx− y − bq = 0. (13)

Moreover if we consider aqx− y − bq as a function on H , we have

div (aqx− y − bq) = qPa,b + Paq2 ,bq2 − (q + 1)P∞ (14)

where div is an abbreviation for ‘divisor of’.

Theorem 4.2 Let P ∈ H \ H(Fq2). Then the projection πP : H → P
1 with

center P is separable, and GP
∼
= AGL(1, Fq).

Proof. Since P∞ is an Fq2-rational point, we may assume that P = Pa,b with
bq + b = aq+1. Since the family of lines passing through P is {y− b = t(x−a) |
t ∈ P

1}, we can regard t as a coordinate of the target P
1 of πP . Substitute

y − b = t(x− a) in (1), and put u = x− a. Then we have

xq+1 − tqxq − tx + aqtq + at− (bq + b)

= (uq + (a− tq)uq−1 + aq − t)u = 0.
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Hence the extension k(H)
/
k(t) via π∗

P is obtained by adding a root u of the
polynomial

U q + (a− tq)U q−1 + aq − t (15)

in U over k(t), which has no multiple root. Since deg πP = q, the polynomial
is irreducible. So the Galois group GP of πP is that of (15). Since P is not
Fq2-rational, π−1

P (πP (P )) = {P, P ′} with P ′ 
= P and πP is unramified at P ′

(see, for example [7, Lem. 3.1]). Therefore GP acts on the q roots of (15) 2-fold
transitively by Proposition 3.2 and Lemma 4.1. So we have GP

∼
= AGL(1, Fq)

by Lemma 2.5. �

Theorem 4.3 Let P ∈ H \ H(Fq2), and H̃P the Galois closure curve for

πP : H → P
1 explained in Introduction. Then the genus of H̃P is (q − 1)2q/2.

Proof. We follow the notation used in the proof of Theorem 4.2. Moreover, let
v be a root of (aq − t)V q−1 + a− tq, which corresponds Eq. (7) in the proof of
Lemma 2.5. Then, from the proof, we have the field extension

k(H̃P ) = k(t, u, v) ⊃ k(H) = k(t, u) = k(x, y)

with equations

yq + y = xq+1

y − b = t(x− a) (16)

uq + (a− tq)uq−1 + aq − t = 0

(aq − t)vq−1 + a− tq = 0. (17)

Put w = (x − a)v. Then k(H̃P ) = k(H)[w]. We find the minimal polynomial
of w over k(H) = k(x, y). Using (16), eliminate t from (17). Then

(x− a)q−1(aqx− y − bq)vq−1 + (a1/qx− y − b1/q)q = 0.

So the extension k(H̃P ) = k(H)[w]
/
k(H) is given by

wq−1 +
(a1/qx− y − b1/q)q

aqx− y − bq
= 0,

which is a Kummer extension. From (14), we have

div
(a1/qx− y − b1/q)q

aqx− y − bq
= q2Pa1/q2 ,b1/q2 − Paq2 ,bq2 − (q2 − 1)P∞.

Applying [14, III 7.3] to our situation, we know that πP is ramified at exactly
two points Pa1/q2 ,b1/q2 , Paq2 ,bq2 , and the ramification index is q−1 at each point.

Hence the genus of H̃P is (q − 1)2q/2 by Riemann-Hurwitz formula. �
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5 Projection from a point outside the Hermi-

tian curve

Next we consider the case where the center P of the projection is outside
(P2(Fq2) ∪ H). We may assume that P is in the affine plane with respect to
the affine coordinates x, y. In fact, if P is on the line at infinity, we can find
an automorphism τ of P

2 over Fq2 such that τ(H) = H and τ(P ) is in the
affine plane (see Remark 5.1 below).

Remark 5.1 The italicized statement above follows from the following two
facts.

(i) The line at infinity is the tangent line at P∞ to H;

(ii) Any automorphism of H is defined over Fq2, and the group of automor-
phisms acts on the set of Fq2-rational points H(Fq2) transitively (see [7,
Sec. 3]).

Proof of the italicized statement: Choose an automorphism τ of H such that
τ(P∞) = P0,0. Then τ(P ) lies on the tangent line at P0,0 to H . The only one
point of the tangent line lies on the line at infinity, which is the intersection
of two tangent lines at P∞ and P0,0 to H . Since both of the tangent lines
are defined over Fq2 , so is the intersection point. Since P is not Fq2-rational,
neither is τ(P ). Hence τ(P ) is in the affine plane.

Lemma 5.2 Let P be a point of P
2 \H. If P is not Fq2-rational, then there

is a line L passing through P such that L.H = qQ + Q′ with Q 
= Q′.

Proof. We may assume that P is in the affine plane with respect to the affine
coordinates x, y, say P = (a, b). Consider the tangent line TQ at Q = Pα,β ∈ H ,
which is given by αqx− y − βq = 0. The system of equations in two variables
α, β {

αqa− b− βq = 0
βq + β = αq+1

is equivalent to {
αa1/q − b1/q − β = 0
βq + β = αq+1.

(18)

For any solution (α, β) of (18), we have

TPα,β
.H = qPα,β + Pαq2 ,βq2 (19)
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(see [7, Lem. 3.1]), and TPα,β
� P . We want to show Pα,β 
= Pαq2 ,βq2 for some

solution (α, β). From (18), we have

αq+1 − aαq − a1/qα + b + b1/q = 0, (20)

which has q + 1 distinct roots because bq + b 
= aq+1. If α is an element of Fq2,
then so is β. Hence if the two roots of Eq. (20) are elements of Fq2 , then P
is Fq2-rational because P is the intersection of two tangent lines defined over
Fq2 . Therefore we can find a solution of (18) which is not Fq2-rational. So
Pα,β 
= Pαq2 ,βq2 . �

Theorem 5.3 Let P ∈ P
2 \ (P2(Fq2) ∪H). Then the projection πP : H → P

1

with center P is separable, and GP
∼
= PGL(2, Fq).

Proof. As already explained, we may assume that P = (a, b) with respect to
the affine coordinates x, y. Hence the family of lines passing through P is
{y − b = t(x − a) | t ∈ P

1}. Substituting y − b = t(x − a) into (1), we know
the minimal polynomial of x over k(t) via π∗

P is

f(X) = Xq+1 − tqXq − tX + aqtq + at− (bq + b).

Since k(H̃P ) is the field obtained by adding all the roots of f(X) to k(t), we
wish to find them. Put V = 1/(X − x). Then the roots of f(X) other than x
come from the roots of the polynomial

(xq − t)V q + (x− tq)V + 1 (21)

in V (see (3) in the proof of Lemma 2.4). From Lemma 5.2 with Proposition 3.2
and Lemma 4.1, GP acts on the set of roots of f(X) 2-fold transitively. Hence
(21) is irreducible over k(t, x) by Proposition 2.3. Let v be a root of (21), and
put W = V − v. Then the roots of (21) other than v come from the roots of
the polynomaial

(xq − t)W q−1 + x− tq. (22)

If this polynomial is irreducible over k(t, x, v), then the splitting height of f(X)
over k(t) is at least 3. Hence the action of GP is 3-fold transitive, and hence we
can conclude that GP = PGL(2, Fq) by Lemma 2.4. So our claim is that the
polynomial (22) is irreducible over k(t, x, v). Suppose that the polynomial (22)
is irreducible as an element of k(t, x)[W ], and choose a root of the polynomial,
say w. Look at the commutative diagram of field extensions

k(t, x, v, w)
↗ ↖

k(t, x, v) k(t, x, w)
↖ ↗

k(t, x)
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Since [k(t, x, v) : k(t, x)] = q and [k(t, x, w) : k(t, x)] = q − 1, we have
[k(t, x, v, w), k(t, x, v)] = q − 1, which means that the polynomial (22) is irre-
ducible over k(t, x, v).

We devote the rest of the proof to showing the polynomial (22) to be
irreducible over k(t, x). It is enough to show the polynomial is irreducible over
k[t, x], which can be regarded as the ring of the affine curve H ′ defined by

f(x, t) = xq+1 − tqxq − tx + aqtq + at− (bq + b)

in A
2
(x,t). It is easy to see that H ′ is nonsingular. Consider the solution of the

system of equations {
f(x, t) = 0
x− tq = 0.

Then

f(tq, t) = −(tq+1 − aqtq − at + bq + b) = 0. (23)

Since (a, b) 
∈ P
2(Fq2), there is a root ζ of (23) with ζ 
∈ Fq2. Consider a

point R = (ζq, ζ) ∈ H ′, and the local ring OH′,R at R, which is regular local
because H ′ is nonsingular. Since OH′,R ⊃ k[t, x], it is sufficient to see that
the polynomial (22) is irreducible as an element of OH′,R[W ]. Put x′ = x− ζq

and t′ = t − ζ . Then the maximal ideal m of OH′,R is generated by these
two elements, and (ζq2 − ζ)x′ + (a − ζq)t′ is an element of m corresponding
the tangent line to H ′ at R. Note that a − ζq 
= 0. In fact, if a = ζq, then
aq+1 = aqζq = bq + b because ζ is a root of (23), which contradicts with our
starting point. Hence x′ is a local parameter at R, and hence a prime element
of OH′,R. The polynomial (22) can be written as

(x′q − t′ + ζq2 − ζ)W q−1 + (x′ − t′q). (24)

Since ζ 
∈ Fq2 and x′ is a local parameter, we have

x′ 
 | x′q − t′ + ζq2 − ζ
x′ | x′ − t′q

x′2 
 | x′ − t′q.

Therefore the polynomial (24) is irreducible by Eisenstein’s criterion. �

The last task is to compute the genus of H̃P , which involves tedious calcu-
lation. We use the same notations as those in the proof of Theorem 5.3. Let
H1 be the nonsingular projective curve whose function field is k(t, x, v). Recall

that H̃P is the nonsingular curve whose function field is the Galois closure of
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k(H) = k(x, y) over k(t), namely, k(H̃P ) = k(t, x, v, w). Hence the natural

morphism H̃P → H splits into

H̃P
Θ→ H1

Φ→ H

via the field extensions

k(t, x, v, w)
Θ∗
←↩ k(t, x, v)

Φ∗
←↩ k(t, x) = k(x, y).

Theorem 5.4 (a) The genus of H is q(q − 1)/2.

(b) The genus of H1 is (q + 2)q(q − 1)/2.

(c) The genus of H̃P is q(q3 − q − 2)/2.

Proof. (a) Obvious.
(b) From (21) with t = y−b

x−a
, the field extension k(H1) = k(H)[v]/k(H) =

k(x, y) is given by

(x− a)q−1(y − a1/qx + b1/q)qvq + (y − aqx + bq)v + (x− a)q = 0. (25)

For simplification, we denote by l = y−a1/qx+ b1/q and m = y−aqx+ bq. Put
v1 = (x− a)lv. Then k(H1) = k(H)[v1] with equation

vq
1 +

m

l
v1 + (x− a)q+1 = 0. (26)

For the latter use, suspending the proof, we investigate the configuration
of points on H that lie on the line l = 0 or m = 0.

Lemma 5.5 We regard x, y as coordinates of the affine plane A
2 = A

2
(x,y).

Then there are 2q + 2 points Q1, . . . , Qq+1; Q
′
1, . . . , Q′

q+1 of A
2 such that

H ∩ {l = 0} = {Q1, . . . , Qq+1}
H ∩ {m = 0} = {Q′

1, . . . , Q′
q+1},

and the line joining Qi and Q′
i passes through P = (a, b) and is tangent to H

at Qi.

Proof. Since each of the two lines is not defined over Fq2, it meets with H at
q + 1 distinct points. Let Pα,β ∈ l ∩ H . Then the tangent line TPα,β

to H at
Pα,β is given by y − αqx + βq = 0. On the other hand, since Pα,β ∈ l,

β − a1/qα + b1/q = 0.

Hence we have

βq − aαq + b = 0
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and

βq2 − aqαq2

+ bq = 0.

The former equality means (a, b) ∈ TP(α,β)
, and the latter one P(αq2 ,βq2 ) ∈ m.

Since TP(α,β)
.H = qP(α,β) + P(αq2 ,βq2 ) [7, Lem. 3], we have completed the proof.

�

Continuation of the proof of Theorem 5.4. We consider x and y to be functions
on H . Then

div l = Q1 + · · ·+ Qq+1 − (q + 1)P∞
div m = Q′

1 + · · ·+ Q′
q+1 − (q + 1)P∞

by Lemma 5.5. Moreover, it is easy to see that

div (x− a) =
∑

δ with Tr δ=0

Pa,c+δ − qP∞,

where Tr is the trace map from Fq2 to Fq and c ∈ k with cq + c = aq+1.
In order to find the genus of H1, we compute the length of

(
ΩH1/H

)
P̃

for

P̃ ∈ H1, where ΩH1/H is the sheaf of relative differentials of H1 over H . The

computation is divided into 4 cases according to where P = Φ(P̃ ) is.
Case b-1. If P = Φ(P̃ ) 
∈ (l)0 ∪ (m)0 ∪ {P∞}, then

vq
1 +

m(P )

l(P )
v1 + (x(P )− a)q+1 = 0

has q distinct roots as a polynomial in v1. Hence Φ−1(P ) consists of q points
by Kummer’s theorem [14, III 3.7]. So length

(
ΩH1/H

)
P̃

= 0.

Case b-2. Next we consider the case P = Q′ = Φ(P̃ ) ∈ (m)0. Put α = x(Q′),
β = y(Q′) and γ = v1(P̃ ). Hence βq + β = α and γq + (α − a)q+1 = 0 hold.
Furthermore, put ⎧⎨

⎩
r = v1 − γ
s1 = x− α
s2 = y − β.

We denote by eP̃ the ramification index at P̃ for Φ, and by f = vP̃ (r), where
vP̃ is the valuation at P̃ ∈ H1. A local equation of H around Q′ is given by

sq
2 + s2 = sq+1

1 + αsq
1 + αqs1 (27)

and the extension

k(H1) = k(v1, x, y) = k(r, s1, s2)
/
k(H) = k(x, y) = k(s1, s2)
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is given by

rq +
m

l
r +

m

l
γ + sq+1

1 + (α− a)sq
1 + (α− a)qs1 = 0 (28)

because of (26). Note that l and m can be represented by using s1 and s2 as

l = s2 − a1/qs1 + (β − a1/qα + b1/q) (29)

m = s2 − aqs1. (30)

The constant term β − a1/qα + b1/q of l is nonzero because Q′ 
∈ (l)0. Hence
vQ′(l) = 0. Since vQ′(m) = 1 by Lemma 5.5, vP̃ (m) = eP̃ . Therefore the values
of vP̃ at each term in (28) are as in Table 1.

term rq m
l
r m

l
γ sq+1

1 (α− a)sq
1 (α− a)qs1

vP̃ qf eP̃ + f eP̃ eP̃ (q + 1) eP̃ q eP̃

Table 1: Values of vP̃

We prove that eP̃ = q and f = 1. Obviously eP̃ < min{eP̃ + f, eP̃ (q + 1), eP̃ q}
holds, and eP̃ ≤ qf because eP̃ ≤ deg Φ = q.

Suppose eP̃ < q. Then

m

l
γ + (α− a)qs1 ≡ 0 mod m

eP̃ +1

P̃

by (28) and Table 1, where mP̃ is the maximal ideal at P̃ . In other words, by
(29) and (30),

{(s2 − aqs1)γ + (α− a)q(s2 − a1/qs1)s1 + (β − a1/qα + b1/q)(α− a)qs1}
/
l (31)

≡ 0 mod m
eP̃ +1

P̃
.

Since the denominator l of (31) is a unit of OP̃ and (α − a)q(s2 − a1/qs1)s1 ∈
m

2eP̃

P̃
, we have

(s2 − aqs1)γ + (β − a1/qα + b1/q)(α− a)qs1 ≡ 0 mod m
eP̃ +1

P̃
. (32)

On the other hand, we know that

(s2 − aqs1)γ + (β − a1/qα + b1/q)(α− a)qs1

≡ (α− a)q(bq + b− aq+1)1/qs1 mod m
eP̃ +1

P̃
,

because

(s2 − aqs1)γ + (β − a1/qα + b1/q)(α− a)qs1 =

(sq+1
1 + αsq

1 − sq
2 + (α− a)qs1)γ + (β − a1/qα + b1/q)(α− a)qs1 (by (27))

≡ (α− a)q(γ + β − a1/qα + b1/q) mod m
eP̃ +1

P̃
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and

γ + β − a1/qα + b1/q

= −(α− a)1+1/q + β − a1/qα + b1/q

= (bq + b− aq+1)1/q

by γq + (α − a)q+1 = 0, βq + β = α and β − aqα + bq = 0. The last condition
comes from the assumption Q′ = (α, β) ∈ (m)0. Here α − a 
= 0. In fact, if
α− a = 0, then the line x = a is tangent to H at Q′, which is absurd because
the line passes through P∞. Since (a, b) 
∈ H , bq + b − aq+1 is not zero either.
So

vP̃ ((s2 − aqs1)γ + (β − a1/qα + b1/q)(α− a)qs1)

= vP̃ ((α− a)q(bq + b− aq+1)1/qs1)

= vP̃ (s1) = eP̃ ,

which contradicts to (32). Hence we have eP̃ = qf . Since eP̃ ≤ q, we can
conclude that eP̃ = q and f = 1.

Now we compute the length of (ΩH1/H)P̃ . Since vP̃ (r) = f = 1, r is a

local parameter at P̃ ∈ H1. Since s1 is a local parameter at Q′ = Φ(P̃ ) ∈ H ,
length(ΩH1/H)P̃ = vP̃ (ds1

dr
). From (27),

ds2

dr
= (sq

1 + αq)
ds1

dr
. (33)

From (28),

(r + γ)
d(m

l
)

dr
+

m

l
+ (sq

1 + (α− a)q)
ds1

dr
= 0. (34)

On the other hand, using the relation (33), we have

dl

dr
= (sq

1 + αq − a1/q)
ds1

dr
dm

dr
= (sq

1 + αq − aq)
ds1

dr

from Eq. (29) and Eq. (30) respectively. Hence

d(m
l
)

dr
=

dm
dr

l − dl
dr

m

l2
=

(sq
1 + αq − aq)l − (sq

1 + αq − a1/q)m

l2
· ds1

dr
. (35)

Substituting (35) for
d(m

l
)

dr
in Eq. (34), we have

{(r + γ)
(sq

1 + αq − aq)l − (sq
1 + αq − a1/q)m

l2
+ sq

1 + (α− a)q}ds1

dr
= −m

l
.

(36)
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Looking at the coefficient of ds1

dr
modulo mP̃ carefully, we know the coefficient

is a unit of OP̃ . From (29), (30) and (27), vP̃ (−m
l
) = vP̃ (s1) = eP̃ = q.

Therefore vP̃ (ds1

dr
) = q.

Case b-3. We prove that if P = Q ∈ (l)0, then

Φ∗(Q) = (q − 1)P̃ + P̃ ′ with P̃ 
= P̃ ′.

We start from Eq. (25), namely

(x− a)q−1lqvq + mv + (x− a)q = 0.

Put v2 = 1/v. Then

vq
2 +

m

(x− a)q
vq−1

2 +
lq

x− a
= 0. (37)

Let α = x(Q) and β = y(Q). Then α − a 
= 0 by argument similar to the
previous one, and m(Q) 
= 0 because (m)0 ∩ (l)0 = ∅. So Eq. (37) is an
integral equation over OH,Q. Hence v2 ∈ OH1,P̃ for any point P̃ lying over Q.
Considering Eq. (37) modulo the maximal ideal mQ of OH,Q, we have

vq−1
2

(
v2 +

m(Q)

(α− a)q

)
= 0. (38)

So there are at least two points lying over Q, say P̃ and P̃ ′. We may assume
that P̃ corresponds the solution v2 = 0 of (38) and P̃ ′ the solution v2 =
−m(Q)/(α−a)q . It is not hard to see that the ramification index at P̃ is q−1
and that at P̃ ′ is 1.
Case b-4. We consider the case P ∈ (x − a)0. Considering Eq. (26) modulo
the maximal ideal of OH,P , we know Φ−1(P ) consists of q distinct points by
Kummer’s theorem [14].
Case b-5. Finally we consider the ramification over P∞. Put ρ = 1/y and
τ = x/y. Then ρq + ρ = τ q+1 holds because yq + y = xq+1. Rewrite (26) by
using ρ and τ :

vq
1 +

1− aqτ + bqρ

1− a1/qτ + b1/qρ
v1 +

(τ − aρ)q+1

ρq+1
= 0. (39)

Put v2 = ρv1. Then we have

vq
2 + ρq−1 1− aqτ + bqρ

1− a1/qτ + b1/qρ
v2 +

(τ − aρ)q+1

ρ
= 0.

Furthermore, put v3 = v2 + 1, v4 = v3/τ , v5 = v4 − a1/q and v6 = v5/
(

ρ
τ

)
continuously. Then we get
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vq
6 +

1− aqτ + bqρ

1− a
1
q τ + b

1
q ρ

v6+

(aq+1 + b
1
q − bq)− (aq+1+ 1

q − a
1
q bq + aqb

1
q )τ + aq+1b

1
q ρ

1− a
1
q τ + b

1
q ρ

= 0. (40)

Looking at Eq. (40) modulo the maximal ideal of OH,P∞, we have

vq
6 + v6 + (aq+1 + b

1
q − bq) = 0.

So Φ−1(P∞) consists of q distinct points.
Summing up, we can compute the genus g1 of H1 as

2g1 − 2 = q

(
2
q(q − 1)

2
− 2

)
+ (q + 1)q + (q + 1)(q − 2)

by Hurwitz’s formula. Hence we have

g1 =
(q − 1)q(q + 2)

2
.

(c) From (22) with t = y−b
x−a

, the field extension k(H̃P ) = k(H1)[w]
/
k(H1)

is given by

(x− a)q−1lqwq−1 + m = 0.

Put w1 = (x − a)lw. Then k(H1)[w] = k(H1)[w1] and wq−1
1 + m

l
. We already

saw

divH l = Q1 + · · ·+ Qq+1 − (q + 1)P∞
divHm = Q′

1 + · · ·+ Q′
q+1 − (q + 1)P∞

on H . Furthermore, Φ−1(Qi) consists of two points, one of which, say Pi is
of ramification index q − 1 and the other, say P ′

i , is of ramification index 1,
and Φ−1(Q′

i) consists of a unique point, say Ri, with ramification index q.
Therefore

divH1

m

l
=

q+1∑
i=1

qRi −
q+1∑
i=1

((q − 1)Pi + P ′
i ) .

By [14, III, 7.3], we know the behavior of the ramification of Θ:

(i) Θ−1(Ri) consists of one point, say R̃i, and eR̃i
= q − 1;
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(ii) Θ−1(Pi) consists of q − 1 points, and each of the q − 1 points is of rami-
fication index 1;

(iii) Θ−1(P ′
i ) consists of one point, say P̃ ′

i, and eP̃ ′
i
= q − 1;

(iv) For a point P ∈ H1 other than the above points, Θ−1(P ) consists of q−1
points, and each of them is of ramification index 1.

Hence by Hurwitz’s formula, we have

2g̃ − 2 = (q − 1)(2g1 − 2) + 2(q + 1)(q − 2),

where g̃ is the genus of H̃P . So we have g̃ = q(q3 − q − 2)/2 �
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