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Abstract

For a Hermitian curve H in projective plane P? and an arbitrary
point P of P?, we find out the Galois group of the projection H — P!
with center P. To achieve this aim, we discuss the Galois group of
an equation and that of a finite separable morphism between curves in
slightly more general context. Moreover, we compute the genus of the
so-called Galois-closure curve Hp.
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1 Introduction

The Galois group of a linear projection of a curve has been studied for the
past decade by Miura and Yoshihara (e.g. [9, 10, 11, 15, 16]). They are mainly
concerned with the characteristic 0 case. If we consider the Galois group in
positive characteristic, unusual phenomena may occur even if the center of the
projection is a point. In fact, we saw it by an example when the projection is
a Galois covering, which is explained in Theorem 1 below. Recently, Fukasawa
studied the matter of Galois points in positive characteristic in general [3, 4,
5, 6].

Let C be a nonsingular plane curve of degree d > 4 over an algebraic
closed field k. For an assigned point P of P2, the projection p : C' — P! with
center P gives rise to the field extension k(C')/k(P'), where k(C) and k(P')
are the function fields over k of C' and P! respectively. We know the extension
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k(C)/k(P') is separable by [8]. The Galois group Gp of the Galois closure

of k(C) & k(P') is the object of our study. When the extension k(C')/k(P")
via 75 is Galois, the center P of the projection is called a Galois point for C.
Since the automorphism group of C' is finite and each automorphism, which
gives rise to a linear transformation of P2, has finitely many fixed points, the
number of Galois points for C' is finite. When P is not Galois, C'p denotes the
nonsingular projective curve corresponding to the Galois closure of k(C')/k(P')
via 7p.

Before stating our results, we explain what we already know in character-
istic 0. In [15, 16], Yoshihara showed that the number of Galois points on C' is
0orlordifd=4anditis0 orl ifd > 5; and the number of Galois points
outside C is 0 or 1 or 3. Moreover, he showed that if P is a general point of
C, then Gp s the symmetric group Sy_1 of degree d—1 and the genus of Cp is
(d—1)N(d+2)(d—3)/4+1; and if P is a general point of P>\ C, then Gp is the
symmetric group Sy of degree d and the genus ofé; is (d—1)/(d*—d—4)/4+1.

Our purpose is to observe the behavior of a Hermitian curve in the frame-
work of Yoshihara’s theory, which may suggest the difference between the
phenomena in characteristic 0 and those in characteristic p > 0.

Let p be a prime number and ¢ = p® with ¢ > 4. We denote by F,. the
field of ¢ elements, and by & the algebraic closure of F,2. We consider a plane
curve H given by

Yl +y =it (1)

where x and y are inhomogeneous coordinates of the ambient projective plane
P? over k. When we choose F, as a field of definition of H, the curve is called
a Hermitian curve.

In the previous paper [7], we proved the following fact.

Theorem 1 The field extension k(H)/k(P) by means of mp is Galois if and
only if P is Fg2-rational. Moreover we have

(a) Gp 2@ Z/pZ if P € H(F,2);
(b) Gp = Z/(q+1)Z if P € P*(Fpe) \ H(F ),

where P*(F2) and H(F ) denote the set of F-rational points of P? and H
respectively.

In this paper, we show the following theorem.
Theorem 2 (a) If P € H\ H(Fp), then Gp is isomorphic to
AGL(1,F,) ={0:F, = F,|o(z) =az+ 3, a € F;, B € Fy}

and the genus of Hp is (g —1)%q/2.
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(b) If P € P2\ (HUP*(F,2)), then Gp is isomorphic to the projective general
linear group PGL(2,F,) of P1(F,), and the genus of Hp is q(¢* —q—2)/2.

In order to prove Theorem 2, we prepare two properties of a Galois group
in slightly more general setting than our original one. The first property is
algebraic, which is discussed in Section 2, the second one is geometric, discussed
in Section 3. Both of the properties are modification of what Ballico and Hefez
[2] or Rathmann [13] proved. In Section 2, we use Abhyankar’s method of
throwing away roots [1] to find the Galois group of an equation coming from
mp, which is an important step for computing the genus of ﬁ;. Sections 4 and
5 are devoted to the proof of Theorem 2.

2 Galois group of an algebraic equation

In the first half of this section, we consider a polynomial f(X) of degree d > 0
over a field K which has no multiple roots but is possibly reducible. Let
{aq,..., a4} be the set of roots of f(X) in the algebraic closure K of K, and
G(f/K) the Galois group of K(ay,...,aq)/K. The Galois group G(f/K)
acts on {ay, ..., aq} transitively if f(X) is irreducible over K.

We introduce a non-common terminology.

Definition 2.1 For f(X) € K[X], we construct successive pairs

{(IG, fi(X) bizot,.

each of which consists of a field K; and a polynomial f;(X) with f;(X) € K;[X]
inductively as follows.

(0) Put Ky = K and foX) = f(X);

(1) After we constructed pairs {(K;, f;(X))}izo1,.. , up to the p+ Ist step,

(1la) the construction terminates, if either f,(X) is reducible over K, or deg f,
0.

(1b) If f,(X) isirreducible, put K, = K,[Y]/(
in K,.1. Then X — Y divides f,(X) in K,
nomial ¢(X) € K,41[X] such that f,(X
for1(X) = g(X).

The number p is called the splitting height of f(X) over K.

fo(Y))andY =Y mod f,(Y)
+1[X], that is, there is a poly-
) = (X —Y)g(X). We put

It is obvious that the splitting height of f(X) is at most the degree of f(X),
and it is 0 if and only if f(X) is reducible.
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Lemma 2.2 Let f(X) be the polynomial of K[X] considered in Definition 2.1.
Let p be a nonnegative integer with p < u, where p 1s the splitting height
f(X) over K. Then for any p roots {c,,... ,a;,} of f(X) we have K, =
K(as,,...,q;) over K and dimg K, = d!/(d — p)!.

<

Proof. We prove this by induction on p. Suppose that K, 1 = K(o5,,...,q;, )
and dimg K,_; = d!/(d — p + 1)!. By the construction of successive pairs,

fX) = (X —ai) - (X =, ) fa(X)

in K,_1[X] via the isomorphism K,_; = K(o,,... ,a;,_,). Since f(X) has no
multiple root, f,_1(a;,) = 0, which means f,_; is a minimal polynomial of o,
over K, 1 because f,_1(X) is irreducible over K, ;. Therefore

K, = Ky [X]/(fp-1(X)) = Kpoa(ai,) = Ky, -, 0,)
and
K, : K,_1] =deg f,_1(X)=d—p+1.
Hence dimg K, = (d — p+ 1) gmigyy = d!/(d — p)!. m

The following proposition is a polynomial version of [13, Prop. 1.5].

Proposition 2.3 (Abhyankar’s MTR) Let f(X) € K[X] be an irreducible
polynomial of degree d and {ay, ... ,aq} the set of roots of f(X) in K, which
are distinct elements. For v € 7 with 0 < v < d, the following conditions are
equivalent:

(i) dimg Klaq, ... ,q,] = (di)!;
(ii) dimg Koy, ... 0] = (df—!u)! for an arbitrary v roots {ay,, ... ,q;} C
{ag, ..., aq};

(iii) the splitting height of f over K is at least v;
(iv) G(f/K) acts v-fold transitively on {cq, ... ,aq}.

Proof. When v = 0, there is nothing to do. (ii)=-(i) is obvious, and (iii)=>(ii)
follows from Lemma 2.2.

(i)=(iii). Put K, = Ko, ... ,q,| for p < wv. Since the roots oy, ... ,a, of
f(X) are in K, we have the decomposition f(X) = (X —ay) - (X —a,)g(X)
in K,[X]. Put

£,(X) = { (X —apn) g()(())( —a,)g(X) iiffppi;
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We prove that if p < v, then f,(X) is an irreducible polynomial over K,. For
p = 0, it is obvious because fo(X) = f(X) € K[X]. Since oy, ... ,a, € K,
are roots of f(X), we have a polynomial in K,[X]| of degree d — p that is the
quotient of f(X) by (X —ay)--- (X —a,), which is just f,(X). Since a,41 is a
root of f(X), it is a root of f,(X). On the other hand, since K,11 = K,[a,1]
and

d! d!
Ko ol = oy @ =4
by the assumption (ii), f,(X) is a minimal polynomial of a,;; over K,, and
irreducible particularly.
(ii)=(@v). Let {a,,...; } and {aj,,...;,} be two sets of v roots of
f(X). By construction of the successive pairs {(K;, f;(X))}izo1,.. ., in the
proof of Lemma 2.2, we have a commutative diagram

Klaiy, . ..ai, la,] =2 K, =K, 1 [X]/f,1(X) = Klag,, ..., ][]
T T T

K[O[il, PN O[ip,1] = Kp—l = K[Oéjl, PN ajpfl]

for any p < v. Note that a;, is a root of f,_1(X) if we regard f,_,(X)
as a polynomial over K[a;,,...q;,_,] via the isomorphism at the lower left
in the diagram; and so is «;, if we regard f,—;(X) as a polynomial over
Klaj,, ... , ] via the isomorphism at the lower right. Hence there is an
isomorphism o : K|a;,,...q;,] — Kloy,,...a;,] over K so that o(a;,) = aj,
(p=1,2,...,v). This o can be extended to an element of G(f/K).

(iv)=-(i). Since

dimg K|y, ...q;] = #{o: K[o,,...q;] = K | 0 is an embedding over K},

and o(q;) is a root of f(X), we have
d
dimg Koy, ..., q;)] §V!( ) (2)
v
in general. The v-fold transitivity of the action G(f/K) on {ay,...a4} implies
that the equality in (2) is attained. O

As applications of Proposition 2.3, we handle two concrete polynomials,
which are already discussed in [13, the proofs of 2.15 and 2.17].

Lemma 2.4 Let K be a field containing F,, and
f(X)= X"+ AX?+ BX + C € K[X].

Suppose f(X) is irreducible. Then f(X) is separable and the Galois group
G(f/K) of f(X) over K is a subgroup of the projective general linear group
PGL(2,F,) of PY(F,). Moreover the action G(f/K) onto the roots of f(X) is
3-fold transitive if and only if G(f/K) = PGL(2,F,).
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Proof. Since f'(X) = X9+ B, f(X) is separable. Let x be a root of f(X).
Putting U = X — x, we have

f(X)=UU"+ (z + A)UT" + (27 + B)).

Put V = 1/U. Then the equation U?+ (z+A)U4 + (29+ B) = 0 is equivalent
to

(x74+B)Vi+ (z+A)V +1=0. (3)

In fact, 294+ B = f'(x) # 0 as we saw. Choose a root of (3), say v, and put
W =V —wv. Then the polynomial in V' is equal to

W((x?+ B)WI™! + (z + A)).
Choose a root of the equation
(29 + B)WT ' + (x+ A) =0 (4)

on W, say w. Hence the set of roots of (4) is {zw | z € F, \ {0}}, and those of
(3) is {v + zw | z € F,}. Therefore the set of roots of f(X) is

Z9

{zyU{r+ | (21,22) €PY(F,)} ()

eF,} = _
zw—i—v’z q} {x+zlw+221j

Now we describe the action of G(f/K) to the set (5). Let 0 € G(f/K). Since
o(x), o(x+3) and oz + =) are also in the set (5) and distinct, we can find
oy, 0,6, e, (" € Fy so that

. i
olx) = =+ o'w 4+ v'v

@+2) = ot
olr+-) = v+ —--—
v G'w + §'v

@+ ——) = ot
o(x = r4+ ——.
w+v e'w + (v

Since (o/,v') # (0',¢') as elements of P!, there are k,[ € F, with

o B k B &
,yl 5/ l - C/ )
where both the solutions &k and [ are nonzero because (o/,7') # (¢/,¢’) and

(8',8") # (¢/,{’) as elements of P'. Put a = ka/,3 =15",7 = ky' and § = 10'.
Then
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( + l) — + L
oETy = F fw + dv
oz + ! ) = x+ 7 +o
wHv (a+ B)w+ (y+0)v
Hence we have
1 (aw + yv)(fw + v)
U(U) = 1 =
ot —o@) (- pu
B 1 (0w +v)?
olw) = o(x + wiv) —o(x) o(v) = (ad — By)w’
Then, by direct computation, we have
29 . 22
o+ 2w + 221}) = olo)+ z10(w) + z30(v)
vz, + 029

ey €T —|— s
(az1 + Bz)w + (y21 + d2z2)v

in other words, o gives rise to the projective transormation

e (3)- (2 1) () epo

via the identification (5) of the set of roots of f(X) with P}(F,). It is ob-
vious that this correspondence G(f/K) — PGL(2,F,) is an injective group
homomorphism. If this homomorphism is surjective, G(f/K) acts on the set
of roots of f(X) 3-fold transitively because the action of PGL(2,F,) to P'(F,)
is 3-fold transitive. Conversely if G(f/K) does so, then

dimg K[z,v,w] = (g+ 1)!/(¢g+1—=3)! = (g4 1)g(qg — 1)

by Proposition 2.3. Since the order of PGL(2,F,) is also (¢ + 1)q(q — 1), the
injective homomorphism is an isomorphism. O

By argument similar to the proof of the above lemma, we can show the
following fact.

Lemma 2.5 Let K be a field containing F,, and
f(X)= X9+ AX"' + B e K[X].

Suppose f(X) is irreducible. Then f(X) is separable and the Galois group
G(f/K) of f(X) over K is a subgroup of

AGL(1,F,) :=={o: AY(F,) — AY(F,) | o(2) =az+ 8, a € Fr, BeF,}.

Moreover the action G(f/K) onto the roots of f(X) is 2-fold transitive if and
only if G(f/K) = AGL(1,F,).
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Proof. Since f(X) is irreducible, B # 0. Hence f(X) has no multiple roots,
and the equation f(X) = 0 is equivalent to the equation

BYT 4+ AY +1=0 (6)

under the condition Y = 1/X. Choose a root of (6), say y, and put V=Y —y.
Then we have

V(BVIT + A) = 0.
Choose a root of the equation
BVTt 4 A=0, (7)

say v. Then the set of roots of (7) is {zv | z € F, \ {0}}. So the set of roots
of f(X) is

{wiy\zEM}. (8)

Hence the splitting field of f(X) over K is K[y,v]. Let 0 € G(f/K). Since o
acts on the set (8), we can find a and § € F, so that

() = &
g —_ =
y Bo+y
() = @
o - —
vty (a+B)v+y
Hence o(y) = fv +y and o(v) = av. Hence for z € F,,

()~
Nty (az+ Bty

in other words, we have a map
G(f/K)3 0w az+ € AGL(L,F,).

It is easy to see that this map is an injective group homomorphism.

If this group homomorphism is an isomorphism, G(f/K) acts on the set
(8) 2-fold transitively because AGL(1,F,) acts on F, 2-fold transitively. Con-
versely if G(f/K) does so,

dimg K[y, v] = q!/(¢ —2)! = q(qg — 1)

by Proposition 2.3. Since #AGL(1,F,) = ¢(¢ — 1), the injective group homo-
morphism G(f/K) — AGL(1,F,) is an isomorphism. O
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3 Galois group of a separable morphism of
curves

Throughout this section, we fix the following situation.

Setup 3.1 Let X and Y be irreducible curves over an algebraically closed
field k. We consider a finite separable morphism 7 : X — Y of degree d. The

morphism gives rise to the field extension k(X)) = k(Y'), which is separabele of
degree d. The Galois group of the Galois closure of k(X) over k(Y') is denoted
by G. Let y € Y in general position, and 7=!(y) = {z1,... ,24}. Then 7 is
unramified at each x;. Hence the natural morphism

7 6.(Oyy) = ££.(Oxa).

is an isomorphism. Here R denotes the completion of a local ring R with
respect to the maximal ideal, and f.f.(R) the field of fractions of an integral
domain R. We denote by 7., = (7% )~!. Then we have a commutative diagram

T

Tzi

k(X) — ff(Oxa,) = ££(0yy)
S y (9)
k(Y) J

where all morphisms are natural inclusions. Let L be the composite field
of 7, (k(X)) (¢« = 1,...,d) in £.£(Oy,). Hence L is the Galois closure of
Te; (B(X))/k(Y) for any i. We denote by 7,, again the embedding of k(X)
into L coming from (9). It is obvious that the set of embeddings k(X)) into
Lover k(Y) is {m, | t = 1,... ,d}. On the other hand, since G acts on L by
definition, the composition o7,, of 7,, and o € G is also an embedding of k(X))
into L. So we can find z,(;) such that o7, = Ty This gives a represtntation
of G as a subgroup of the permutation group Per(zy,... ,z4) of {z1,... , 24}

G — Per(zy,...,x4). (10)

If we choose an element o € k(X) such that k&(X) = k(Y)[a], then (10) is
equivalent to the representation using the roots of the minimal polynomial of
a.

The following property of G is a modification of [2, Prop. 3]. In the propo-
sition, Reg X denotes the open subset of a curve X consisting of nonsingular
points.

Proposition 3.2 Under Setup 3.1, assume that there is a point n € RegV
and an integer | with 0 <l < d such that
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(1) 7_1(77) = {507517 cee 7£dfl} C RegX
(2) 7 is unramified at & for 1 <i<d—1.

Then there is a subgroup G’ of G such that under suitable re-numbering {x1, ... ,xq}
appeared in Setup 3.1,

(a) G acts on {x1,... ,x;} transitively, and
(b) an arbitrary element of G' fizes x; for any j > L.

Proof. The proof is the essentially same with that of [13, Prop. 1.11]. Choose
an affine open subset Spec B C Reg Y such that n € Spec B and 7! (Spec B) C
Reg X. Since 7~!(Spec B) is affine, we denote it by Spec A. Since A is integral
over B, we can choose a € A such that A = B[a] and the minimal polynomial
f(T) of a over k(Y) = f.f.(B) belongs B[T|. Let B, be the local ring at
n € Spec B with maximal ideal m,,, and En the m,-adic completion of B,,. Let

f(T) = fo(T)--- fs(T) be the irreducible decomposition of f(7") in f.f.(B,)[T].
So we have

£1.(B,) @5 A=LLB)T)/ A1) = D LLBTY/ () (1)

by the Chinese remainder theorem.
On the other hand, it is not hard to see that

d—l
££.(B,) @5 AZ P £1.(A), (12)
=0

where A\éi is the completion of the local ring A¢, at § € X. For details, consult

[12, Sections 16 and 17]. Since f.f.(B,) ®p A is Artinian, two decompositions
(11) and (12) into fields must coincide. Hence s = d — [, and

££.(B)T)/fi(T) E£6.(A) (i=0,1,...,d—1)

after renumbering the polynomials. Since 7 is unramified at §; fori =1,... ,d — 1,
f.f.(B,) = f.f.(Ag), which means deg f;(T) = 1. Hence there is an element

a; € f£.(B,) so that fi(T) = T — «a;. Since fo(T) = (Tfal){(@fadil) is a

polynomial in

f.f.(B)[Oél, PN ,ad_l][T] = ]{J(Y) [Ozl, PN ,Oéd_l][T]

~

and irreducible over f.f.(B,), it is also irreducible over k(Y )[ay, ... , aq—]. Let
G’ be the Galois group of the extension L/k(Y)[ax, ..., aq], which is, need-
less to say, Galois. Then G’ can be regard as a subgroup of G and has required
properties. O
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4 Projection from a point on the Hermitian
curve

First we give a lemma on a permutation group.

Lemma 4.1 Let G be a group acting the d-symbols {z1,... x4} transitively.
If there is a subgroup G’ of G such that

(1) o'(xq) = x4 for any o' € G', and
(2) G’ acts on {x1,... ,x4_1} transitively,
then the action of G to {x1,... x4} is 2-fold transitive.

Proof. For arbitrary two symbols x; and z;, we can find an element o € G so
that o(x;) = =1 and o(z;) = z4. In fact, if z; = x4, then we can find o’ € G’ so
that o/(z;) = z; from the assumption (2). When z; # x4, first choose 0 € G
so that o(z;) = x4. Then choose ¢’ € G’ so that o’(c(x;)) = x1. Hence o'c
has the required property. O

Now we go back to the original situation described in Introduction. In this
section, we prove the first part of Theorem 2. We handle the Hermitian curve
in more concrete way. So we prepare some additional notation. The line at
infinity with respect to the inhomogeneous coordinates z, y in (1) meets H at
only one point, which is denoted by P,,. For a point P € H \ { P}, we denote
by P = P,; when x(P) = a anf y(P) = b. Then b? +b = 9% holds. It is easy
to see that the tangent line at P, to H is given by

a’r —y — b7 =0. (13)
Moreover if we consider a%x — y — b? as a function on H, we have
div (a’z —y —b%) = qPup + P2 42 — (¢ + 1) P (14)
where div is an abbreviation for ‘divisor of’.

Theorem 4.2 Let P € H\ H(Fpz). Then the projection mp : H — P! with
center P is separable, and Gp = AGL(1,F,).

Proof. Since P, is an Fp-rational point, we may assume that P = P,; with
b?+b=a?"!'. Since the family of lines passing through P is {y —b = t(z —a) |
t € P}, we can regard t as a coordinate of the target P! of wp. Substitute
y—b=t(xr—a)in (1), and put u = z — a. Then we have

T — 1929 — tx + a%? + at — (b7 + b)
= (u'+ (a—tDutt 4+ a? —t)u = 0.
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Hence the extension k(H)/k(t) via 7} is obtained by adding a root u of the
polynomial

Ul + (a—t)UT! +a? —t (15)

in U over k(t), which has no multiple root. Since degmp = ¢, the polynomial
is irreducible. So the Galois group Gp of 7p is that of (15). Since P is not
F2-rational, 7' (mp(P)) = {P, P'} with P’ # P and 7p is unramified at P’
(see, for example [7, Lem. 3.1]). Therefore G p acts on the ¢ roots of (15) 2-fold
transitively by Proposition 3.2 and Lemma 4.1. So we have Gp = AGL(1,F,)
by Lemma 2.5. O

Theorem 4.3 Let P € H \ H(F.), and Hp the Galois closure curve for
7p : H — P! explained in Introduction. Then the genus of Hp is (q — 1)%q/2.

Proof. We follow the notation used in the proof of Theorem 4.2. Moreover, let
v be a root of (a? —t)V? ! +a — 7, which corresponds Eq. (7) in the proof of
Lemma 2.5. Then, from the proof, we have the field extension

k(Hp) = k(t,u,v) D k(H) = k(t,u) = k(z,y)

with equations

yq +y= xq+1

y—b=t(x—a) (16)
ul+ (a —tHu? '+ a? —t =0

(a? =t +a—1t7=0. (17)

Put w = (z — a)v. Then k(I/{Vp) = k(H)[w]. We find the minimal polynomial
of w over k(H) = k(x,y). Using (16), eliminate ¢ from (17). Then

(x —a)" Y alz — y — b9)vT + (al/qx —y — bl/q)q = 0.
So the extension k(Hp) = k(H) [w] /k(H) is given by

Vagp — 4 — pl/a)e
q—1 (CL T Y ) =0
v adr —y — bl ’

which is a Kummer extension. From (14), we have

(a'1g — y — b1/9)
alx —y — bl

div

= (]2]3(11/6127})1#12 - paqg,qu - (q2 - 1)Poo
Applying [14, TIT 7.3] to our situation, we know that 7p is ramified at exactly

two points P 1,42 1742, P2 42, and the ramification index is ¢ —1 at each point.

Hence the genus of Hp is (¢ — 1)%q/2 by Riemann-Hurwitz formula. O
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5 Projection from a point outside the Hermi-
tian curve

Next we consider the case where the center P of the projection is outside
(P?(F,2) U H). We may assume that P is in the affine plane with respect to
the affine coordinates z, y. In fact, if P is on the line at infinity, we can find
an automorphism 7 of P? over Fp2 such that 7(H) = H and 7(P) is in the
affine plane (see Remark 5.1 below).

Remark 5.1 The italicized statement above follows from the following two
facts.

(i) The line at infinity is the tangent line at Py, to H;

(i) Any automorphism of H is defined over 2, and the group of automor-
phisms acts on the set of F-rational points H(F2) transitively (see [7,

Sec. 3]).

Proof of the italicized statement: Choose an automorphism 7 of H such that
T(Psx) = Pyo. Then 7(P) lies on the tangent line at Py to H. The only one
point of the tangent line lies on the line at infinity, which is the intersection
of two tangent lines at Py, and Py to H. Since both of the tangent lines
are defined over F 2, so is the intersection point. Since P is not [ -rational,
neither is 7(P). Hence 7(P) is in the affine plane.

Lemma 5.2 Let P be a point of P>\ H. If P is not Fz-rational, then there
is a line L passing through P such that L.H = qQ + Q" with Q # @Q'.

Proof. We may assume that P is in the affine plane with respect to the affine
coordinates z, y, say P = (a,b). Consider the tangent line T at Q = P, 3 € H,
which is given by a%r —y — 39 = 0. The system of equations in two variables

a, 3

ala—b—p17=0
Bq_}_ﬂ:&(ﬁ—l

is equivalent to

{ aal/t — b1 -3 =0

ﬂq + B — qu+1. (18)

For any solution (a, 3) of (18), we have

TPa,,B‘H = an”g + Paq2,ﬁq2 (19)
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(see [7, Lem. 3.1]), and Tp, , > P. We want to show P, 5 # P, .2 g, for some
solution (a, 3). From (18), we have

't —aa? — a0 + b+ Y1 =0, (20)

which has ¢ + 1 distinct roots because b7 + b # a?™'. If « is an element of F e,
then so is 3. Hence if the two roots of Eq. (20) are elements of F, then P
is F2-rational because P is the intersection of two tangent lines defined over

F,2. Therefore we can find a solution of (18) which is not F-rational. So

P, s #* Pa‘12 B> O

Theorem 5.3 Let P € P?\ (P*(F,2) U H). Then the projection np : H — P*
with center P is separable, and Gp = PGL(2,F,).

Proof. As already explained, we may assume that P = (a,b) with respect to
the affine coordinates x, y. Hence the family of lines passing through P is
{y—b=t(x —a) |t e P} Substituting y —b = t(z — a) into (1), we know
the minimal polynomial of x over k(t) via 7} is

f(X) = X —tIX7 —tX + a + at — (b7 + b).

Since k(f?p) is the field obtained by adding all the roots of f(X) to k(t), we
wish to find them. Put V = 1/(X — z). Then the roots of f(X) other than z
come from the roots of the polynomial

(= t)VIi+ (z —tHV + 1 (21)

in V' (see (3) in the proof of Lemma 2.4). From Lemma 5.2 with Proposition 3.2
and Lemma 4.1, Gp acts on the set of roots of f(X) 2-fold transitively. Hence
(21) is irreducible over k(t, ) by Proposition 2.3. Let v be a root of (21), and
put W =V —wv. Then the roots of (21) other than v come from the roots of
the polynomaial

(29— t)yWT oz — 9. (22)

If this polynomial is irreducible over k(t, x, v), then the splitting height of f(X)
over k(t) is at least 3. Hence the action of G p is 3-fold transitive, and hence we
can conclude that Gp = PGL(2,F,) by Lemma 2.4. So our claim is that the
polynomial (22) is irreducible over k(t, z,v). Suppose that the polynomial (22)
is irreducible as an element of k(¢, z)[W], and choose a root of the polynomial,
say w. Look at the commutative diagram of field extensions

k(t, z,v,w)
/! AN
k(t,z,v) k(t,z,w)

AN /
k(t, )
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Since [k(t,z,v) : k(t,z)] = ¢q and [k(t,z,w) : k(t,x)] = ¢ — 1, we have
[k(t, z,v,w), k(t,z,v)] = ¢ — 1, which means that the polynomial (22) is irre-
ducible over k(t,x,v).

We devote the rest of the proof to showing the polynomial (22) to be
irreducible over k(t, z). It is enough to show the polynomial is irreducible over
k[t, xz], which can be regarded as the ring of the affine curve H’ defined by

fz,t) = 2% — 929 — tx + a%? + at — (b + b)

in A%x p- 1t is easy to see that H " is nonsingular. Consider the solution of the
system of equations

x—19=0.

{ flz,t) =0

Then
f9,t) = —(t9 — a%? — at + b7 + b) = 0. (23)

Since (a,b) & P?(F,), there is a root ¢ of (23) with ¢ & F,.. Consider a
point R = (¢%,¢) € H’, and the local ring Oy g at R, which is regular local
because H' is nonsingular. Since Op/ p D k[t, z], it is sufficient to see that
the polynomial (22) is irreducible as an element of Oy g[W]. Put 2/ = x — (4
and t' = t — (. Then the maximal ideal m of Op g is generated by these
two elements, and (¢7° — ()2’ 4+ (a — (%)t is an element of m corresponding
the tangent line to H' at R. Note that a — (? # 0. In fact, if a = (%, then
a?™ = q?¢? = b? + b because ( is a root of (23), which contradicts with our
starting point. Hence 2’ is a local parameter at R, and hence a prime element
of Ops g. The polynomial (22) can be written as

(&' =t + ¢ = OWI (2 — 7). (24)
Since ¢ € Fp2 and 2’ is a local parameter, we have

Z /{/ x/q_t/+€q2_€
.T/ ‘ xl _ t/q
o ) 2 =t

Therefore the polynomial (24) is irreducible by Eisenstein’s criterion. O

The last task is to compute the genus of ED, which involves tedious calcu-
lation. We use the same notations as those in the proof of Theorem 5.3. Let
H; be the nonsingular projective curve whose function field is k(¢, z,v). Recall

that Hp is the nonsingular curve whose function field is the Galois closure of
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k(H) = k(x,y) over k(t), namely, k(f?p) = k(t,z,v,w). Hence the natural
morphism Hp — H splits into

Hp S H, 2 H

via the field extensions
k(t,z,v,w) & k(t,z,v) bl k(t,z) = k(x,y).
Theorem 5.4 (a) The genus of H is q(q — 1)/2.
(b) The genus of Hy is (¢ + 2)q(q —1)/2.
(c) The genus of Hp is q(q® — q — 2)/2.

Proof. (a) Obvious.
(b) From (21) with ¢ = =2, the field extension k(H,) = k(H)[v]/k(H) =
k(x,y) is given by

(x —a)"(y — a9z + oY) + (y — a2 + b)v + (z — a)? = 0. (25)

For simplification, we denote by | = y —a'/%z + b9 and m = y — a9z + b?. Put
v; = (z — a)lv. Then k(H;) = k(H)[v;] with equation

vi + %vl +(z —a)"™ = 0. (26)

For the latter use, suspending the proof, we investigate the configuration
of points on H that lie on the line [ = 0 or m = 0.

2

Lemma 5.5 We regard x, y as coordinates of the affine plane A% = A(I )"

Then there are 2q + 2 points Q1, ... ,Qqr1;QY, -+, Quyy of A? such that
Hﬂ{l:O}:{Ql, 7Qq+1}
Hn{m =0} ={Q,... . Q1 },

and the line joining Q; and Q) passes through P = (a,b) and is tangent to H
at Qz

Proof. Since each of the two lines is not defined over F 2, it meets with H at
q + 1 distinct points. Let P, 5 € [N H. Then the tangent line Tp, , to H at
P, 5 is given by y — oz + 37 = 0. On the other hand, since P, 5 € [,

B—aa+ b = 0.
Hence we have

BT —aa?+b=0
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and
ﬁqg — @90 £ b =0,

The former equality means (a,b) € Tp,, ,, and the latter one Pz 5.2 € m.

Since Tp, ,-H = qFPap) + P(aqz pa2) [7, Lem. 3|, we have completed the proof.
O

Continuation of the proof of Theorem 5.4. We consider x and y to be functions
on H. Then

diVl:Q1+"'+Qq+1—(q+1)Poo
divm =@+ -+ Q1 — (¢ + 1) Pw

by Lemma 5.5. Moreover, it is easy to see that

div (x — CL) = Z Pa,c+5 - qpoo:

¢ with Tr§=0

where Tr is the trace map from F2 to F, and ¢ € k with ¢? + ¢ = a9t
In order to find the genus of H;, we compute the length of (QHI/H)]5 for

P € H,, where Q i, /i is the sheaf of relative differentials of H; over H. The

computation is divided into 4 cases according to where P = ®(P) is.

Case b-1. If P = ®(P) & (I)g U (m)o U {Px}, then

q m(P) qg+1 __
vi + Z(P>v1+(x(P)—@) =0

has ¢ distinct roots as a polynomial in v;. Hence ®~(P) consists of ¢ points

by Kummer’s theorem [14, IIT 3.7]. So length (Qp, /i) 5 = 0.
Case b-2. Next we consider the case P = Q' = ®(P) € (m)y. Put a = z(Q’),

B =y(Q) and v = v;(P). Hence 37+ 3 = a and 77 + (o — a)?™! = 0 hold.
Furthermore, put

r=v;—79
$1 =T —«
s2 =y — .

We denote by ep the ramification index at P for ®, and by f = vp(r), where
vp is the valuation at P € H;. A local equation of H around ()’ is given by

s8I+ 50 = s+ as? + als (27)
and the extension

k(Hy) = k(vi,z,y) = k(r, s1, 82)/k(H) = k(z,y) = k(s1, 52)
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is given by

p S S st (- st (0 — a)s = 0 (28)

because of (26). Note that [ and m can be represented by using s; and sy as
I = sy—a%; + (B —a%+ b9 (29)

m = sg—als. (30)

The constant term 3 — a'/9a + b'/7 of [ is nonzero because Q" & (1)o. Hence

v (1) = 0. Since vy (m) = 1 by Lemma 5.5, vp(m) = ep. Therefore the values
of vs at each term in (28) are as in Table 1.

term H rd ‘ o ‘ Ty ‘ s‘f“ ‘ (v —a)si ‘ (v — a)ls;
vp | af les+f]es [epla+1) ] epq | ep

Table 1: Values of vz

We prove that ep = ¢ and f = 1. Obviously ep < min{ep + f,es(q+1),epq}
holds, and ep < gf because ez < deg® = q.
Suppose ep < g. Then

6}5+1

m
77t (@ —a)?s; =0 mod m/

by (28) and Table 1, where mp is the maximal ideal at P. In other words, by
(29) and (30),

{(so — a%s1)y + (o — a)¥(s2 — a*/sy)s1 + (B — a/%a + b"/9)(a — a)?s,} /1 (31)
=0 mod m;ﬁﬂ.
Since the denominator I of (31) is a unit of Op and (a — a)¥(sy — a'/%s;)s; €

2e 5
m ", we have

(55— a%s1)y + (B — a9 4+ b)) (a — a)?s; =0 mod mjf“. (32)

On the other hand, we know that

(55— a%s1)y + (B — a9 + Y7 (o — a)%s,

— o o +1\1/ ep+1
=(a—a)!(t"+b—a™") /s modmj ",

because
(55— a%sy)y + (B — a9 + bV (o — a)s; =
(s‘frl +as! —si+ (a—a)is))y+ (8 — a9 + bl/q)(a —a)s; (by (27))

=(cy — _ gV 1/ eptl
=(a—a)(vy+08—a’Ma+b'") modm]
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and

v+ B —ala + b/
= —(a— a)1+1/q + 68— a0+ b'/a
(b9 + b — a7t/

by v + (a —a)? =0, 39+ 3 = a and B — aa + b? = 0. The last condition
comes from the assumption Q' = (a, 3) € (m)g. Here a —a # 0. In fact, if
a —a = 0, then the line x = a is tangent to H at (), which is absurd because
the line passes through P,.. Since (a,b) € H, b? + b — a?"" is not zero either.
So

vp((sy — alsy)y + (B — a'/9a + b/ (a — a)ls;)
= vp((a—a)?(b?+b— aq+1)l/qsl)
= UP(SI) =E€ps
which contradicts to (32). Hence we have ep = ¢f. Since ep < ¢, we can
conclude that ep = g and f = 1.
Now we compute the length of (Qp,/g)ps. Since vp(r) = f =1, ris a

local parameter at P € H;. Since s; is a local parameter at Q' = ®(P) € H,
length(Qur, /i) p = vp(%L). From (27),

d
ds ds
—= = (s +a")— (33)
From (28),
)y m ds
(r+9)— +T+(s§+(a—a)q)d—7}:0. (34)
On the other hand, using the relation (33), we have
dl ds
% = (S({ + al — al/q)d—r‘l
dm q g g ds;
dr (s + o —a¥) dr

from Eq. (29) and Eq. (30) respectively. Hence

() - Gm  (si+a?—a)l—(s{+a? —a/Dm ds,

dr 12 B 2 ar (35)
Substituting (35) for % in Eq. (34), we have
a q_ q9)] — (s? a_ qgl/a d
{(7'4—’}/)(81_'_& a?) l2(81+06 a )m+8({+(&_a)q %:_?'
,
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Looking at the coefficient of ijirl modulo mp carefully, we know the coefficient

is a unit of Op. From (29), (30) and (27), vp(—=7F) = vp(s1) = ep = ¢.
dsi

Therefore v (L) = q.

Case b-3. We prove that if P =@ € (I)o, then
d*(Q) = (¢ — 1)P + P with P # P'.
We start from Eq. (25), namely
(x — a)” "%+ mv + (z —a)? = 0.
Put vy = 1/v. Then

m -1 4

vy + = 0. (37)

(x —a)d r—a

v§+

Let @ = 2(Q) and § = y(Q). Then a — a # 0 by argument similar to the
previous one, and m(Q) # 0 because (m)o N (I)o = @. So Eq. (37) is an
integral equation over Oy q. Hence vy € Oy, p for any point P lying over Q.
Considering Eq. (37) modulo the maximal ideal mg of Op g, we have

vi (UQ + (mﬂ> = 0. (38)

a—a)l

So there are at least two points lying over Q, say P and P’. We may assume
that P corresponds the solution vy, = 0 of (38) and P’ the solution v, =
—m(Q)/(a—a)?. It is not hard to see that the ramification index at P is ¢ — 1
and that at P’ is 1.

Case b-4. We consider the case P € (z — a)o. Considering Eq. (26) modulo
the maximal ideal of Oy p, we know ®~1(P) consists of ¢ distinct points by
Kummer’s theorem [14].

Case b-5. Finally we consider the ramification over P,. Put p = 1/y and
7 = z/y. Then p? + p = 79! holds because y? + y = 277!, Rewrite (26) by
using p and 7:

1 —alr +blp (1 —ap)it!
q _
R e (39)
Put vy = pvy. Then we have
. l—a't+bip (1 —ap)itt
q q—1 N F)
vy + p 1= al/ar & bl/qu2 , =0.

Furthermore, put vs = vy + 1, vy = v3/7, v5 = vy — a7 and vg = vs/ (f)
continuously. Then we get
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g L—a'T+bp
Ug T 1 1 Ut
1—ast +bip

(a? + ba — be) — (aq+1+% — qibt + aqb%)T + aq“bép
1—air+ b%p

— 0. (40)

Looking at Eq. (40) modulo the maximal ideal of Oy p_, we have
v 4 vg + (T + be — b?) = 0.

So @ 1(P,,) consists of ¢ distinct points.
Summing up, we can compute the genus g; of H; as

q(q—1)

291—2=q(2 5

~2)+ g+ Do+ 0+ Dl

by Hurwitz’s formula. Hence we have

(¢q—1)qlq+2)
> .

g1 =

(c) From (22) with t = L= the field extension k(Hp) = k(Hy)[w | /k(Hy)
is given by

(x —a) N +m =0.
Put wy = (z — a)lw. Then k(H;)[w] = k(H;)[w;] and w? ™" + 7. We already

saw

divgl = Qi1+ + Q1 — (¢+1)Ps

divgm = Qi+ + Q1 — (¢ +1)Px
on H. Furthermore, ®~!(Q;) consists of two points, one of which, say P; is
of ramification index ¢ — 1 and the other, say P/, is of ramification index 1,

and ®~1(Q%) consists of a unique point, say R;, with ramification index q.
Therefore

q+1 q+1

dell ZqR Z (g = 1P+ P)).

By [14, 11, 7.3], we know the behavior of the ramification of ©:

(i) ©71(R;) consists of one point, say R;, and e, =q—1;
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(i) ©71(P) consists of ¢ — 1 points, and each of the ¢ — 1 points is of rami-
fication index 1;

(iii) ©~1(P/) consists of one point, say P’;, and ep, =q— 1

(iv) For a point P € H; other than the above points, © ' (P) consists of ¢—1
points, and each of them is of ramification index 1.

Hence by Hurwitz’s formula, we have
20 -2=(¢— (201 —2) +2(¢ + 1)(q - 2),

where § is the genus of Hp. So we have §j = q(¢® —q—2)/2 O
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