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ON THE ORDER OF SPECIALITY OF

A SIMPLE, SPECIAL, AND COMPLETE

LINEAR SYSTEM ON A CURVE

Edoardo Ballico∗, Masaaki Homma†, and Akira Ohbuchi‡

Abstract. The order of speciality of an ample invertible sheaf L

on a curve is the least integer m so that L
⊗m is nonspecial. There

is a reasonable upper bound of the order of speciality for a simple
invertible sheaf in terms of its degree and projective dimension. We
study the case where it reaches the upper bound. Moreover we for-
mulate Castelnuovo’s genus bound involving the order of speciality.

1. Introduction

When we have an ample invertible sheaf L on a projective curve
X with h1(X,L) > 0, it seems natural to direct our attention to the
quantity

m(L) := min{m|h1(X,L⊗m) = 0}.

We propose calling it the order of speciality of L. In this paper, we study
the integer in a restricted situation.

Let X be a projective nonsingular curve of genus g ≥ 3 over an al-
gebraically closed field of characteristic 0, and L an invertible sheaf on
X with h1(X,L) > 0 such that the complete linear system |L| corre-
sponding H0(X,L) is simple. Here the classical terminology “simple”
means that the linear system |L| has no base points and the morphism
φ|L| : X → P

r defined by the linear system is birational onto its image
φ|L|(X). In this circumstance, we can see a several properties of the
order of speciality m(L) en route to Castelnuovo’s theorem.
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A fundamental property of the order of speciality under our situation
is the existence of a reasonable upper bound for m(L) in terms of the
degree d of L and the projective dimension r of L ([2, Chapter 3], [8, III
§2 Theorem 1]). The bound is:

(1) m(L) ≤

⌈

d − r

r − 1

⌉

,

where ⌈d−r
r−1⌉ denotes the integer m0 satisfying the inequalities m0 − 1 <

d−r
r−1 ≤ m0. We will give the details of the matter in the next section.

The estimation (1) is obviously true even if r = 2, and when r = 2,
equality holds in (1) if and only if L is very ample, that is, φ|L|(X) is a
nonsingular plane curve of degree d. There are two ways to expand this
remark. One is to study the curve φ|L|(X) for an invertible sheaf L next
to the extremal case under keeping the condition r = 2, which is done
in [6]. Another is to study the extremal case itself for r ≥ 3, which is
one of the subjects of this paper. Actually we will analyze the case in
Theorem 2.6 for a general r and will give a precise description of it in
Theorem 3.2 for r = 3.

Another topic is to formulate Castelnuovo’s genus bound involving
the order of speciality (see, Theorem 2.4 completed by Corollary 2.9).

Those two topics will merge at the last section in order to study the
order of speciality of the linear system of hyperplanes of a nonsingular
projective curve on a surface of minimal degree.

2. Generality

To begin with, we clarify our situation.

Setting 2.1. We fix a complete irreducible nonsingular curve X of

genus g > 3 over an algebraically closed field k of characteristic 0. Let

L be an invertible sheaf on X of degree d and of projective dimension

r ≥ 3. Assume that L is generated by H0(X,L) and the corresponding

morphism φ|L| is birational onto its image. We denote by Y the image

φ|L|(X), which is a curve of degree d in P
r. Furthermore, let H be a

hyperplane of P
r in general position and Γ := Y ∩ H.

From the exact sequence

0 → IΓ → OPr → OΓ → 0

of OPr -modules, we have a natural linear map

H0 (Pr,OPr(n))
αn→ H0(OΓ)
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for each nonnegative integer n. The function

hΓ(n) = dimk Imαn

is nothing but the Hilbert function of Γ, which plays an important role in
Eisenbud-Harris’s approach to the Castelnuovo theory [2], particularly,
the following lemma is fundamental.

Lemma 2.2. Under Setting 2.1, the Hilbert function of Γ has the

property:

hΓ(n1 + n2) ≥ min{d, hΓ(n1) + hΓ(n2) − 1}.

Especially, if hΓ(n + 1) < d, then

hΓ(n + 1) ≥ n(r − 1) + r.

Proof. The second part of the assertion is obvious from the first part
because hΓ(1) = r. For the first part, see [2, Corollary 3.5].

Now we explain how inequality (1) is justified.

Proposition 2.3. Under Setting 2.1, let m = m(L). Then we have

hΓ(m) < d

and

m ≤

⌈

d − r

r − 1

⌉

.

Proof. Since Γ is a general hyperplane section of Y , we may regard Γ
as a divisor on X. Then OX(Γ) ≃ L. Hence we have an exact sequence

(2) 0 → L⊗(j−1) → L⊗j → OΓ → 0

of OX -modules for any integer j. From the exact sequence for j = m,
we have a diagram

H0(X,L⊗m)
α′

m→ H0(OΓ) → H1(L⊗(m−1)) → H1(L⊗m)
↑ ↑ αm

SymmH0(X,L)
∼
→ H0(Pr,OPr(m)),

where Symm is the symbol for a mth symmetric product, the upper
horizontal sequence is exact and the square is commutative. Since
H1(L⊗(m−1)) 6= (0) and H1(L⊗m) = (0) by definition, the linear map
α′

m is not surjective. Therefore, by the diagram, we have

hΓ(m) = dim Imαm ≤ dim Im α′
m < d.
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Next we show (1). Let m0 := ⌈d−r
r−1⌉. Then we can write as

(3) d − r = m0(r − 1) − η

for an integer η with 0 ≤ η < r − 1. If m0 + 1 ≤ m, then hΓ(m0 + 1) ≤
hΓ(m) < d. Hence hΓ(m0 +1) ≥ m0(r−1)+r by Lemma 2.2. Therefore
we have d > m0(r − 1) + r, which contradicts with (3).

Theorem 2.4 (Castelnuovo’s bound involving the order of special-
ity). Under Setting 2.1, let m = m(L). Then we have

(4) g ≤ τ(m,d, r),

where

τ(m,d, r) := m(d − r) −
m(m − 1)

2
(r − 1).

If we fix d and r and regard τ(m,d, r) as a numerical function on
{

m ∈ Z|m ≤

⌈

d − r

r − 1

⌉}

,

then it is an increasing function and the maximum value coincides with

Castelnuovo’s number π(d, r) in the sense of [1, p.116].

Proof. From the exact sequence (2), we have a diagram

0 → H0(X,L⊗(j−1)) → H0(X,L⊗j)
α′

j
→ H0(OΓ)

↑ ↑ αj

SymjH0(X,L)
∼
→ H0(Pr,OPr(j))

with commutative square. Hence

(5) h0(L⊗j) − h0(L⊗(j−1)) = dim Imα′
j ≥ dim Imαj = hΓ(j).

Since hΓ(m) < d by Proposition 2.3, hΓ(j) < d for j = 1, 2, . . . ,m.
Hence by Lemma 2.2, we have

(6)























h0(L) − h0(OX ) = r
h0(L⊗2) − h0(L) ≥ (r − 1) + r

h0(L⊗3) − h0(L⊗2) ≥ 2(r − 1) + r
· · · · · ·

h0(L⊗m) − h0(L⊗(m−1)) ≥ (m − 1)(r − 1) + r.

Adding these expressions together, we have

h0(L⊗m) ≥
m(m − 1)

2
(r − 1) + mr + 1.
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Since h1(L⊗m) = 0 by definition, we get the desired bound for g by the
Riemann-Roch theorem.

The quadratic function on x

τ(x, d, r) = x(d − r) −
x(x − 1)

2
(r − 1)

takes the maximum at

x =
d − r

r − 1
+

1

2
,

which is the mean of d−r
r−1 and d−r

r−1 +1. Therefore the numerical function

τ(m,d, r) :

{

m ∈ Z|m ≤

⌈

d − r

r − 1

⌉}

→ Z

is an increasing function.

Denoting d − 1 = m′(r − 1) + ε with 0 ≤ ε < r − 1, by definition,

π(d, r) = m′(m′−1)
2 (r − 1) + m′ε. On the other hand,

m′ =

{

m0 if ε 6= 0
m0 + 1 if ε = 0,

where m0 = ⌈d−r
r−1⌉. So we can verify τ(m0, d, r) = π(d, r) by easy

calculation.

Remark 2.5. Since the geometry of Y is well studied and a little
exceptional from our point of view when L is isomorphic to the canonical
sheaf ωX , we exclude frequently the case from our consideration. Under
Setting 2.1 with the extra condition L 6≃ ωX , we have d ≥ 2r + 1 by
Clifford’ theorem.

To state our second theorem, we need a notation. Let

λ := (d − 2) − m0(r − 1),

where m0 = ⌈d−r
r−1⌉. Then λ is the remainder of the division of d − 2 by

r − 1, i.e., 0 ≤ λ < r − 1. In fact, by (3) we have

d − 2 = m0(r − 1) + r − η − 2,

and

0 ≤ r − η − 2 < r − 1.
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Theorem 2.6. Under Setting 2.1 with the extra condition L 6≃ ωX ,

we further assume that

m(L) =

⌈

d − r

r − 1

⌉

.

If d ≥ (λ + 1)r + 2 and m(L) · r 6= d, then Y lies on a surface of degree

r − 1, and the surface is the intersection of all quadrics through Y .

The proof of the theorem will be given after some comments and
preliminaries.

The conditions d ≥ (λ+1)r +2 and m(L) · r 6= d in the theorem look
untidy. A simpler but weaker statement is as follows.

Corollary 2.7. Under Setting 2.1, if m(L) =
⌈

d−r
r−1

⌉

and d > r2,

then the conclusion of Theorem 2.6 holds.

Proof. Since d > r2, L 6≃ ωX . The condition d ≥ (λ + 1)r + 2 is
weaker than d > r2 because 0 ≤ λ ≤ r − 2. Suppose that d = m(L)r.
Then we have d ≥ d−r

r−1r, which means r2 ≥ d and contradicts with our
assumption.

The next lemma is a modification of the argument about the Castel-
nuovo curve to lie on a surface of minimal degree [3, pp.531–532].

Lemma 2.8. Under Setting 2.1 with the extra condition L 6≃ ωX ,

if hΓ(2) = 2r − 1, then the intersection of all quadrics through Y is a

surface of degree r − 1.

Proof. Since Y is nondegenerate and linearly normal in P
r, we have

a diagram:

0 0
↓ ↓

0 → H0(OPr(1)) → H0(OY (1)) → 0
↓ ↓ ↓

0 → H0(IY (2)) → H0(OPr(2)) → H0(OY (2))
↓ ↓ ↓

0 → H0(H,IΓ(2)) → H0(OH(2)) → H0(OΓ(2))
↓
0

Here all horizontal sequences, and vertical ones are exact. Hence H0(IY (2))
∼
→

H0(H,IΓ(2)) by the snake lemma, where the snake lives from the south-
west to the northeast.



On the order of speciality of a simple, special, and complete linear system 599

Let S be the intersection of quadrics in P
r containing Y . Since the

isomorphism H0(IY (2))
∼
→ H0(H,IΓ(2)) comes from taking the inter-

section of a quadric with H, S ∩ H is just the intersection of quadrics
in H = P

r−1 containing Γ. On the other hand, since d ≥ 2(r − 1) + 3
by Remark 2.5 and hΓ(2) = 2(r − 1) + 1 by the assumption, we can ap-
ply Castelnuovo’s lemma [3, p.531]; Γ is contained in a rational normal
curve D (of degree r − 1) in H = P

r−1. Any quadric of H through Γ
must contain the rational normal curve D, because the intersection of
the quadric and D contains Γ which consists of d (> 2(r − 1)) points.
Since hΓ(2) = 2r − 1,

h0(H,IΓ(2)) = h0(H,OH(2)) − (2r − 1)

= h0(H,ID(2)).

Hence we have
H0(H,IΓ(2)) = H0(H,ID(2)),

which implies that S ∩ H = D. Therefore S is an irreducible surface of
degree r − 1 because H is in general position.

Before giving the proof of Theorem 2.6, we supplement “Casteln-
uovo’s bound involving the order of speciality” with analyzing the case
where equality holds in (4).

Corollary 2.9. Under Setting 2.1 with the extra condition L 6≃ ωX ,

if equality holds in (4), then Y lies on a surface of degree r − 1.

Proof. If equality holds in (4), then each equality must hold in (6),
specially, h0(L⊗2) − h0(L) = 2r − 1. Hence hΓ(2) = 2r − 1 by (5) and
Lemma 2.2. So Y lies on a surface of degree r − 1 by Lemma 2.8.

Proof of Theorem 2.6. First we consider the case r = 3, hence d = 8 or
d ≥ 10 by our assumptions. If Y does not lie on any quadric surfaces,
then we have

(7) g ≤

{

d2/6 − d/2 + 1 (if d ≡ 0 mod 3)
d2/6 − d/2 + 1/3 (if d 6≡ 0 mod 3)

(see, [2, Theorem 3.13]). On the other hand, since L⊗(m0−1) is special,
we have d

(⌈

d−3
2

⌉

− 1
)

≤ 2g − 2, which means

(8) g ≥

{

d2/4 − 5d/4 + 1 (if d is odd)
d2/4 − d + 1 (if d is even).

The two bounds (7) and (8) for g contradict.
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From now on, we assume that r ≥ 4. By Lemma 2.8, there is nothing
to do when hΓ(2) = 2r−1. We will show that the inequality hΓ(2) ≥ 2r
never occur in our situation.

Case 1. Suppose that hΓ(2) = 2r. We want to apply [2, Propositions
3.19 and 3.20] to our Γ ⊂ H = P

r−1, which says that

if d ≥ 2r + 3 and hΓ(2) = 2r, then Γ lies on an elliptic

normal curve E in H = P
r−1.

So we have to show that d ≥ 2r + 3, and prove it by dividing several
cases on λ and m0. Recall

d = m0(r − 1) + λ + 2(9)

≥ (λ + 1)r + 2,(10)

m0 ≥ 2 and r ≥ 4. The desired inequality obviously holds in the case
either λ ≥ 2 or m0 ≥ 3. So remaining cases are

(i) λ = 1 and m0 = 2; and
(ii) λ = 0 and m0 = 2.

In case (i), we have d = 2r + 1 by (9), but d ≥ 2r + 2 by (10); so the
case is out of our consideration. In case (ii), we have d = 2r by (9),
but d ≥ 2r + 1 by Remark 2.5, which is absurd. Therefore it has been
established that Γ lies on an elliptic normal curve E in H = P

r−1.

Let us consider the diagram

H0(Pr−1,O(m0))

γ ↓ ցα
′
m0

H0(OE(m0))
β
→ H0(OΓ(m0)) → H1(OE(m0)(−Γ)) → 0,

where the horizontal sequence is exact and the triangle is commuta-
tive. Note that γ is surjective because E is projectively normal. Since
hΓ(m0) < d, the linear map α

′

m0
= β ◦ γ is not surjective, and hence

neither is β. Therefore H1(OE(m0)(−Γ)) 6= 0, which means that either
degOE(m0)(−Γ) < 0 or OE(m0)(−Γ) ≃ OE. Since rm0 6= d by our
assumption, we have rm0 ≤ d− 1, which implies m0 ≤ λ + 1 because of
(9). Using (9) again, we have d ≤ (λ + 1)r + 1. But it contradicts with
our original assumption.

Case 2. Suppose that hΓ(2) ≥ 2r + 1. Since hΓ(m0) < d, we have

d > hΓ(m0) ≥

{

m0r (if m0 is odd)
m0r + 1 (if m0 is even)
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by Lemma 2.2. By the same computation as we did at the last part in
Case 1, we get a contradiction. So we can exclude this case too for the
possibilities.

3. Curves in 3-space

We start a detailed study of our problem for r = 3 with an example
which shows the assumption m(L) · r 6= d in Theorem 2.6 to be actually
necessary.

Example 3.1. Let X be a nonsingular curve in P
3 which is a complete

intersection of two cubics, and L the invertible sheaf OX(1) correspond-
ing to the plane sections. Then we have

(a) the genus of X is 10;
(b) the degree of L is 9 and h0(X,L) = 4;
(c) L⊗2 ≃ ωX ,

which can be found in [5, IV, 6.4.3]. Hence m(L) = 3, which is just
⌈

d−r
r−1

⌉

for d = 9 and r = 3. Moreover, our d, r and m(L) fulfill the

second condition d ≥ (λ + 1)r + 2 in Theorem 2.6, but fail in the third
condition. Since X is a complete intersection of two cubics, it does not
lie on any quadric surface.

The next theorem is a complete version of Theorem 2.6 in the case
r = 3. In the theorem, we do not assume the invertible sheaf L in ques-
tion not to be canonical.

Theorem 3.2. Let L be a simple, special invertible sheaf of degree

d on a curve X of genus g with h0(X,L) = 4. If m(L) =
⌈

d−3
2

⌉

, then

Y := φ|L|(X) lies on a quadric surface except in the following cases:

(a) Y is a nonsingular curve which is a complete intersection of two

cubics (in this case, d = 9 and g = 10);
(b) X is a nonhyperelliptic, nontrigonal curve of genus 5, and L ≃

ωX(−P ) for a point P ∈ X (in this case, d = 7).

In those exceptional cases, Y does not actually lie on any quadric sur-

faces, but lie on a cubic surface.

Proof. By Clifford’s theorem, we have d ≥ 6. Since there is no simple,
special invertible sheaf on a hyperelliptic curve, d = 6 if and only if
L ≃ ωX ; hence in this case Y is a canonical curve of genus 4, which lies
on a quadric surface [5, IV, 6.4.2]. On the other hand, if d > 9, then Y
lies on a quadric surface by Corollary 2.7.
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So we have to examine whether Y lies on a quadric surface for d = 7, 8
and 9. If d = 8, then m(L) = 3 and λ = 0 because r = 3; and those
integers satisfy the assumption of Theorem 2.6, hence Y lies on a quadric
surface.

Assuming d = 9, we have h1(L⊗2) > 0 because m(L) = 3. Hence g ≥
10 because deg L⊗2 ≤ 2g − 2. Since h1(L⊗3) = 0, we have h0(L⊗3) ≤ 18
by the Riemann-Roch theorem. Now we consider the exact sequence

0 → I3 → H0(P3,OP3(3)) → H0(X,L⊗3),

where I3 is the homogeneous part of degree 3 of the ideal of Y in P
3.

Since h0(OP3(3))− h0(L⊗3) ≥ 2, there are two cubic surfaces S1 and S2

such that Y ⊆ S1 ∩ S2. Suppose that Y does not lie on any quadric
surface. Then S1 and S2 are irreducible, and S1 ∩S2 is one-dimensional
and of arithmetic genus pa(S1 ∩ S2) = 10 [5, I, Exercise 7.2]. Since
deg Y = 9, we have Y = S1 ∩ S2, and Y is nonsingular because

10 ≤ g ≤ pa(Y ) = pa(S1 ∩ S2) = 10.

Conversely, a nonsingular curve which is a complete intersection of two
cubic surfaces does not lie on any quadric surface.

Finally, we handle the case d = 7. In this case, m(L) = 2. Suppose
that Y does not lie on any quadric surface. Since the natural map
H0(P3,OP3(2)) → H0(X,L⊗2) is injective and h1(L⊗2) = 0, we have
g ≤ 5; and equality must hold because 7 ≤ deg L ≤ 2g − 2. Since
deg ωX = 8 for a nonsingular curve X of genus 5 and L is special of
degree 7, there is a point P ∈ X such that L ≃ ωX(−P ). Conversely, it
is obvious that m(ωX(−P )) = 2 for a nonsingular curve X of genus 5.
In order to complete our proof, we will show the next lemma.

Lemma 3.3. Let X be a nonhyperelliptic curve of genus 5, and P ∈ X.

Then:

(a) ωX(−P ) is simple;
(b) if the curve Y := φ|ωX(−P )|(X) lies on a quadric surface, then X is

trigonal;
(c) if X is trigonal, then Y lies on a quadric surface.

Proof. (3.3) Since X is nonhyperelliptic, we have h0(X,ωX(−P −
Q)) = 3 for any P,Q ∈ X. In particular, the linear system |ωX(−P )| is
free from base points. If h0(X,ωX(−P − Q − R)) = 3 for three points
P,Q,R ∈ X, then dim |P + Q + R| = 1 by the Riemann-Roch theorem.
Since the number of g1

3 ’s on X is at most 1, for the fixed point P the
number of pairs {Q,R} so that h0(ωX(−P − Q − R)) = 3 is at most 1,
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that is, the morphism X \ {Q,R} → Y \ {φ|ωX(−P )|(Q) = φ|ωX(−P )|(R)}
induced by φ|ωX(−P )| is an isomorphism.

(3.3) We show the second statement. First we consider the case where
Y lies on a nonsingular quadric surface, which is isomorphic to P

1 ×P
1.

Regarding Y as a divisor on the surface, we can see that Y is linearly
equivalent to al + bm for some integers a, b ∈ Z, where l = P

1 × pt,
m = pt × P

1. Since 7 = deg Y = a + b and 5 ≤ pa(Y ) = (a − 1)(b − 1),
we have Y is linearly equivalent to 3l + 4m or 4l + 3m, which means
that the first projection from P

1 ×P
1 or the second gives a morphism of

degree 3 from X to P
1 via the normalization X → Y .

Next we consider the case where Y lies on a singular irreducible
quadric surface S, which is a cone over a conic. The blowing-up S̃ →
S ⊂ P

3 whose center is the vertex of S coincides with φ|C2+2f | : F2 → P
3,

where F2 = P(OP1 ⊕ OP1(−2)), C2 is the minimal section of the ruled

surface F2
π
→ P

1, and f is the divisor class of a fibre of π. Let Ỹ be the
strict transform of Y , and |aC2 + bf | the linear system on F2 in which Ỹ

belongs. Then we have 7 = deg Y = b and 5 ≤ pa(Ỹ ) = −a2 +ab− b+1.

Hence we have that Ỹ is linearly equivalent to 3C2 + 7f or 4C2 + 7f .
But since the linear system |4C2 + 7f | has no irreducible member [5, V,

2.18], Ỹ ∈ |3C2 +7f |. Hence π|Ỹ gives a morphism X → P
1 of degree 3.

(3.3) It is easy to see the diagram

X
φ|ωX |
−→ φ|ωX |(X) ⊂ P

4

φ|ωX(−P )| ց ↓ p

Y ⊂ P
3

is commutative, where p is the projection with center φ|ωX |(P ). Since X
is trigonal of genus 5, the canonical curve lies on a rational ruled surface
F1 = P(OP1 ⊕OP1(−1)) embedded into P

4 by |C1 + 2f |, where C1 is the
minimal section [7]. Since deg F1 = (C1 + 2f)2 = 3 and φ|ωX |(P ) ∈ F1,

the surface p(F1), which obviously contains Y , is of degree 2. This
completes the proof.

4. Curves on a surface of minimal degree

An irreducible nondegenerate surface S of minimal degree r−1 in P
r

is either

(1) a nonsingular scroll; or
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(2) a cone over a rational normal curve; or
(3) a Veronese surface

(see, [3, Proposition at p.525]). In this section, we analyze the order of
speciality of OY (1) for a nonsingular curve Y on a surface S of minimal
degree in P

r with h1(Y,OY (1)) > 0.

Throughout this section, Fe denotes the rational ruled surface with
invariant e. To avoid an exceptional situation, we assume that e > 0,
however, most of the analysis works well even if e = 0.

We denote by Ce the minimal section of the ruled structure π : Fe →
P

1. Moreover we denote by f the divisor class of a fibre of π.
In order to compute cohomology of invertible sheaves on Fe, it would

be convenient to give a summary of fundamental formulas. Since Pic Fe =
ZCe ⊕Zf [5, V, 2.3], each invertible sheaf can be written as OFe(αCe +
βf) for certain integers α and β, in particular,

(11) ωFe ≃ OFe(−2Ce − (2 + e)f),

where ωFe is the canonical sheaf on Fe [5, V, 2.10]. By [4, 4.2.7] with [5,
V, 2.8],

(12) π∗OFe(αCe + βf) ≃

{

Sα(OP1 ⊕OP1(−e)) ⊗OP1(β) if α ≥ 0
0 if α < 0,

where the symbol Sα denotes the αth symmetric product, and by [5, V,
2.5] with the Riemann-Roch theorem,

(13) χ(OFe(αCe + βf)) = −
α(α + 1)

2
e + (α + 1)(β + 1).

4.1. Curves on a nonsingular scroll

A nonsingular scroll isomorphic to Fe is given by a linear system
|Ce + nf | with n > e. We identify Fe with φ|Ce+nf |(Fe) ⊂ P

r, where

(14) r = 2n − e + 1.

We consider a nonsingular curve Y on Fe and the invertible sheaf L :=
OFe(Ce + nf)|Y such that h1(Y,L) > 0. Let Y ∼ aCe + bf in Pic(Fe).
We denote by g the genus of Y , and by d the degree of Y in P

r. Then

(15) g = (a − 1)(b − 1) −
a(a − 1)

2
e

by (11) with the adjunction formula, and

(16) d = (n − e)a + b.
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Lemma 4.1. We have b ≥ ae, a ≥ 3, and b − n ≥ e + 2. Moreover

the linear system, which is special or not, on Y coming from the linear

system of hyperplanes of P
r is complete, that is, H0(Fe,O(Ce + nf)) →

H0(Y,L) is surjective, if and only if b − n ≥ (a − 2)e + 1.

Proof. For the first inequality, see [5, V, 2.18]. To see the remainder
of the statements, let us consider the exact sequence

(17) 0 → OFe(−aCe − bf) → OFe → OY → 0.

Tensoring (17) with OFe(Ce + nf) gives the exact sequence

0 → OFe((1 − a)Ce + (n − b)f) → OFe(Ce + nf) → L → 0.

From (11) with Serre’s duality and (12), h2(OFe(Ce + nf)) = 0. On
the other hand, since h0(OFe(Ce + nf)) = χ(OFe(Ce + nf)) by (14) and
(13), h1(OFe(Ce + nf)) = 0. Hence

(18) H0(OFe(Ce+nf)) → H0(L) → H1(OFe((1−a)Ce+(n−b)f)) → 0

and

(19) 0 → H1(L) → H2(OFe((1 − a)Ce + (n − b)f)) → 0

are exact. Since h2(OFe((1−a)Ce +(n−b)f)) = h0(OFe((a−3)Ce +(b−
n−e−2)f)) by Serre’s duality, h1(L) > 0 if and only if h0(P1, Sa−3(O⊕
O(−e))⊗O(b−n−e−2)) > 0, which means that a ≥ 3 and b ≥ n+e+2.

From (18), the linear system on Y is complete if and only if
h1(OFe((1 − a)Ce + (n − b)f)) = 0. Since

h1(OFe((1 − a)Ce + (n − b)f))

= h1(OFe((a − 3)Ce + (b−n−e−2)f))(by Serre’s duality)

= h1(P1, Sa−3(O ⊕O(−e)) ⊗O(b−n−e−2))(by [5, V, 2.4] with (12)),

the vanishing is equivalent to the condition

−(a − 3)e + b − n − e − 2 ≥ −1.

This completes the proof.

Theorem 4.2. m(L) = min

{

a − 1, 1 +

[

b − e − 2

n

]}

, where [(b −

e − 2)/n] is the integer part of (b − e − 2)/n.

Proof. Let m be an integer at least 2. By the similar analysis in the
proof of the above lemma, we have that h1(L⊗(m−1)) > 0 if and only if
a − 1 ≥ m and (b − e − 2)/n ≥ m − 1.
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Now we explain a characterization of extremal curves on a nonsingular
scroll in the sense of Castelnuovo’s genus bound from our point of view
(cf. [1, III 2.5]).

Corollary 4.3. g = π(d, r) if and only if

(a) m(L) = a − 1 and b ≤ an + 1; or

(b) m(L) = a − 2 and
d − r

r − 1
= a − 2.

Proof. First we rewrite the genus formula (15) in terms of a, d and
r. From (14) and (16),

b − 1 = d − (
r + e − 1

2
− e)a − 1

= (d − r) −
r − 1

2
(a − 2) +

e

2
a.(20)

Hence (15) can be expressed as

(21) g = (a − 1)(d − r) −
(a − 1)(a − 2)

2
(r − 1).

Since m(L) ≤ a − 1, we may write as

m(L) = a − 1 − j with j ≥ 0.

Then, by Theorem 2.4,

(22) g ≤ (a − 1 − j)(d − r) −
(a − 1 − j)(a − 2 − j)

2
(r − 1),

and g = π(d, r) if and only if equality holds in (22) and m(L) =
⌈

d−r
r−1

⌉

.

Taking account of (21), equality holds in (22) if and only if

(23) j ((r − 1)j + 2(d − r) − (2a − 3)(r − 1)) = 0.

Suppose that g = π(d, r). Then since a − 1 − j = m(L) =
⌈

d−r
r−1

⌉

, there

is an integer η with 0 ≤ η < r − 1 such that

d − r = (a − 1 − j)(r − 1) − η.

Hence (23) can be expressed as

j ((r − 1)(1 − j) − 2η) = 0.

Hence j = 0 or “j = 1 and η = 0.” In the latter case, the condition
means that m(L) = a− 2 = d−r

r−1 . In order to handle the former case, we
should note the identity

(24) (d − r) = (a − 1)(r − 1) + (b − an − 1),
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which comes from (20) and (14). So we have b − an − 1 ≤ 0 because
⌈

d−r
r−1

⌉

= a − 1.

Conversely, in each of the cases, (23) obviously holds, and m(L) =
⌈

d−r
r−1

⌉

in case (b). In case (a),
⌈

d−r
r−1

⌉

≤ a − 1 by (24). Since m(L) ≤
⌈

d−r
r−1

⌉

by Theorem 2.6 and m(L) = a − 1 by our assumption, we have

m(L) =
⌈

d−r
r−1

⌉

in case (a) too.

Remark 4.4. As we will see later, any nonsingular curve Y on a
cone over a rational normal curve in P

r or a Veronese surface in P
5 with

h1(Y,OY (1)) > 0 is extremal in the sense of Castelnuovo’s genus bound.
However, we can find a nonsingular scroll Fe ⊂ P

r and a nonsingular
curve Y on the surface such that the linear system |L| is complete,

h1(L) > 0, m(L) =
⌈

d−r
r−1

⌉

but g < π(d, r). For example, consider

the ruled surface F2 with the linear system |C2 + 4f |. Then there is a
nonsingular curve Y so that Y ∼ 4C2 +9f . Then we have r = 7, d = 17,
m(L) = 2, g = 12 and π(d, r) = 14.

4.2. Curves on a cone over a rational normal curve

A cone S ⊂ P
e+1 (e ≥ 2) over a rational normal curve of degree e in

P
e is the image of the morphism from the rational ruled surface Fe by

means of the linear system |Ce + ef |. Let Y be a nonsingular curve on
S, and L = OPe+1(1)|Y . We identify Y with its strict transform on Fe.
Then L can be identified with OFe(Ce + ef)|Y , and Y can be regarded
as a divisor on Fe. Let aCe + bf ∼ Y . Since Y is nonsingular on S, the
intersection number (Y.Ce) on Fe is either 0 or 1. So, in the former case,
d = ae and g = (ae−2)(a−1)/2, where d is the degree of Y in P

e+1 and
g is the genus of Y ; and in the latter case, d = ae+1 and g = ae(a−1)/2.

In particular, we have
⌈

d−r
r−1

⌉

= a− 1 in each case. Hence, as we can see

easily, π(d, r) = τ(a − 1, d, r) = g, and hence m(L) = a − 1.

Proposition 4.5. Under the above setting, we have

(a) H0(Fe,OFe(Ce + ef)) → H0(Y,L) is surjective,

(b) h1(L) > 0 if and only if a ≥ 3.

Proof. These can be proved by the similar idea of the proof of
Lemma 4.1. So we omit it.
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4.3. Curves on the Veronese surface

Let Y be a nonsingular plane curve of degree e ≥ 4 and L = OY (s)
with 1 ≤ s ≤ e − 3. Then it is easy to see that

m(L) =

[

e − 3

s

]

+ 1.

Therefore any nonsingular curve Y on the Veronese surface with
h1(OP5(1)|Y ) > 0 is extremal. In fact,

m(OP5(1)|Y ) =

{

e−1
2 if e is odd

e−2
2 if e is even,

each of which coincides with
⌈

d−r
r−1

⌉

for d = 2e and r = 5, and

τ

(

e − 1

2
, 2e, 5

)

= τ

(

e − 2

2
, 2e, 5

)

=
(e − 1)(e − 2)

2
= the genus of Y .
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