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if g=3, 4,6,7,9
1

{

-g(g-l)
3

k(g)=
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Furthermore, equality occurs if and only if C is hyperelliptic, P is a K- Weie1'srass

THEOREM 1. Let D be a divisor of degree d> 2g - 2 on C. Then

and equality occurs if and only if C is hyperelliptic and P is a K-Weierstrass

point. Furthermore, T. Kato [2J showed that if C is nonhyperelliptic, then Wg(P)

;;;;'k(g), where
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ON THE WEIGHT OF HIGHER ORDER WEIERSTRASS POINTS

Introduction. Let C be a complete nonsingular curve of genus g~2 over an

algebraically closed field k of characteristic zero and D a divisor on C with dimlDI

~O. Then we may define the notion of D-Weierstrass points (see e. g. [3J).

Let P be a point on C and l=dimIDI+1. If lJ is a positive integer such that

dim L(D-(lJ-1)P»dim L(D-lJP), we call this integer lJ a "D-gap" at P. There

are exactly I D-gaps and the sequence of D-gaps lJl(Pj,···, lJl(P) at P, lJl(P) < ...
<lJt(P), is called the D-gap sequence at P. The multiplicty of the Wronskian of

l

D at a point P can be computed as "L,(lJi(P)-i). This integer is called the D-
i=l

weight at P and denoted by WD(P). When WD(P) is positive, we call the point P

a D-Weierstrass paint. It is well known that for the canonical divisor K,

and this maximum is achieved for every (J~3.

Our purpose is to give such good bounds on WD(P) for a divisor D of degree
>2g-2.
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bz

point and D is linearly equivalent to K +(d - 2g +2)P.

THEOREM II. Let D be a divisor of degree d> 2g - 2 on C. If e is nonlzy

perelliptic, then

Wn(P)~k(g)+g.

Furtlzermor, the nzaximU111 is achioed for every g~3 and every d>2g-2

THEOREM III. Let P be a point on a nonhyperelliptic curve e and D a divisor

of degree d>2g-2 on e. If Wn(P)=k(g)+fI, then wK(P)=k(g).

In his paper [lJ, A. Duma posed the conjecture: if e is nonhyperelliptic of

genus g and if PEe is a K-Weierstrass point, then WqK(P)~WK(P)+g for every

q~2. Unfortunately, there is a counterexample of this conjecture (see § 4 below).

However, our theorems show that the conjecture is true for a certain limited case.

Notation. Let x be a function or a differential on C. The divisor of zeros

of x is denoted by (x)o and the divisor of poles of x is denoted by (x)oo. The

divisor div x means (x)o-(x)oo. Let E be a divisor on e. We denote by L(E) the

the k-vector space of all functions x on e such that div x +E is effective and by

hO(E) the dimension of L(E) over k. The dimension of the k-space of all holo

morphic differentials w with (w)o»E is denoted by hI (E). The degree of E is

denoted by deg E. If two divisors E and E' are linearly equivalent, we denote it

by E'-",,-E'. The complete linear system of all effective divisors E' with E'~E is

denoted by lEI.

Let e be a complete nonsingular curve of genus g~2 over k and D a divisor

of degree d>2g-2 on C. The dimension hO(D) of the k-space L(D) is always

denoted by I. Note that l=d+1-g by the Riemann-Roch theorem. Let PEe.

We denote by '-'I(P) < ... <'-'l(P) the D-gap sequence at P. Then we have

'-'i(P)=i for 1~i~d-2!7+1

by the Riemann-Roch theorem, and may denote by

lJi(P) =d-2g+ 1+ fli-Cd-2g+1)(P) for d-2g+2~i~l,

where flj(P) < ... <flg(P) are positive integers. Hence we have

9

WD(P)= 'E,(lli(P) -i).
i=l
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THEOREM 1. We have
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Furthermore, equality occurs if and only if C is hyperelliptic, P is a K- Weierstrass

point and D ~ K+(d-2g+2)P'

PROOF. By the definition of gap sequence, we have

Since

(2) deg (D-(d-2g+ fJ-j)P)=2g- fJ-j,

we have g-j~ ~ (2g-fJ-j) by Clifford's theorem. Hence fJ-j~2j and therefore we

have

!I 1
wn(P) = t:l(fJ-j-j)~zg(g+1)

If equality occurs, then fJ-j=2j for j=1. ... , g. In particular, putting j=1 we have

deg(D-(d-2g+2)P)=2g-2 and hO(D-(d-2g+2)P)=g. This means D-(d-2g+2)P

~K. Putting j=2 and appealing to Clifford's theorem, we have that C is hyperel

liptic and ID-(d-2g+4)PI =(g-2)g~, where g~ is the linear system of dimen

sion 1 and degree 2 on C. Hence we have 12PI =g~, which means that P is a

K-Weierstrass point.

Conversely, it is obvious that if C is hyperelliptic, D~K+(d-2g+2)P and P

is a K-Weierstrass point, then the D-gap sequence at Pis

{1, 2,···, d-2g+1, d-2g+3, d-2g+5,···, d+1}.

1
Hence we have wn(P)=Zg(g+1).

§ 2. Nonhyperelliptic case (1)

From now on, we assume that C is nonhyperelliptic. The following theorem,

which is essentially due to H. H. Martens [4J, plays an important role in our es

timate of a bound on wn(P).

THEOREM 2.1 (Martens). Assume that C is nonhyperelliptic of genus g~4.

Let E be a divisor of deZ1'ee e with 0~e~2g-1. If E'"'-'O nor K, then

2(hO(E) -1)~ e-1.
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•

FU1'thermore, equality holds if and only if one of the following occurs:

(i) e=l and E,,-, Q, where Q is a point;

(ii) e is trigonal, e=3 and IEI=gL whe1'e g~ is a linear system of dimension

1 and degree 3;

(iii) e is plane quintic, e=5 and E is a line section;

(vi) e is trigonal, e=2g-5 and IK-EI =g~;

(v) e=2g-3 and K-E"-'Q, where Q is a point;

(vi) e=2g-1.

PROOF. The first assertion follows from Clifford's theorem. The" if" part of

the second assertion is obvious and the" only if" part is an immediate consequence

of the following lemma. (Note that if 2(hO(E)-1)=e-l, then 2(hO(K-E)-1)=

deg(K-E)-1.)

LEMMA 2.2. Let E be a divisor of degree e on a nonhyperelliptic curve of

genus g~4. If 2(hO(E)-1)=e-l and o~e~g-l, then hO(E)~2 except that the case

(iii) in Theorem 2.1 occurs.

For the proof, see [4J, 2.5.1.

THEOREM II. Let D be a divisor of degree d>2g-2 on a nonhyperelliptic curve

e of genus g. Then we have

wn(P)~k(g)+g

for any PEe, where keg) is Kato's bound on WK(P).

PROOF. We prove this by several steps.

Step 1. First we estimate fl/s by applying Clifford's theorem to (1) and (2).

Since e is nonhyperelliptic, we have:

pi~2 and equality occurs if and only if D,,-,K+(d-2g+2)P;

Pi~2i-1 if i= 2, ... , g-1 ;

p(J~2g and equality occurs if and only if D,,-,dP.

Step 2. If Pi =2, then the K-gap sequence at P coincides with Pi -1, P2 -1, ... ,

pg -1. Indeed, if Pi = 2, then D - (d - 2g +2)P,,-,K by Step 1. Hence we have

hO(K-(pi-2)P) =hO(D- (d-2g+ pi)P) >hO(D- (d-2g + f-ti +l)P)=hO(K- (pi-l)P).

This means that pI-I,· . " pg-l is the K-gap sequence at P.

This fact implies that

Wn(P)=WK(P)+g if pi(P)=2.

-
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In particular, our inequality holds if fJ-l(P) =2. So we may assume that fJ-l(P)=1.

Step 3. Assume that g=3. Using Step 1, we have

3

Wn(P)= L;(fJ-i-i)~(3-2)+(6-3)=4if fJ-l =1.
i=l

On the other hand, k(3)+3=5. Therefore our theorem holds when g=3.

Next assume that g=4. Then we have wn(P);:;;.7 if fJ-l =1. On the other hand,

k(4)+4=8. Thus our theorem holds when g=4.

Step 4. From now on, we assume that g~5. By virtue of Martens' theorem,
the fJ-/s can be estimated as follows:

fJ-2~3 and equality occurs if and only if there is a point Q such that K-D+

(d-2g+3)P~Q;

,us~5 and e-=!uality occurs if and only if C is trigonal and IK- D+(d-2g+5)PI =g~;

fJ-4;:;;.7 and equality occurs if and only if C is plane quintic (g=6) and D-(d-5)P

is linearly equivalent to a line section;

fJ-i;:;;'2i-2 for i=5,···, g-2 if g~7;

fJ-g-t;:;;'2(g-1)-1 and equality occurs if and only if C is trigonal and ID-(d-3)PI =

gl.
3 ,

fJ-g;:;;'2g and equality occurs if and only if D~dP.

Step 5. In this step we prove the following lemma.

LEMMA 2.3. If fJ-l = 1, then at least one of the following holds fJ-s <5 or fJ-g-l

<2(g-1)-1 or fJ-g<2g.

PROOF. Suppose thc.t fJ-s=5, fJ-g-l =2(g-1)-1 and fJ-g=2g. Then, by Step 4 we

have that IK-D+(d-2g+5)PI =g~, ID-(d-3)PI =g~ and D~dP. Since g~5, g~ is

unique. Hence K-D+(d-2g+5)P~D-(d-3)P and D-(d-2g+2)P~K. This

implies fJ-J =2, which is a contradiction.

Step 6. Assume that 9 =6. If fJ-l = 1, then at least one of the inequalities

fJ-s<5, fJ-5<9, fJ-6<12 holds by Lemma 2.3.

Hence

Wn(P);:;;'(3-2) +(5-3) +(7 -4)+(9- 5)+(12-6)-1 =15 <16=k(6)+6.

Therefore the theorem holds when g=6.

Step 7. We will establish the theorem in this step. Let g=5 or g~7. Using

Step 4 and Lemma 2.3, we have
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g-2 1
wD(P)~(3-2) +(5-3) +i~(i-2)+(g - 2) +g-l =2(g2 -3g+ 10),

if fll = 1. On the other hand,

21 if g=7

k(g)+g= 133 if g=9

I~ (g2-3g+10) if g=5,8 or g~10

Note that if g=7, then

1
2(g2_3g+ 10)=19<k(7)+7

and that if 9 = 9, then

1
2(g2_3g+ 10)=32 <k(9)+9

Therefore the inequality wD(P)~k(g)+g holds for all g~3. This complete the

proof.

REMARK 2.4. For every fixed couple (g, d) with d>2g-2~4, there is a triple

(C, D, P) such that C is of genus g, D is of degree d and that wD(P)=k(g)+g.

Indeed, Kato [2J showed that there is a couple (C, P) such that C is of genus 9 and

wK(P)=k(g). Letting D=K+(d-2g+2)P, (C, D, P) has the required properties.

§ 3. Nonhyperelliptic case (2)

Let E be a divisor on C and let PEe. We denote by Yl(E; P) the set of pos

itive integers which are not E-gap at P. Note that Yl(K; P) is a semigroup. We

need the following lemmas, but their proofs are not difficult.

LEMMA 3.1. The semigroup Yl(K; P) acts on Yl(E;' P) by a natural way, i. e.,

if mEYl(K; P) and nEYl(E; P), then m+nEYl(E; P).

LEMMA 3.2. Let E be a divisor on C with h1(E»0. If a point PEC is not a

base point of IK-EI, then any E-gap is also a K-gap.

The aim of this section is to prove the following theorem.

THEOREM III. Let C be a nonhyperelliptic curve of genus 9 and D a divis01'

of degree d>2g-2 on C. Let PEC. If wD(P)=k(g)+g, then wK(P)=k(g).

PROOF. Note that WD(P)=WK(P)+g if fll(P)=2, which was shown in Step 2
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of the proof of Theorem II. Hence the assertion holds when /11(P)=2.

First we will show that wD(P)=k(g)+g implies /11(P)=2 except for the case

0=5. If g=3, 4, 6, 7 or 9, this was shown in the proof of Theorem II (see Step 3,

Step 6 and Step 7). So we assume that g=8 or g~10. By virtue of Step 7, in

the inequalities wD(P)~k(o)+g and /11(P)~l, equality may occur in the three

cases:

Case 1. /11=1,/12=3,/13=5,!1i=2i -2 (i=4,···,g-2),

/1q-l =2g -3, /1g=2g -1 ;

Case 2. /11=1, /12=3, /13=5, /1i=2i-2 (i=4,"', g-2),

/1g-1 =2g-4, /1g=2g ;

Case 3. /11 =1, /12=3, /13=4, /1i=2i-2 (i=4,"', g-2),

/1g-1 =2g-3, /1g=2g.

In every case, since /12=3, there is a point Q such that D-(d-2g+3)P~K-Q

(see Step 4). Note that Q*P. In fact, if Q=P, then D-(d-2g+2)P~K,which

implies /11=2. Since K-Q~D-(d-2g+3)P and Q*P, the (K-Q)-gap sequence

at P coincides with /12-2,"', /1g-2. Hence there is a positive integer a such that

the set of all K-gaps at P coincides with {/12-2,"', /1g-2}U{a} by Lemma 3.2.

Using the above list, we can write down the (K-Q)-gap sequence at P according

to each case:

Case 1. 1,3,4,6"", 2g-8, 2g-5, 2g-3;

Case 2. 1,3,4,6"",20-8, 2g-6, 2g-2;

Case 3. 1,2,4,6"", 2g-8, 2g-5, 2g-2.

Note that since C is nonhyperelliptic, a=2 when either Case 1 or Case 2 occurs.

Suppose that Case 1 occurs. Since 2g-7 is a non-K-gap at P and 2 is a non

(K-Q)-gap at P, 2g-5 (=2g-7+2) must be a non-(K-Q)-gap at Pby Lemma 3.1,

which is a contradiction. Next, suppose that Case 2 occurs. Since 5 is a non-K

gap at P and 2g-7 is a non-(K-Q)-gap at P, 2g-2 (=5+2g-7) must be a non

(K- Q)-gap at P, which is a contradiction. Finally, suppose that Case 3 occurs.

In this case, either 3 or 5 is a non-K-gap at P and 3 and 5 are non-(K-Q)-gaps

at P. Hence 8 (=3+5) must be a non-(K-Q)-gap at P, which is a contradiction.

Therefore equality wD(P)=k(g)+g can not be compatible with /11(P)=1 when g*5.

Now, we will show the theorem when g=5. By a'n argument similar to the

previous case, in the inequalities wD(P)~k(5)+5 and /11(P)~1, equality may occur

in the following three cases:

Case i. /11=1, /12=3, /13=5, /14=7, /15=9;

Case ii. /11=1, /12=3, /13=5, /14=6, /15=10;

Case iii. /11=1, /12=3, /13=4, /14=7, /15=10.
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In every case there is a point Q=/=P such that the '(K-Q)-gap sequence at P

is f.12 - 2, .. " f.15 - 2 and there is an integer Cl' such that the set of all K-gaps at P is

Therefore, we have

(i) If Case i occurs, then the K-gap sequence at P coincides with 1,2,3,5,7.

(ii) If Case ii occurs, then it coincides with 1,2, 3,4, 8.

(iii) If Case iii occurs, then it coincides with one of the following:

(iii. 1) 1, 2, 3, 5, 8 ;

(iii. 2) 1, 2, 4, 5, 8 ;

(iii. 3) 1, 2, 5, 6, 8 ;

(iii. 4) 1,2, 5, 7, 8 ;

(iii. 5) 1, 2, 5, 8, 9.

Suppose that Case ii occurs. Since 6 is a non-K-gap at P and 2 is a non-(K-Q)

gap at P, 8 (=6+2) must be a non-(K-Q)-gap at P, which is a contradiction.

Hence Case ii can not occur. Since the set of all non-K-gaps forms a semigroup,

the cases (iii. 1), (iii. 3), (iii. 4) and (iii. 5) cannot occur. If (iii. 2) occurs, then

wJ((P)=k(5), and then the theorem holds. We will show that Case i does not

occur. Since hO(K-Q-2P)=3, we have IQ+2PI =g~. On the other hand 14PI =g~.

Hence, we have 12Q+4PI =g~, which is a contradiction.

The proof of Theorem III shows also the following corollary.

COROLLARY 3.3. Let notation and assumption be as in Theorem III. Further

mm'e, assume that g=/=5. Then wn(P)=k(g)+g if and only if D~K+(d-2g+2)P

and wJ((P)=k(g).

§ 4. Examples

First we will show that the conclusion of corollary 3.4 does not hold if 9 = 5.

EXAMPLE 4.1. (see [lJ, Beispiel 2.2). Let C be the normalization of the plane

'curve C' defined by

11:
It is easy to check that the normalization C~ C' is one to one as set theoretic

and C is of genus 5. Let Po =11:- 1((0 : 0: 1)) and let Poo =11:-
1((0: 1: 0)). Then the

K-gap sequence at Po is

1,2,4,5,8,
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and the (K-P",)-gap sequence at Po is

1,2,5,8.

Letting

the D-gap sequence at Po is

1,2"", d-9, d-8, d-6, d-5, d-2, d+1.

Hence f-L1(Po)=l and wD(Po)=10 (=k(5)+5).

The next is a counterexample of Duma's conjecture.

197

EXAMPLE 4.2. Let C' be a plane curve defined by

y5 = x(x - AIY(X - A2)2(X - A3)2,

where Ai> A2' A3 are mutually distinct nonzero scalars.

Let C~ C' be the normalization. Then;;: is one to one and C is of genus 6. Letting

Pi =;;:-I«Ai: 0: 1)) (i=l, 2, 3)

Po =;;:-1(0: 0: 1))

Poo=rr-I(O : 1 : 0)),

we have

div x=5Po-5Poo

div y=Po+2P1+2P2+2P3-7Poo

div dx=4Po+4P1+4P2+4P3-6Poo •

Hence we have

div dx =3Po+2P1+2P2+2P3+Poo
y

div d: =2Po+8Poo
y

div -;-dx =7Po+3Poo
y

div (x -Al)(X-A2)(X-A3)jy2dx =Po+3P1+3P2+3P3

div (x -Al)(X-A2)(X-A3)jy3dx =Pl +P2+P3+7Poo

div X(X-Al)(X-A2)(X-A3)jy4dx=5Po+Pl +P2+P3 +2Poo•

Hence the K-gap sequence at Po is

1, 2, 3, 4, 6, 8,

and 13 integers 1,2,· . ·,9, 10, 11, 13, 15 are 2K-gaps at Po. Now,

div x 2jy(x - AI)(X - A2)(X - A3)(dx)2 = 17Po +P1 +P2+P3,

div ~(dx)2=19Po+P""
y
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-

hence the 2K-gap sequence at Po is

1,2,···,9,10,11,13,15,18,20.

Therefore we have
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