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A VARIANT OF A BASE-POINT-FREE PENCIL TRICK
AND LINEAR SYSTEMS ON A PLANE CURVE

MASAAKI HOMMA* AND AKIRA OHBUCHI**

ABSTRACT. We prove two variants of a base-point-free pencil trick,
which are similar in the spirit of the proof, and apply them to the
study of special divisors on a smooth plane curve involving a theorem
of Max Noether.

o. Introduction

Max Noether's theorem on the largest possible dimension of a special
linear system with a fixed degree on a smooth plane curve is as follows:

Let X be a smooth plane curve of degree d ;;::: 4 over an algebraically
closed field, and L an invertible sheaf on X of degree

sd - e with 1 ~ s ~ d - 3 and 0 ~ e < d.

Then we have

{

4s(s+1)
hO(L) ~

Hs + 1) (s + 2) - e if 0 ~ e ~ s + 1 .

(Note that two bounds coincide if e = s + 1.)
In his paper [2], Hartshorne gave a modern proof of the theorem for

any complete irreducible plane curve which may have singular points,
and explicitly described the (generalized) linear systems of maximum
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dimension with respect to a fixed degree. His proof of the dimension
estimation part is kind to readers, but that of the additional statements
does not seem so kind; honestly speaking, the first author couldn't reach
a complete understanding of the proof of the second part. Moreover, his
additional statements need a minor modification in the case e = s + 1,

that is, the variety of special divisors wst~(::i)\X)'whichparametrizes
linear systems of degree sd - (s + 1) and projective dimension at least
~s(s+ 1) - 1 has two components if 2 ~ s ~ d - 4.

In this paper, we will state the correct description of the linear systems
of maximal dimension and give a proof of it under assuming Noether's
bound, for a smooth plane curve. The idea of our proof is fairly sim
ple; we will use a descending induction by means of the invertible sheaf
Ox(l) which corresponds the line sections of X in jp'2. In order to work
the induction well, we need a variant of a base-point-free pencil trick
(Theorem 1.1), which is the topic in Section 1. In Section 2, we will do
our task explained above. 11). Section 3, we will study the W:J::)(X)'s,
where r(s, e) is the largest possible projective dimension of a linear sys
tem of degree sd-e. To show the smoothness of W:J::) (X) with e # s+1,
we will use another variant of a base-point-free pencil trick (Lemma 3.1).

1. A variant of a base-point-free pencil trick

The setting of this section is a little more general than that of Intro
duction. Let X be a smooth curve, which may not have a smooth plane
model. An invertible sheaf Ox(l) on X is said to be ample with normal
generation if it is ample and natural morphisms

Jtl(Ox(1))0m
---* Jtl(Ox(m)) (m = 1,2,··· )

are surjective ([3]). The property is equivalent to the following two
conditions:

(i) Ox(l) is very ample; and
(ii) the image of X embedded by the linear system IOx(l)1 is projec

tively normal.'

The invertible sheaf corresponding to the line sections on a smooth plane
curve is ample with normal generation.

THEOREM 1.1. Let Ox(l) be an ample invertible sheaf with normal
generation on a complete smooth curve X, and M an invertible sheaf
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on X generated by its global sections. If a two-dimensional subspace
V of HO(Ox(1)) generates Ox(1), that is, the linear system IVI is a
base-point-free pencil, then the following conditions are equivalent:

(a) the natural morphism HO(M) ® V -4 ~(M(1)) is surjective;
(b) h1(M(-1)) = O.

Proof. To start with, we should explain what a base-point-free pencil
trick is.

Let L and M be invertible sheaves on an irreducible smooth curve Y
(which may not be complete). Let s,t E HO(Y,L) with (8)0 n (t)o = 0.
Here (8)0 and (t)o mean divisors of the zeros of8 and t on Y respectively.
Let u,v E HO(Y,M) such that U8 = vt in HO(Y,M ® L). Then there
exists 8 E HO(Y,M ® L-1) so that u = 8t and v = 88.

We will refer to the argument as the base-point-free pencil trick.
First we show the implication (b) =:} (a). By using the base-point-free

pencil trick locally, we have an exact sequence of Ox-modules:

(1)
(#)

0-4 M( -1) -4 M 0 V -4 M(1) -4 0,

where the surjectivity of the morphism (#) comes from the base-point
freeness of IVI. From (1), we get an exact sequence

HO(M) ® V -4 HO(M(1)) -4 H 1(M( -1)).

Hence (b) implies (a), which is true without the assumption that the
invertible sheaf Ox(1) is ample with normal generation.

Next we show the implication (a) =:} (b). We start with an extra case;
we assume that M ~ Ox. Since HO(Ox)® V -4 ~(Ox(1)) is surjective,
we have hO(Ox(1)) ::; 2. Hence X is of genus 0 and Ox(1) is of degree 1
because Ox(1) is very ample. Hence we have h1(Ox(-1)) = O.

Therefore, from now on, we can assume that M '1- Ox·
The first claim is:

is surjective for each m »0. Since M, which is not isomorphic to
Ox, is generated by its global sections, we can choose a two-dimensional
subspace W~ HO(M) which generates M, that is IWI is a base-point
free pencil. Hence there is an exact sequence of Ox-modules

0-4 Ox(m) ® M-I -4 W 0 Ox(m) -4 M(m) -4 O.
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Ifone chooses an integer m to be large enough, then HI (Ox (m)®M- I ) =
O. Hence W®SO(Ox(m)) -+ HO(M(m)) is surjective; and so is HO(M)®
SO(Ox(m)) -+ HO(M(m)).

Now, we choose a basis {Xl,X2;X3,'" ,xn } for SO(Ox(l)) so that
{Xl,X2} is a basis for V. Since Ox(l) is ample with normal generation,
the vector space SO(Ox (£)) is generated by the monomials in Xl, • •• ,Xn

of degree £ over the base field for any nonnegative integer £. Since
SO(M) ® (Xl, X2) -+ SO(M(l)) is surjective and HO(M)xj ~ HO(M(l))
for each j with 1 ~ j ~ n, we have

(2)

for each j.
The second claim is:

SO(M(£ -1)) ® V -+ HO(M(£))

is surjective for £ = 1,2, .... Let I be a nonzero element of SO(M(£)).
Let us fix an integer m »0. Then we may assume that HO(M) ®
SO(Ox(f + m)) -+ SO(M(£+m)) is surjective by the first claim. Hence
the element I xf E SO(M (£ + m)) can be represented as

(3) 1xr;- =
(er,... ,en)with
el+··+en=l+m

a x er ••• x en
er,···,en In'

where aer,... ,en's are in HO(M). By (2), we can rewrite (3) as

(er,e2)with
er+"2=l+m

Hence we have

(4) ( e)m . . e-j _
Xl I - ~ f3m+j,e-jxi X 2 - , • X2,

)=0

where, E HO(M(£+m-1)). Since (XI)On(X2)0 = 0, the base-point-free
pencil trick is applicable to (4). By using that trick successively, we get
an element 8 E HO(M(£ -1)) so that

e
1- 2:f3m+j,e-jx{x;-j = 8X2,

j=O
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which means f is in the image of the natural map

HO(M(f! - 1)) 18> V ---7 HO(M(f!)).

Hence the second claim has been justified.
By the second claim, we have an exact sequence

o---7 ~(M(f! - 2)) ---7 HO(M(f! - 1)) 18> V ---7 HO(M(f!)) ---7 0

for each f! = 1, 2, .... Therefore we have

hO(M(f!)) - hO(M(f! - 1)) = hO(M(f - 1)) - hO(M(f! - 2))

for each f, which is equivalent to the condition

(5) h1(M(f - 2)) - h1(M(f - 1)) = hI (M(f! - 1)) - h1(M(f!))

for each f. Since h1(M(f!)) = 0 for f :;;p 0, we can conclude that
h1(M( -1)) = 0 by (5). D

2. Linear systems of maximal dimension on a plane curve

Throughout this section, we assume that X is a smooth plane curve
of degree d 2:: 4, and denote by Ox(l) the invertible sheaf associated to
the line sections of X c JP>2. We want to describe the invertible sheaves
on X which lie on Noether's boundary_

Let L be an invertible sheaf on X with hO(L) > 0, h1(L) > 0 and
L '1- Ox. Then we can write the degree of L as

deg L = sd - e with 1 ~ s ~ d - 3 and 0 ~ e < d.

THEOREM 2.1. Under the above notation, we have:
(1) When e > s + 1, hO(L) = ~s(s + 1) if and only if there is
a positive divisor Ql + ... + Qd-e of degree d - e on X so that
L ~ Ox(s - 1)(Ql + ... + Qd-e);

(2) When e = s + 1, hO(L) = ~s(s + 1) if and only if there is either
a positive divisor Ql + ... + Qd-(s+l) of degree d - (s + 1) on X
so that L ~ Ox(s - 1)(Ql + ... + Qd-(s+I))' or a positive divisor
PI +...+Ps+1 of degree s+ Ion X so that L ~ Ox(s)(-H - ... 
Ps+1);

(3) When 0 < e < s + 1, hO(L) = Hs + l)(s + 2) - e if and only if
there is a positive divisor PI + ... + Pe of degree e on X so that
L ~ Ox(s)(-H - ... - Pe);

(4) When e = 0, hO(L) = Hs + 1)(s + 2) ifand only ifL ~ Ox(s).
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Proof. First we show the "if' part in each case.

• If L = Ox(s), then hO(Ox(s» = hO(Op2(S» because degX > s; so
we have hO(Ox(s)) = e~2).

• If L = Ox(s - l)(Ql+.. +Qd-e) with e 2:: s+l, then hO(Ox(s - 1)
(Ql + ... + Qd-e» 2:: hO(Ox(s - 1» = e;I); equality must hold
because of Noether's bound.

• If L = Ox(s)(-PI - ... -Pe) with e ::; s+ 1, then hO(Ox(s)(-P1
... - Pe» 2:: hO(Ox(s» - e = e~2) - e; equality must hold because
of Noether's bound.

In order to prove the "only if' parts, we divide the proof into several
steps.

Let L be an invertible sheaf for which the equality of Noether's bound
holds

Step 1. First we look at the dual wx ® L-1 of L with respect to the
canonical sheaf wx. Since X is a plane curve of degree d, the canonical
sheaf is Ox(d - 3).

If L is in the case (1) of the statement of the theorem, Le., degL =
sd - e with e > s + 1 and hO(L) = ~s(s + 1), then

degOx(d - 3) ® L-1= (d - 2 - s)d - (d - e).

Note that 0 < d - e < (d - 2 - s) + 1 because d > e > s + 1 in our case.
Moreover, we have

hO(Ox(d - 3) ® L-1) = ~(d - 2 - s + l)(d - 2 - s + 2) - (d - e)
2

by the Riemann-Roch theorem; therefore Ox(d - 3) ® L-l is also on
Noether's boundary and is in the case (3).

By computing degOx(d - 3) ® L-1 and hO(Ox(d - 3) ® L-1) in the
remaining cases in.the same fashion as above, we know that Ox(d - 3) ®
L-1 lies on Noether's boundary in each case, more precisely,

• L is in the case (1) {::} Ox(d - 3) ® L-l is in the case (3)
• L is in the case (2) {::} Ox(d - 3) ® L~1 is in the case (2)
• L is in the case (3) {:} Ox(d - 3) ® L-1 is in the case (1)
• L is in the case (4) {::} Ox(d - 3) ® L-1 is in the case (4).

Step 2. We show that if L is in the cases (3) or (4), then ILl is free
from base points. Indeed, if ILl has a base point P, then hO(L(- P» =
hO(L) = ~(s + l)(s + 2) - e; but degL(-P) = degL -1 = sd - (e + 1).
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Here 0 < e + 1 ~ s + 1, because L is in the cases (3) or (4). These
contradict to Noether's bound.

Step 3. In this step, we prove that our assertion is true for the case
s = d - 3 and 0 ::; e ::; d - 2. Since hI(L) > 0, we have hO(Ox(d - 3) ®
L-I) > 0, which means that there is a positive divisor PI + ... + Pe of
degree e on X so that Ox(d - 3) = L(PI + ... + Pe).

Step 4. In this step, we prove the "only if' parts of the cases (3)
and (4) by a descending induction on s. In Step 3, we have just treated
the case s = d - 3, which is the first stage of the induction. Since the
invertible sheaf L is in the cases (3) or (4), its degree is

sd - e with 1 ::; s < d - 3 and 0 ::; e < s + 1

and
1

hO(L) = "2(s + l)(s + 2) - e.

Let us choose a two-dimensional subspace V of HO(Ox(l)) so that IVI
has no base points. By the base-point-free pencil trick, we have an exact
sequence

(6) 0 -+ HO(L( -1)) -+ HO(L) 0 V I:!!) HO(L(l)).

Since ILl is free from base points (by Step 2) and hI(L(-1)) 2 hI(L) > 0,
the map (#) is not surjective by Theorem 1.1. On the other hand,
since degL( -1) = (s - l)d - e with 0 ::; e ::; (s - 1) + 1, we have
hO(L(-1)) ::; ~s(s + 1) - e by Noether's bound. Note that the bound is
effective even if s = 1, because e = 0 or 1 if s = 1. Therefore we have

1 1
(7) hO(L(l)) > 2("2(s + l)(s + 2) - e) - (2s(s + 1) - e) + 1

1
2(s+2)(s+3)-e.

Since degL(l) = (s + l)d - e with 0::; e ::; s, equality in (7) must hold
by Noether's bound. Hence L(l) ~ Ox(s + 1)(-PI - ... - Pe) by the
induction hypothesis; and hence L ~ Ox(s)(-H - ... - Pe).

Step 5. In this step, we consider the case (1):

deg L = sd - e with s + 1 < e < d

and
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As saw in Step 1, Ox(d - 3) ® L-1 is in the case (3):

degOx(d - 3)®L-1 = (d-2-s)d-(d-e) with 0 < d-e < (d-2-s)+1

and

o -1 1
h (Ox(d - 3) ® L ) = 2(d - 2 - s + l)(d - 2 - s + 2) - (d - e).

Hence, by Step 4, we have

Ox(d-3) ®L-
1'" Ox(d - 2 -8) (-~ Qi)

for some points Qb'" ,Qd-e E X; and hence L ~ Ox(s -1)(I:~:~ Qj).

Step 6. Finally we consider the case (2), that is, deg L = sd - (s + 1)
and hO(L) = !s(s+ 1). If ILl has a base point, say Q, then L(-Q) is of
degree sd - (s + 2) and of dimension ~s(s + 1), which is in the case (1).
Hence, by Step 5, we have

(

d-(S+2) )
L(-Q) ~ Ox(s -1) ~ Qj

for some points Q1,'" ,Qd-(s+2) E X; and hence we have

(

d-(S+1) )
L ~ Ox(s - 1) ~ Qj ,

where Qd-(s+1) = Q.
Therefore only the remaining case is the case where deg L = sd - (s +

1), hO(L) = !s(s + 1) and ILl has no base points. When s = d - 3,
it is done in Step 3, and when s = 1, it can be reduced to the case
s = d - 3 by considering the dual series like Step 5. So we may assume
that 1 < s < d - 3. Since degL(-l) = (s -l)d - (s + 1), the largest
possible dimension of HO(L(-l)) is~(s -l)s. If hO(L(-l)) takes this

value, then L(-l) ~ Ox(s - 2)(I:~:~S+1) Qj) by Step 5. Hence we may
assume that

° 1h (L(-l)) ~ 2(s -l)s-l.

On the other hand, since ILl has no base points, we can consider the
'exact sequence (6) for our L and the map (#) is not surjective. Hence
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we have

hO(L(l)) > 2(~S(s + 1)) - (~(s - l)s -1) +1
1
2(s + 2)(s + 3) - (s + 1).

Since degL(l) = (s + l)d - (s + 1), we have

(

8+1 )
L(l)~Ox(s+l) -~~

by Step 4.

3. The varieties of special divisors

575

D

We keep the same notation and assumption as in the previous section.
Furthermore, we use the following notation:

{

~s(s+l)-l

r(s, e) :=
~(s + l)(s + 2) - e - 1

ifs+1~e<d

ifO~e~s+l.

The aim of this section is to study the scheme W;d~:)(X) of special
divisors of degree sd - e and dimension at least r(s, e); however, the
dimension of any invertible sheaf which corresponds to a closed point of
the scheme is exactly r(s, e) because of Noether's bound.

To study the W;d~:)(X)'swith e =I- s + 1, we need a lemma, which is
similar to Theorem 1.1 in the spirit of the proof.

LEMMA 3.1. Let s be an integer with 1 ~ s ~ d - 4, and D an
effective divisor on X of degree e ~ s, or of degree s + 1 with s ~ 2 such
that IOx(s)( -D)I is base-paint-free. Then the natural map

Jtl(Ox(s)(-D)) ® HO(Ox(l)) --. Jtl(Ox(s + 1)(-D))

is surjective.

Proof By Noether's bound, the linear system IOx(s)( -D)I is base
point-free even if D is in the former case, and Ox(s)(-D) 0/£ Ox because
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deg Ox(s)(-D) = sd - e > o. Hence we can apply the first claim in the
proof of Theorem 1.1 to Ox(s)(-D) and we know that

(8) Jtl(Ox(s)( -D)) 0 Jtl(Ox(m)) ~ Jtl(Ox(s + m) (-D))

is surjective for m » o.
Choose a basis {XbX2,X3} of HO(Ox(1)) so that (XI)O n (X2)O = 0,

and let V be its subspace generated by Xl and X2. Let us consider the
commutative diagram:

HO (Ox (s)( -D)) 0 HO(Ox(1)) a

t JIO(Ox(s+ 1)(-D))

HO(Ox(s)(-D») ® V a

First suppose that Ima = Ima, which means

Jtl(Ox(s)(-D))X3 ~ Jtl(Ox(s) (-D))XI + JI'l(Ox(s)( -D))X2.

Hence, taking account ofo(8), we can conclude that the linear map a
( and also a ) is surjective by the same argument to the second claim
of Theorem 1.1. (But, actually, it is impossible in our case because of
Theorem 1.1 itself.)

Therefore, we may assume that

(9) dim Ima ~ dim Ima + 1.

Thanks to the base-point-free pencil trick, we have an exact sequence

o ~ JI'l(Ox(s-1)(-D))

~ JI'l(Ox(s) (-D)) ® V ~ JI'l(Ox(s + 1)(-D)).

On the other hand, by Noether's bound (or Theorem 2.1), we have
1

hO(Ox(s)(-D)) - 2(s + 1)(s + 2) - e

1
hO(Ox(s + 1)(-D)) - 2(s + 2)(s + 3) - e

because 0 ::; e ::;. s. Moreover we can show that
1

hO(Ox(s - 1)(-D)) = 2s(s + 1) - e;

it is obvious if 0 ::; e ::; s because of Noether's bound. When e = s + 1,
a possible values of hO(Ox(s - 1)(-D)) is ~s(s + 1) - (s + 1) = ~(s 
1)s - 1 or ~(s - 1)s. If the latter case occur, then Ox(s -1)(-D) ~
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Ox(s - 2)(E) for some effective divisor E of degree d - (s + 1); hence
Ox(s)(-D) ~ Ox(s -l)(E). Hence IOx(s)(-D) I has a base point be
cause of Noether's bound, which contradicts the assumption on D.

Therefore we have

hO(Ox(s + 1)(-D)) = dim Imn + 1.

Hence a is surjective by (9). o

THEOREM 3.2. Let s be an integer with 1 ::; s ::; d - 3. Then the
scheme of special divisors W;J~:)(X) with e i- s + 1 is a. smooth variety
of dimension e if 0 ::; e < s + 1, or of dimension d - e if s + 1 < e < d,
respectively.

Proof Since L ~ Ox(d - 3) ® L-1 gives an isomorphism between

W;J~:)(X) and W(d~;~~)~~(;~e)(X)if e i- 0 (see, Step 1 of the proof of
Theorem 2.1), we may assume that 0 ::;e < s + 1.

Let se(x) be the e-fold symmetric product of the curve X. Then the
morphism

'P- : se(x) ~ W;J~:)(X)

defined by 'P-(D) = Ox(s)(-D) is surjective by Theorem 2.1. In partic
ular, W;J~:)(X) is irreducible. Moreover the morphism 'P- is injective.
Indeed, 'P-(D) = 'P-(D') implies the isomorphism Ox(D) ~ Ox(D'),
which means that D = D' because deg D = e < s + 1 ::; d - 2. Hence
dim W;J~:)(X) = e.

Since W;J~:)+l(X) = 0by Noether's bound, the Zariski tangent space

Tcp_(D)(W;J~:)(X))

to the scheme W;J~:)(X) at 'P-(D) is isomorphic to (ImJ.lo)-l, where

Jlo : HO(Ox(s)(-D)) ® HO(Ox(d - 3 - s)(D)) ~ ~(Ox(d - 3))

= ~(wx).

As for those matters, see [1, IV, (4.2)].
Let us consider the commutative diagram

~ HO(Ox(d - 3)(-D))
~£

HO(Ox(d - 3))

HO(Ox(s)( -D)) ® HO(Ox(d - 3 - s))
~

HO(Ox(s)(-D)) ® HO(Ox(d - 3 - s)(D)) ~
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where two vertical maps in the diagram come from the natural injective
morphism of sheaves Ox(-D) ~ Ox. Since

Jt>(Ox(s)( -D)) ® Jt>(Ox(1))@(d-3-s) --? HO(Ox(d - 3)(-D))

is surjective by Lemma 3.1, so is J.Ll. On the other hand, hO(Ox(d - 3)
(-D)) = 9 - e by Noether's bound, where 9 = Hd -l)(d - 2) is the
genus of the curve X. Therefore, since l, is injective, we have

dim Imj.Lo 2': 9 - e,

which means

dim T'P_(D)(W:J~:)(X))= dim(Imj.Lo)l-::; e.

But we already know that dim W:J~:)(X) = e. Hence the irreducible
scheme is smooth at 'P-(D). 0

For the case e = s + 1, we have

PROPOSITION 3.3. The underlying topological space W2-2(X) (which
. h 1) d h f W i (d-3)(d-2)-1(X) ( hi h' h
18 t e case s = an t at 0 (d-3)d-(d-2) W C 18 t e case
s = d - 3) are irreducible of dimension d - 2, but for 2 ::; s ::; d - 4,

that ofW~~~::~)l(X)has exactly two components; one is of dimension
8+ 1, the other is of dimension d - (8 + 1) and the intersection of these
two components is of dimension 2.

Proof. Let us consider two natural morphisms

'P+ : Sd-(s+l)(X) --? WiS(S+l)-l(X)
sd-(s+l)

D ~ OX(8)(D)

and

--? WiS(S+l)-l(X)
sd-(s+l)

D ~ Ox(s)(-D)

which are injective. By Theorem 2.1 (2), W~~~::~)\X) is covered with
the images of 'P+ and 'P-, which are irreducible of dimension d - (8 + 1)
and s + 1, respectively. If LE Im'P+ n Im'P-, then we can choose points

Pt, ... ,Ps+1; Qb'" ,Qd-(s+1) EX
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(
s+l ) (d-(S+l) )

L ~ Ox(s) - ~~ ~ Ox(s -1) ~ Qj .

579

Hence the divisor ~:::: ~ + ~~:~S+l) Qj must be a line section of Xc

]p2. Conversely, for each line section ~:::: ~ + ~~:t+1) Qj,

s+l (d-CS+1) )
Ox(s)(- ~~) ~ Ox(s - 1) ~ Qj

and

by Noether's bound, which means those two invertible sheaves corre
spond to a point of Im<p+ n Im<p_. Therefore, we have that

Im<p_ c Im<p+ if s = 1;

Im<p+ c Imrp_ if s = d - 3;

REMARK.

( ) I . h h WO (X) d W~Cd-3)(d-2)-1(X) h1 t 18 easy to s ow t at d-2 an (d-3)d-(d-2) are smoot
varieties, which are isomorphic to each other.

(2) By using Lemma 3.1, we can show that wst~(:1~)1(X)with 2 $
s $ d - 4 is smooth at each point of the outside of Imrp+ n Im<p_, like
Theorem 3.2.
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