¢4
)
[|

!
|

I
it

I

(
a
[
q

2024 Doctoral Thesis

Rule List Optimization Problem

and its Solutions

Supervisor Prof. Ken TANAKA

Field of Information Sciences, Graduate School of Science, Kanagawa

University

Student ID Number:202170195

Takashi FUCHINO

Contents

1 Introduction
1.1 Research Background
1.2 Research Classification 2
1.3 Relaxed Optimal Rule Ordering 8
1.3.1 Computational Complexity of RORO 9
1.3.2 Heuristic Algorithms for RORO 9
1.4 Rule List Reconstruction 12
2 Packet Classification Using Rule List 14
2.1 Rulelistand Packet 14
2.2 Optimal Rule Ordering 17
3 Optimal Rule Ordering 19
3.1 Complexity f RORO 21
3.1.1 Reduction from XC3to RAO 21
3.1.2 Reduction from RAOto RORO 23
3.2 Improved SGM 23
3.2.1 Using the Adjacency List 26
3.2.2 Comprehensive Construction of Sub-Graphs 26
3.3 Improved Hikage’'s Method 27
3.3.1 Comparison considering weights of directly dependent rules 30
3.4 A Reordering Method via Dependent Subgraph Enumeration 31
3.4.1 Rule Set Enumeration and Comparison 32
3.4.2 Time Complexity for the Proposed Method 33
3.5 A Reordering Method via Difference of Latency 34
3.5.1 Proposed Method 35
3.5.2 Executionexample 39
3.6 Experiments. 40
3.7 Auxiliary Methods 42
3.7.1 A Reordering Method via Deleting 0 Weights Rules 43
3.7.2 A Rule Reordering Method via Deleting Pre-Constraints that do not Affect

Policies 44

CONTENTS ii

3.73 Experiments 49

3.8 Optimal Allow Rule Ordering 53
3.8.1 Greedy Method for OAO 53

3.8.2 Time complexity of the proposed method 54

3.8.3 Experiments 54

3.9 Conclusion, 56

4 Rule List Reconstruction 74
4.1 Complexity of ORL i 74
4.1.1 Definition and Lemma for Reduction 75

4.1.2 Reduction from Min-DNF to RLR.. 77

4.2 Allow List Reconstruction 78
4.2.1 Allow list Reconstruction Method using Consensus 79

4.2.2 Experiments 80

4.3 Rule List Reconstruction 81
4.3.1 Find common parts 82

4.3.2 Take Setminusof r; 82

4.3.3 Algorithm for Removing Overlap 83

4.3.4 Proposed Method for ORL 83

4.3.5 Experiments 84

44 Conclusion 86

5 Conclusion 94
A Deciding Equivalence of Rule Lists 98
A.1 Transformation into a Satisfiability Problem 98
A.2 Determination using SAT Solver, 100
A.3 Time Complexity of Proposed Method 100
A4 Conclusion 100

B Policy equivalence determination for multi-valued rule lists 102
C Lower and Upper bounds for Rule List Latency 104
D Research Achievement 109
D.1 Journals and Transactions, 109
D.2 Conference proceedings 109

D.3 Technical Reports 110

Chapter 1

Introduction

1.1 Research Background

Today, high-quality and complex services are being offered. In line with this, faster communi-
cation has become a key requirement for the functionality and quality of network services.

Packet classification is used to determine the behavior of incoming packets in network de-
vices. Packet classification is a fundamental technology that enables packet communications
in complex networks and prevents malicious communications. Since packet classification is per-
formed by all devices connected to the network, faster packet classification enables faster network
communication. The development of virtualization technologies such as NF'V and SDN, and IoT
technologies such as smart home and automatic vehicle operation, requires high-speed packet
classification technology without using special hardware such as ternary content addressable
memory (TCAM) and field programmable gate arrays (FPGA).

Virtualization technologies such as Network Function Virtualization (NFV) are one of the
most important technologies in today’s IT infrastructure. NFV is a software-enabled technology
that enables a single computer to perform the functions of multiple network devices. By virtual-
izing computer appliances such as firewalls and Unified Threat Management, complex networks
can be built, managed, and modified without the need for special hardware. However, high-
speed software packet classification is essential for these functions to operate on general-purpose
servers.

IoT technologies such as smart houses and autonomous driving are being developed, and a
variety of products are connected to the Internet. These products are often difficult to implement
security appliances due to space and cost constraints, so software based packet classification is
required. For example, most of today’s vehicles are controlled and managed by electronic devices
such as ECUs. The Controller Area Network (CAN-bus) is known as a communication system
for these devices. Today, CAN-bus can be connected to the Internet and other devices not only
to manage the vehicle status, but also to provide various types of entertainment and to improve
convenience. In addition, the development of vehicles is moving toward automation, which will

increase communication with other vehicles and the grid. On the other hand, the physical

limitations of vehicles, such as weight and installation space, make it difficult to implement
security appliances, and software based packet classification is required.

In general, packet classification is done according to five fields: source, destination address,
source and destination port, and protocol. These fields are expressed in prefix patterns such
as 133.72.%* etc., or in a range such as 0-65535. In addition to these representations, some
studies have used arbitrary bitmask representations such as *.72.*.141 to represent more complex
fields [1]. In virtualized environments such as NFV, more fields are used to represent arbitrary

bitmask representation is needed to speed up packet classification.

1.2 Research Classification

Today, various packet classification methods have been developed to maintain network com-
munication quality. Hardware-based packet classification uses Application Specific Integrated
Circuit (ASIC), Field Programmable Gate Array (FPGA), Ternary Content Addressable Mem-
ory (TCAM), and GPUs for high-speed packet classification. However, due to cost reductions
and the use of virtualization technology, there is an increasing demand for software based high-
speed packet classification without using these security appliances.

There are several types of software based packet classification methods. We categorized
the packet classification studies as shown in Table 1.1 and Table 1.2. They classify each data
structure used for packet classification.

Packet classification using decision trees is achieved by searching for a decision tree corre-
sponding to a policy. As shown in Figure 1.1, a decision tree consists of two types of nodes:
leaf nodes and internal nodes. A leaf node contains a rule list with one or more rules. When
a packet arrives at a leaf node, the rules are matched one by one, starting with the first rule,
and the action of the first matched rule is applied. Internal nodes branch for each bit value of
interest and direct the packet to the leaf node corresponding to the characteristics of the packet.

The size of the tree and the number of rules contained in the leaf nodes vary depending on
which bit or bits are considered for each internal node. Increasing the tree size decreases the
number of rules stored in the leaf nodes, as shown on the left side of Figure 1.1. Following a single
node halves the search area for matching rules, generally reducing search time but increasing
the number of nodes. As a result, the amount of memory required. On the other hand, reducing
the tree size reduces the number of nodes and so the amount of memory required, but as shown
on the right side of Figure 1.1, the number of rules in a leaf node increase. As a result, the
classification time becomes dependent on the number of rules. Therefore, it is necessary to find
the optimal rule assignment between the height of the tree and the leaves. In addition, what bits
are used for branching will affect the replication of rules. As shown on the left side of Figure 1.2,
a leaf node must contain all the rules that satisfy the conditions of the path from the root, so the
same rule may be replicated in multiple leaves. Rule replication affects the amount of memory
required and should be avoided if at all possible.

Packet classification using decision trees is generally faster because the number of compar-

Table 1.1: Taxonomy of software based packet classification 1.
Rule List Lucent Bit Vector [2]

Aggregated Bit—Vector (ABV) [3]
Cross—Producting [4]
Recursive Flow Classification [5, 6]
HybridRFC [7]
the Rule order Optimizer based on Simulated Annealing [8]
Takeyama [9]
Simple Rule Sorting [10]
Sub-Graph Merging [11]
Hikin’s method [12]
Hikage’s method [13]
Mohan’s method [14]
Shao’s method [15]
Misherghi’s method [16]
Fumiiwa’s method [17]
Approximate Packet Classifiers [18]
Decision Tree Hierarchical Intelligent Cuttings (HiCuts) [19]
EffiCuts [20]
Modular Packet Classification [21]
Hypercuts [22]
Multidimensional Interval Tree (MITree) [23]
NeuroCuts [24]
hierarchical hash tree (H-HashTree) [25]
FROD [26]
CutSplit [27]
ByteCuts [28]
NuevoMatch [29]
TabTree [30]
KickTree [31]
Run-Based Tries Based [32]

isons between rules and packets is independent of the number of rules. However, most decision
tree construction methods search for rules starting from the first bit of the address, which in-
creases the size of the decision tree for arbitrary bitmask representations. In addition, early
works such as HiCuts [19] and Hypercuts [22] have the problem that the same rule is replicated
in several leaves, which increases the memory requirement. EffiCuts [20], CutSplit [27], and
others reduce the number of rule replications by constructing smaller trees with more closely

related rules.

Table 1.2: Taxonomy of software based packet classification 2.
Tri Extended Grid—of-Tries (EGT) [33]

Hierarchical Trie [4]

Set—Pruning Trie

Grid of Tries [4]

Multibit-tries packet classification engine [34]
Geometrical Area—Based Quadtree [35]

Fat Inverted Segment Tree [36]

Grid of Tries [4]
Tuple Space Tuple Space Search & Tuple Pruning [37]

CutTSS [38]

TupleMerge [39]

Learned Bloom Filter [40]

In addition, classification time may increase if the constructed tree is unbalanced, as shown
on the right side of Figure 1.2. Therefore, a method has been proposed that achieves faster
packet classification by constructing a decision tree that is similar to a balanced tree while
addressing the above problems. Modular Packet Classification [21] combines the structures of
an index jump table, decision tree, and rule list to perform classification. It constructs several
decision trees with small rule lists as leaf nodes and an index jump table that contains pointers
to their root nodes.

TabTree [30] is a method for constructing a more balanced decision tree by branching in bits
such that the rules are evenly assigned to the child nodes created. In addition, multiple decision
trees are constructed using the T'SS method to prevent rule duplication.

KickTree [31] constructs a decision tree by focusing on bits such that at least one rule has
* when constructing child nodes, and then constructs a branch for that bit. At this time, the
rule whose bits have * is excluded from the search of the decision tree being constructed, and
the next sub-tree that is created is used to determine whether or not the rule matches the rule.
This process is repeated until all rules are included in one of the decision trees.

In these multiple decision tree construction methods, there is a trade-off between the number
of sub-trees and the depth and balance of each tree.

NuevoMatch [29] and NeuroCuts [24] use reinforcement learning to construct decision trees,
but differ in how they introduce machine learning.

NeuroCuts uses reinforcement learning to construct a decision tree using heuristic decision
tree construction such as HiCuts and EffiCuts as the supervised data.

NuevoMatch is a method for rapidly narrowing the search space by mapping special RMI
models to independent rules. Machine learning is used to construct the RMI model to determine
which rules to use as keys.

Tri-based packet classification uses a special decision tree to classify packets. Decision trees

Middle

node Rule List Rule List
Leaf
node
Figure 1.1: Decision Tree.
ListA ListB List A copy ListC

Figure 1.2: Copied rules and Unbalanced tree.

are constructed for each field, and pointers are pointed from the leaf nodes of these decision
trees to the roots of the corresponding decision trees for other fields, allowing multiple fields to
be searched in a single search. In general, one rule is placed in one leaf node, which tends to
increase the size of the tree, so more bits of branching are required in one internal node [4].

The multibit-tries packet classification engine [34] uses reinforcement learning to determine
which bits to focus on at the internal nodes to construct smaller decision trees.

Mikawa, et al. proposed a method for constructing a decision tree using Run-based [41]. The
packet classification is achieved by constructing a tri-tree consisting of bit-lengths and applying
the action of the rule with the highest priority among the rules that satisfy the condition.

Furthermore, the size of the tree is reduced by pointing each leaf node with a pointer to the

corresponding tri-tree by Ishikawa et al. [32].

Geometrical packet classification considers the conditional expressions of rules as a d — dimen-
sional geometric space, and places rules as hyperrectangles in that dimension. This is achieved
by taking the header information of an arriving packet as the coordinates of each dimension
and applying the action of the rule with the highest priority placed at the coordinates. Since
the conditional expressions for source and destination addresses described in the rules are prefix
expressions, this method performs fast packet classification by constructing a hash map using
them as keys and a decision tree that searches from the first bit to the last. However, many
of these classification methods suffer from the problem that arbitrary bitmask representations
make space partitioning difficult. In addition, as the number of rules placed increases, the size
of the classifier constructed by the rules increases, making it impossible to classify correctly.
Therefore, when constructing a classifier with a larger number of rules, we sometimes allow a
rectangle to contain multiple rules and switch to classification using rule lists or decision trees
for detailed classification.

Today, the packet classification problem using decision trees requires improvement of three
issues. The first is to address the trade-off between memory and classification speed due to the
height of the tree, the number of trees, and the number of rules in the leaf nodes. If the height of
the constructed decision tree is tall, the number of rules in the leaf nodes is expected to decrease,
but the number of nodes increases in parallel with 2%, where h is the height of the decision tree,
and thus the memory requirement increases. To address this problem, a method to reduce the
height of each tree by constructing a decision tree for each similar rule has been considered.
However, this requires several trees to be traversed when classifying packets, which increases
the classification time. The second is to reduce the number of replicated rules and balance the
decision tree. If several leaves require the same rules, the number of rules in the decision tree will
increase, which will increase the memory requirement. In addition, the increase in the number
of rules in a leaf node leads to an increase in classification time. Therefore, a method is needed
that minimizes the number of rules that satisfy both conditions of branching at the internal
nodes when constructing the decision tree. On the other hand, extreme branching can lead to
unbalanced decision trees and increase the classification time. Therefore, a method to construct
a decision tree that is closer to a balanced tree is required. The third is to develop a decision
tree construction method for arbitrary bitmask representations. Most decision tree construction
methods assume that the input rule list is in prefix notation. In the case of arbitrary bitmask
representations, constructing a decision tree by starting from the first bit often results in the
duplication of rules. Therefore, there is a need to develop a decision tree construction method
for arbitrary bitmask representations.

Packet classification using rule lists is achieved by comparing arriving packets in order from
the first rule in the rule list and applying the action of the first matching rule. Packet classifica-
tion using rule lists requires few hardware resources and is easy to implement. Also, by placing
the necessary rules at the top of the list, partial policy changes can be easily made. Rule list is
the most basic structure for packet classification, and research has been underway to accelerate

packet classification using rule lists. In packet classification using a rule list, as the number
of rules increases, the search time increases, and in general, communication latency increases.
To minimize latency, the problem of finding an efficient rule list has been studied [2-9]. This
problem can be classified as either static or dynamic. The static problem is given a set of packets
arriving at a network device and a rule list and requires a rule list that classifies the given set of
packets faster. Since the packets arriving at the network device are fixed, the number of packets
that match each rule in the rule list can be estimated to some extent. The dynamic problem
is to extract the packets arriving at a network device and find a sequence or list of rules with
lower latency for that distribution.

Recursive Flow Classification [5,6], such as HybridRFC [7], divides a list of rules in prefix
patterns into fields and constructs a chunk in each field. A chunk is a range of bit strings
that can match the same rule. The partitioned chunks are then aggregated and the chunks are
repartitioned. By performing this operation on all the segmented fields, the rules that must be
matched in each chunk are obtained. This compresses the rule list description, thereby reducing
the rule list size and search time. However, as the policy becomes more complex due to arbitrary
bitmask notation or an increase in the number of rule lists, the memory requirement increases
and the system does not operate properly.

In Approximate Packet Classifiers and other methods, when several network devices perform
packet classification, the abstraction level of the conditional expressions of the rules is adjusted
according to the location of the network devices to reduce the number of matches across the
network. Although this method can speed up the processing of priority packets and distribute
the load on the network, when the number of devices performing packet classification decreases,
strict packet classification is required, and fast packet classification is no longer possible.

In general, packet classification using a rule list is faster when the number of rules in the
rule list is small and the rules with high matching frequency are placed at the top. Therefore,
research is being conducted to find a rule list that can perform packet classification faster.

In Tanaka et al.’s method [42], when a rule list is in bitmask notation, they considered them
as logical expressions and proposed a method to obtain a rule list with a small number of rules
by using the Kwein-McCluskey method.

In the methods of E.W. Fulp [10] and Mohan et al. [14], when there is no precedence rela-
tionship between two rules and the frequency of matching is high for a rule placed lower, the
rule with the higher matching frequency is placed higher by swapping these rules. However,
these methods cannot reduce the latency sufficiently, because the rule with the higher matching
frequency cannot be moved any higher if it is preceded by another rule.

Takeyama, et al.’s method [9] and Sub-Graph Merging [11] focus on the rules that precede
the rule with the highest matching frequency and place them at the top of the list preferentially.
This allows the rule with the highest matching frequency to be placed higher in the list. However,
the latency may not be sufficiently small because it is not always necessary to give priority to
the rule with the highest matching frequency.

Misherghi et al. formulated the rule order optimization problem as an integer programming

problem and proposed a method to find a sequence of rules with the minimum latency using
a solver [16]. However, the computational complexity of the integer programming solver and
the algorithm for formulating the rule order optimization problem into an integer programming
problem is of exponential order, and the operation does not terminate when the number of rules
increases.

Fumiiwa et al. proposed an optimal solution method for the optimal rule-ordering problem
based on the branch-and-bound method. This method finds the rule ordering with the minimum
latency from the rule ordering that preserves precedence constraints due to overlap relations.
However, there exists rule ordering that holds policy even if it does not hold precedence con-
straints due to overlap relations, and there are cases in which there is a rule ordering with smaller
latency.

Figure 1.3 shows an overview of the static rule list optimization problem. The problem
we address in this study is highlighted in gray. We divided the packet classification problem
into software based and hardware-based packet classification, and further divided the software
based packet classification into different approaches. For rule list-based packet classification,
we divided the problem into two parts: an optimization problem for a single rule list, and an
optimization problem in which the entire set of rule lists applied in the network is considered
as a single classifier for packet classification. The optimization problem for a single rule list
can be divided into a dynamic problem and a static problem, and can be further divided into
whether the rules are written in prefix pattern or arbitrary bitmask pattern. We then divide
the optimization problem into two categories: optimization problems limited to the order of
the rules, and the problems involving restructuring. In this paper, we address restructuring in
rule list optimization problems and RORO in rule reordering. We also address the rule list
equivalence decision problem, which is important for rule list optimization. The details of each

problem are described below.

1.3 Relaxed Optimal Rule Ordering

Optimal Rule Ordering (ORO) takes a rule list and a set of packets as input and finds an ordering
of rules that minimizes latency while holding precedence constraints based on overlap relations
in the rule list. The overlap relation refers to the relationship between rules that can match the
same packet. If the order of the overlapping rules is changed, it may result in an ordering that
does not satisfy the policy. Since maintaining the order of overlapping rules preserves the policy,
the problem of finding a sequence of rules that minimizes latency while holding this precedence
constraint is called ORO. Since this problem is known to be NP-hard, various heuristics have
been proposed to solve it [9-12,14]. However, even if the precedence constraint based on the
overlap relation is not satisfied, there may exist a sequence of rules that holds the policy, and
among them, there may be a sequence of rules with smaller latency. Therefore, the problem of
finding the ordering with the smallest latency and hold policy without prior constraints based on
overlap relations has been studied. Relaxed Optimal Rule Ordering (RORO) takes a rule list

and a set of packets as input and finds an ordering of rules that minimizes latency while holding
policy. It is known that many of the algorithms proposed for solving ORO are also executable
in RORO because ORO imposes stronger constraints on RORO. In this paper, we show the
computational complexity of RORO and propose a heuristic solution method for this problem.
Computer experiments are conducted to verify the effectiveness of the proposed method and to
compare it with previous ORO and heuristic solution methods for RORO.

1.3.1 Computational Complexity of RORO

ORO has been shown to be NP-complete by reducing from job scheduling problem, but RORO
cannot reduce the job scheduling problem because the number of packets matching the rule may
be changed when reordering. In this paper, we show the computational complexity of this
problem by reducing from EXACT COVER BY 3-SETS and present a heuristic solution for
this problem.

1.3.2 Heuristic Algorithms for RORO

Since ORO is known to be NP-hard, heuristic solutions to this problem have been proposed.
These heuristics can also be used for RORO to find an ordering of rules with less latency
than reordering rules as ORO, where two overlapping rules can be reordered if they have the
same actions. Swapping overlapping rules may result in a change in the number of packets
matching the rules. This causes the number of packets that match the rules to be changed. This
phenomenon is called weight fluctuation, and heuristics for ORO cannot take into account this
weight fluctuation, so there is a problem that rules that can match many packets in the lower
levels cannot be placed in the upper levels.

Sub-graph Merging (SGM) [11] traces precedence constraints based on overlap relations and
focuses on the rule with the highest average weight of the set of reachable rules. If the focused
rule overlaps with other rules, the rule with the highest average weight of the set of reachable
rules among the overlapping rules is focused on. This process is repeated until the rule does
not overlap with any other rule, and the rule is added to the aligned list and removed from the
rule list. This process is repeated until the rule list is empty. This method can find an ordering
with less latency because the weights of the rules and the rules required to place the rules in the
sorted list are taken into account in sorting the rules. However, the time computation becomes
O(n3) when the number of rules is n because the precedence constraints are traversed many
times. In addition, when calculating the evaluation value of each rule, SGM only considered the
rules necessary to place the rule under focus, and thus cannot sufficiently reduce the latency.

The method of Hikin et al. [12] swaps two adjacent rules if they have no overlap and the
rule with the higher weight is placed lower. This process is repeated until all rule pairs cannot
be swapped. This method is fast because the time complexity is O(n?), but the latency is not
sufficiently small because it cannot take into account the ordering in which a rule with a large
weight is placed higher than the rule with which it has an overlap.

Takeyama et al.’s method [9] focuses on rules with high weights and prioritizes the rules
necessary to place them in the sorted list. This method is fast, with a time-computation cost of
O(n?). However, since it does not consider how many rules are needed to place the rule in focus
in the list, it is unable to place the rule with less weight but with fewer dependent rules at the
top of the list.

The method of Hikage et al. is based on the divide-and-conquer method [13]. The rules
are divided into connected components of prior constraints, and a list is constructed for each
connected component from the bottom of the list. Then, for each rule, the average of the rule
weights from the end of the list to the rule is used as the evaluation value, and the rule with the
lowest evaluation value is added to the top of the sorted list up to the end of the list, and then
removed from the original list. This process is repeated until all the lists are empty. This allows
the lower-priority rules to be placed lower in the aligned list, thus reducing latency. There are
two versions of Hikage et al.’s method that differ in the way they choose which rules to place at
the top of the list when building each list from the connected components. The first method uses
the average weight of the reachable rules, and the rule with the lowest weight average that is
not dependent on any other rule is added to the top of the list. This method can determine the
order of the rules in the connected component more precisely and thus can obtain an ordering of
rules with less latency, but it requires O(n?3728) computation because it includes an operation
to find the set of reachable rules. The other is a method using single weights, which constructs
the list using the weights of the rules themselves instead of weight averaging. This version has
a computational complexity of O(n?) and can sort rules quickly, but may not reduce latency
sufficiently.

Shao et al.’s method [15], is an improvement on SGM that aims to find a sequence of rules
with less latency. Comparison of weighted means that include the same rules may fail to properly
select the rule that should be placed at the top. Therefore, this method addresses this problem
by using an average value that excludes rules included in both sets when comparing weight
averages. Also, by removing the transition edge in the prior constraints, redundant search is
eliminated. However, in some cases, the rules included in both sets are unnecessary in the
comparison of weighted means, while in other cases, they are not, and the latency may not be
sufficiently small.

In this study, we describe a method that speeds up SGM and improves on the methods of
SGM and Hikage et al. into a method with reduced latency. We also propose a method that
improves on the problems of SGM and Shao et al.’s method to obtain a sequence of rules with
lower latency.

In SGM, precedence constraints are managed using a two-dimensional array, but using an
adjacency list allows faster management of precedence constraints. When tracing the precedence
constraints, the next rule to focus on is selected from the rules that precede directly the current
rule, but this method may not be able to find an order of rules with sufficiently small latency.
In this paper, we propose a method to find a sequence of rules with smaller latency by using an

adjacency list to accelerate the SGM and then searching for the next rule to focus on among

10

the rules that are reachable by the rule.

In addition, SGM uses the average weight of the rules reachable from the rule when selecting
the rule to place at the top. This method can take into account the rules necessary to place the
rule, but it cannot take into account that several heavy rules can be placed at a higher level
by placing the precedence rule at a higher level. By placing a rule that has a small weight but
precedes several rules with larger weights, the rule can be placed higher, allowing the several
rules that preceded it to be placed higher, resulting in an order of rules with smaller latency.
Therefore, we propose a rule reordering method that takes into account not only the set of rules
reachable from the rule but also the rules that can be placed by placing the rule.

As described above, reordering rules using the average weight of the rule set may not be able
to sufficiently reduce latency. Therefore, we propose a method to find an ordering of rules that
is expected to reduce the latency, and then compare the difference between the latency in that
ordering and the original ordering to find an ordering of rules with smaller latency.

The method of Hikage et al. with O(n?) of computational complexity can reorder the
rules faster, but it only considers single weights when determining the order of each connected
component. Therefore, it cannot take into account the case where a single rule has a large weight
but is dependent on several rules with smaller weights, and thus the latency would be smaller
if the rules were placed lower. Therefore, we propose a method to find an order of rules with
smaller latency while keeping the computational complexity O(n?) by creating a list using the
average weights of the rule itself and the rules to which it is directly subordinated.

In packet classification using rule lists, it is easy to change a part of the policy by adding a
rule at the top. However, such a change may result in a rule with no matching packets. Since
such rules are still compared with packets, the number of comparing for the packets matching
the rules placed lower in the list increases. Therefore, we propose a method to search for such
rules and place them lower than the default rules to obtain an order of rules with lower latency.

Many heuristics for this problem reorder based on precedence constraints based on overlap
or dependency relations. However, there exists an ordering that holds policy even if those
precedence constraints do not hold, and among them, there may be an ordering of rules with
smaller latency. Therefore, we propose a method to find an order of rules with smaller latency
by searching for and eliminating precedence constraints that preserve policy even if they do not
hold.

An Allow list is a rule list in which all actions of rules other than the default rule are
”Allow”. The administrator only needs to specify packets that are allowed to communicate and
other packets are rejected by the default rule, making it highly resistant to unknown attacks.
For this reason, among packet classification using rule lists, the Allow list tends to be adopted
in the field of network security such as Firewalls. On the other hand, since unauthorized packets
always match the default rule, an increase in the number of denied packets causes a significant
increase in latency. Therefore, there is a need for an Allow list with lower latency. Although
Allow lists have no precedence constraints with each other except for the default rule, there is

an overlapping relationship, which causes weight fluctuation. Previous rule reordering methods

11

cannot sufficiently reduce latency because they cannot account for weight fluctuation. Therefore,
we propose a rule reordering method that takes into account the variable number of matching
packets by measuring and reordering the number of matching packets regardless of the order of
the packets. Computer experiments are conducted to verify the effectiveness of the proposed
methods.

1.4 Rule List Reconstruction

Rule list optimization is the problem of minimizing the latency of the rule list while holding
policy, given a rule list and a set of packets as input. Since the latency of a rule list with a
small number of rules is generally small, most heuristics for this problem reduce the latency by
merging rules that differ by only one bit in the input rule list or by reducing the number of rules
using the Quine-McCluskey method [18,42]. However, the rule list with the smallest number of
rules is not necessarily the rule list with the smallest latency. Therefore, it is necessary not only
to merge the rules in the input rule list but also to reconstruct the rule list by generating rules to
be placed based on the policy expressed in the rule list and the packet frequency distribution by
the input. In this paper, we show the computational complexity of the optimal rule list problem
and propose a heuristic solution for this problem. The proposed method constructs a packet
space, which is a set of actions and arrival frequencies that should be applied to each packet,
and constructs a rule list with lower latency. Since the exact construction of the packet space is
computationally exponential in terms of the number of bits, the proposed method constructs an

independent rule list from the input rule list and constructs a simplified packet space quickly.

12

Researches for Packet Classification

T e

Software Based Classification Hardware Based Classification
Decision Tree Tri Geometrical Taple Space
Rule List
[19-32] [4,33,34] [4,35,36] [37-40]
Rule List Optimization
Optimization with network
(18]
St Dynamic
tatic [5_7]
Arbitrary bitmask Prefix

Reordering
[10-17]

ORO

Figure 1.3: Research classification overview.

13

Chapter 2

Packet Classification Using Rule List

In this chapter, we describe packet classification using rule lists and define an optimization
problem that aims to speed up packet classification using rule lists. In Section 2.1, describes
packet classification using rule lists and provides definitions for rules and packets. In Section 2.2,
we define Optimal Rule Ordering and Relaxed Optimal Rule Ordering, which are problems in
finding a sequence of rules with minimum latency.

2.1 Rule list and Packet

Packet classification using a rule list is realized as illustrated in Figure 2.1. Every rule consists
of a rule number ¢ € N, a condition on {0, 1, x}' and an evaluation type on {a1, az,...a,} where
[is the length of a condition, and the symbol * indicates that the bit matches both 1 and 0. A
rule list consists of n rules. In this paper, we assume that there are two actions, a; € {4, D}. A
means permission of communication, and D means denial of communication. A packet is a bit
string with length [on {0,1}!. The rule is defined in 2.1.1. Examples of rules and a rule list are
listed in Table 2.1.

Definition 2.1.1. Rule Formalization

Table 2.1: Rule List R. Table 2.2: Reordering by o. Table 2.3: Policy.
Filter R Filter R 0000 — A 0001+ A
r{ 0010 rf 10 % 0010+ A 0011+ D
r§ 10%x rP 1% 0x 0100+ A 0101+ A
ry *0lx rd % %01 0110+~ D 0111+ D
ry 1x0x rd %% 00 1000+ A 1001+ A
rg w01 0010 1010+ A 1011+ A
rg #+00 P 401k 1100+ D 1101+ D
TP kdkk PPk 1110 D 1111+ D

14

Packet p € {0, 1}

Rule r{? “—— &
Rule r3? “—— ag
u
L]
n
Rule A S,
n
|]
n
Rule 7¢» “—— a,

Figure 2.1: Packet classification model.

Table 2.4: Rule List R with Table 2.5: Rule List R, with Table 2.6: distribution F.
weight. weight.

0000 — 22 0001+ 15

Filter R |E(R,q)|7 Filter R, |E(Ro,i)|z 001010 0011 — 30
rit 0010 10 rd 10 % 5 01004 0101 — 10
rd 10%x 5 P 1x0x 12 0110 »9 0111+ 3
rg *01 30 4 %% 01 25 10001 1001+ 1
rP 1x0x 12 rd %00 26 1010~ 1 1011+ 2
rd xx01 25 rft 0010 10 1100 =5 1101+ 7
rd %00 26 P x01x 30 1110 » 4 1111+ 6
rD * % ok 22 rP * K Kk 22
L(R,,F) =571 L(R,, F) = 570

it = biby... by,
b € {0,1, %}, (2.1)

a; € {Al,Az,. . .,Am}

In the following, the subscription of actions may be omitted for simplification of the notation.
Let P denote the set of packets. An incoming packet in a network device is compared with
each rule in order and the evaluation type of the first matched rule is provided to the packet.
We add the default rule r{ to the bottom of the list, since all arriving packets match at least
one rule. The default rule is the rule that all bits are . Assume that the ordering of n items is

a bijection function o : [n] = [n].
c=(2456137) (2.2)

15

For example, In the order 2.2, 0(3) = 6 means that r3 is sixth in the list and o=1(4) = 6
means that the fourth rule is r6. We denote the rule list that is sorted in the order of o by R,.
For example, the rule list in Table 2.2 is the rule list in Table 2.1 sorted by o. The rule list R
is a function to the set of evaluation types {a1,as,as,...,an,}, and this function is defined as
the policy of R. We use R(p) to denote an evaluation type for p as the classification result. For
example, in the rule list R in Table 2.1, R(0110) = D. The policy of the rule list R in Table 2.1
is shown in Table 2.3.

If a packet p exists for R(p) and o such that R(p) # R,(p), we state that the ordering o
violates the policy, or that a policy violation occurs. There are multiple orders that satisfy the
same policy. For example, the rule list in Table 2.1 and the rule list in Table 2.2 that reorders
the rule list by order2.2 both satisfy the same policy.

We denote the set of packets that can match the rule r; without rules with a higher position
than r; by M(r;).For example, given the rule list R in Table 2.1, the set of packets that are
matched by rule r5 is

M (rs) = {0001, 0101,1001,1101}.

Since packets are compared with each rule in order and the evaluation type of the first
matched rule, packets that match r; are included in M(r;), excluding packets that match rules
that have higher positions than r;. We denote this set of packets by F(R,%). For example, the
set of packet matched rg is

E(R,5) = {0001, 0101}.

Given a set of packets P and a packet arrival distribution F : P — N, we denote the number
ZpEP F(p) as |P|x.

Given a packet arrival distribution F', a rule list R, the number of packets that actions are
determined by the rule r{ is called the number of packets evaluated for 7¢ or the weight. We
denote the number as |E(R,)| and refer to it as the weight of rule r;. For example, the weight
of r5 in Table 2.1 and Table 2.6 is shown as follows.

|E(R, 5)|7 = |{0001,0101}|5 = 25.

Regarding a comparison of a packet with a rule as latency 1, on a rule list R, and a packet
arrival distribution F, the classification latency L(R,F) is defined as follows:

Definition 2.1.2. (classification latency)

n—1
L(R,F) =) JilE(R,)|+ (n—1)|E(R,n)|7 (2.3)
i=1
Since the rule list matches at least one rule for every packet that arrives, the last rule is not
compared, so the number of packets that match the last rule is n—1. The latency when the rule
list in Table 2.1 classifies the packet set in Table 2.6 is shown in Table 2.4.

16

In packet classification using rule lists, packets that match a rule placed lower in the list are
compared more frequently, and thus, there is a problem that latency increases when rules with
high matching frequency are placed lower in the list. Reducing the number of rules and placing
the rule with the higher matching frequency at the upper position generally reduces latency.
Therefore, we define the following problem to minimize latency while maintaining policy.

Definition 2.1.3. (Optimal Rule List)

Input : Rule list R, Packet Arrival Distribution F
Output : A rule list R’ that holds the policy and minimizes the latency L(R/,F)

In the optimal rule list problem, we can consider an optimization problem restricted to the
operation of reordering rules. In the following, we define two types of optimization problems:
optimal rule ordering problems based on precedence constraints and optimization problems that

do not depend on precedence constraints.

2.2 Optimal Rule Ordering

It is important to determine which pair of rules causes a policy violation when these rules are
reordered. Therefore, we define the overlap relations on the rules as follows.

Definition 2.2.1. (overlap on rules)
If a packet exists that matches both r; and r;, or M(r;) N M(r;) # 0, we state that r; and r;
are overlapped.

If these rules are interchanged, the rules that the packet is matched to may change, causing
a violation of the policy. For example, consider a rule list that contains rules r; and r; that can
match packet p. Before reordering, r; is placed above r; and packet p matches r;. When these
rules are replaced, the rule that packet p matches changes to r;. In packet classification using
a rule list, the action of the first matching rule is applied, so reordering causes packet p to be
subject to the action of 7, resulting in a policy violation. Since the policy can be maintained if

the precedence constraint based on the overlap relation holds, we define the following problem.

Definition 2.2.2. (Optimal Rule Ordering)

Input : Rule list R and packet arrival distribution F
Output : An order of rules o that hold the precedence constraint and minimizes L(R¢, F).

The corresponding decision problem to ORO is known to be NP-hard, and many heuristic
solutions have been proposed. However, there are orders of rules that hold policies even if they
do not hold precedence constraints due to overlap relations. For example, if the actions of the
overlapping rules r; and r; are the same, the policy is preserved even if a packet that matched
r; now matches r;. In order to find the sequence of rules with the lowest latency regardless of

the overlap relation, we define a relaxed optimization problem as follows.

17

Figure 2.2: Dependent graph for Table 2.4.

Definition 2.2.3. (Relaxed Optimal Rule Ordering(RORO))

Input : Rule list R,and packet arrival distribution F
Output : An order of rules o that hold the policy and minimizes L(R,F).

Hamed’s proof for ORO is not sufficient for RORO because it does not consider weight
fluctuation. Therefore, this study provides a rigorous proof for this problem.

Many heuristics for ORO and heuristics for RORO reorder rules while holding precedence
constraints by dependency relations in order to preserve policy.

Definition 2.2.4. (dependency on rules) If §* and 'r;j are overlapped and evaluation type e;
is different from e;, we say that r; and r; are dependent.

We define the dependent graph Gz = (V, A) on the R as follow:

V={12,...,n}
A={ik|i,k e V,i <k,D(ri,rL) (2.4)
-3j € V,i < j <kAD(ri,rj) ND(rj,r5)}

Note that D(r;,r;) means that r; and r; are dependent. The condition =35 € V,i < j <
k A D(r;,7;) A D(rj,75) in 2.4 is the condition for removing the edge from 7; to r, when there
is more than one path from r; to ry. We denote the dependent graph 2.2 of Table 2.4.
Interchanging the dependent rules 7; and r; will change the action given to packets that
match both rules, and may cause a policy violation. Note, however, that there are also orders

that hold policy even if they do not hold precedence constraints due to the dependent relation.

18

Chapter 3
Optimal Rule Ordering

This chapter describes the rule order optimization problem. In packet classification using a rule
list, the latency of classification increases as the number of packets that match the rules placed
lower in the list increases. Therefore, the order of rules with lower latency can be computed by
placing the rule with the higher matching frequency at the higher of the list and the rule with
the lower matching frequency at the lower of the list. ORO is the problem of finding an order
of rules with minimum latency that holds precedence constraints based on overlap relations in
order to hold policy. However, there exist rule sequences that hold policy even if these ordering
relations do not hold. For example, if rules that can match the same packet both have the same
action, the policy is held even if their order relations are interchanged. If the overlapping rules
r; and r; have the same action, even if the rule that matches packet p changes from r; to r;,
the action applied is the same and no policy violation occurs. Therefore, the problem of finding
a sequence of rules that minimizes latency while holding policy, the rule order optimization
problem (RORO), has been studied.

In this chapter, we first show that RORO is NP-hard in Section. 3.1. Then, we propose
several heuristics for this problem. In Section 3.2, we describe SGM, which is known as the
method that, on average, reduces latency the most in ORQO, and propose problems with SGM
and methods to improve them. In Section 3.3, we describe Hikage et al.’s method, which is
known as the method that reduces latency the most in @(n?) reordering methods, and explain
the problems this method has. Then, we propose a method to improve the problems. In
Section 3.4, we propose a method to find a reduced latency order of rules by considering not
only the rules reachable from the rule, but also the rules subordinate to the rule.

In Section 3.5,we explain the problems with reordering methods using weight average. Then,
we propose a method to find a order of rules with smaller latency by constructing a order that
can be expected to have smaller latency and comparing it with previous reordering methods.
The effectiveness of the method as demonstrated by experiments is discussed in Section 3.6.

In Section 3.7, we propose a method to auxiliary previous reordering methods to find an
order of rules that has less latency. In Section 3.7.1, we propose an method to find a order

of rules with lower latency by searching for rules with no matching packets and placing them

19

Table 3.1: Rule list R.

Filter R |E(R,%)|r

'rf = 1*x0 90
4 = x1x1 70
4 = 0x01 60
rit = %110 120
7‘? = 1x1x 30
rg‘ = 01 40
7';4 = *xx00 20
rg’ = skkkx 30
L(R,F) = 1630

Table 3.2: Packet distribution F: P — N.

0000 ~ 20 0001+ 60 0010+~ 10 0011+ 10
0100 — 40 0101 — 30 0110~ 120 0111+ 10
1000 — 10 1001+~ 10 1010+~ 30 1011+ 30
1100 — 10 1101 +— 10 1110—30 1111+~ 30

lower than the default rule. Many heuristic solutions to RORO reorder the rules according to
precedence constraints based on dependency relations. In Section. 3.7.2, we propose a method
to reduce the latency of previous reordering methods by searching for and removing precedence
constraints that do not affect the policy. To evaluate the effectiveness of these auxiliary methods,
we performed computer experiments, the results of which are presented in Section. 3.7.3

In actual environments, there is a trend to use Allow lists because of their resistance to
unknown attacks. An Allow list is a rule list in which all actions of rules other than the default
rule are Allow. Because of this, Allow lists do not have precedence constraints except for the
default rules, the previous reordering method can only order of rules in descending order by
weight, which does not sufficiently reduce latency. Therefore, in Section. 3.8.1 we propose
a method of calculating the number of matchable packets for each rule and reordering the
rules according to this value. Furthermore, we conduct computer experiments to confirm the
effectiveness of the proposed method. Finally, in Section. 3.9 we summarize the optimal rule

ordering problem and discuss future issues.

20

3.1 Complexity of RORO

In this section, we show that the decision version of Relaxed Optimal Allow Rule Ordering is
NP-hard by reducing from EXACT COVER BY 3-SETS (XC3). Relaxed Optimal Allow
Rule Ordering (RAO) is defined as follows:

Definition 3.1.1. (Decision version of Relaxed Allow rule Ordering (RAO))
Input: Allowlist R, packet distribution F, and positive integer K.
Question: Is there an order o, such that L(R,,F) < K and Vp € P, R(p) = Rs(p)?

Note that an allowlist is a rule list in which all rule actions except the default rule are allow,
and the default rule action is deny. For example, consider the problem where R is Table 3.1, F
is Table 3.2, and the positive integer K = 770. The latency of the rule list R that is reordered
by the order o = (1,2,4,3,6,5,7,8) is L(R,,F) = 760. Thus the answer is Yes. In contrast, if
K = 460, then all packets in the distribution F must be matched with the first rule, but since
no such rule exists the answer is No.

The decision problem, EXACT COVER BY 3-SETS (XC3) is defined as follows:

Definition 3.1.2. (EXACT COVER BY 3-SETS (XC3))

Input: Set S = {s1,82,...,5,} and family of subsets C = {C1,Cs,...,Cp} such that |S]| is
multiple of 3 and Vi € [m], |C;| = 3.

Question: Is there a subset D of C such that | J,cpc=C A Ve, cdeD, cnd =07

This decision problem is known to be NP-hard [43]. The following is a concrete example of
XC3.

S = {1,2,3,4,5,6,7,8,9}
C= {{5’7’ 9}’{4’5’9}a{3’6a7}a (3'1)
{1,4, 8}, {7,8,9}, {2,3,6}}

For this instance, the answer is Yes because we can take D = {{1,4,8},{2,3,6},{5,7,9}} in the
subset C. If C = {{5,7,9},{4,5,9}, {3,6,7},{3,4,8},{7,8,9},{1,2,3}}, the answer is No.

3.1.1 Reduction from XC3 to RAO

Theorem 3.1.1. RAO is NP-hard.

Proof. We show a polynomial-time reducing algorithm f from XC3 to RAO.

f takes inputs an instance S and C of XC3 and outputs the instance of an allowlist problem
R,F, and K.

Let the rule length of the allowlist [be |S| and the number of rules n be |C| + 1. Each bit of
the rule r;, except the default rule, is defined as follows:

Cer i .
b=g X MIEC (3.2
‘0> otherwise

21

The rule list R consists of 71,79, ...,m,—1 that are generated as described above, and the default
rule 7,. And let the packet distribution F be as follows:

) :{ 1 ifMe{l,...,1}, p="1 53)

0 otherwise

Note that 3! means that only one exists. We denote that p; is the ith bit in the packet p.
Furthermore, let the integer K = Y | 3i = w, where N = |S|/3.

It is clear that f is computable in a polynomial time. Thus, we show that (S,C) € XC3 <
f(S,C) € RAO where (S,C) is an instance of XC3.

We assume that the subset D = {Di,Ds,...,Dp} of the family C of subsets of S is an
exact covering of S. For the rule list R = (r1,72...,7|c|,7|c|+1), and the packet distribution F
generated by f, there exists an order o such that all packets with a frequency of 1 are evaluated
by the upper |S|/3 rules ro-1(1),7g-1(2), - - - ;To-1(|5|/3) Of the rule list. Since the weight of these
rules is 3, the latency of the rule list R, is as follows:

IS|/3
bR)= 3 5= SI0SI/3 1) _

Thus, this makes z € XC3 = f(S5,C) € RAO valid.

We also show f(S,C) ¢ XC3 = = ¢ RAO that is the contrapositive of (S,C) € XC3 =
f(S,C) € RAO.

Assume that for a family C of subsets of a set S, there is no exact covering of S. For
the rule list R = (rq,73. .. s TIC)s 7'|c|+1), and packet distribution JF generated by f, there is no
ordering o such that all packets with a frequency of 1 are evaluated by the upper |S|/3 rules
To-1(1), To—1(2)s - - - » To—1(|5|/3) Of the rule list. So, for any ordering o, there is at least one packet
that is evaluated by the rule that placed |S|/3 + 1 or later. For such an ordering, the following
relationship holds.

o 1810s1/3+1)

IC]+1

+ Y, iERes0@)F

i=|S|/3+1

This makes f(S,C) ¢ XC3 = z ¢ RAO valid, and therefore f(S,C) € RAO = z € XC3 valid.
From the above, RAQO is NP-hard because of the existence of a polynomial-time reducing
algorithm f from XC3 to RAO. O

22

Table 3.3: The allowlist: Result of reduction from Eq. (3.1).

r{* = 0000%0%0*
4 = 000%x0000
4 = 00%00%+00
4 = *00%000%0
T4 = 000000+
& = 0%x00%000

'I”7D = xkkskokokkokok

For example, applying the reduction algorithm f to the instance of the Eq. (3.1), the algo-
rithm outputs the allowlist in Table 3.3, the packet distribution such that 000000001, 000000010,
000000100, 000001000, 000010000, 000100000, 001000000, 010000000, and 100000000 are 1 and
the other packets are 0, and the integer K = 18.

3.1.2 Reduction from RAO to RORO

Then, we show that a decision version of RORO is NP-hard. The decision version of Relaxed
Optimal Rule Ordering (RORO) is defined as follows:

Definition 3.1.3. (Decision version of RORO)
Input: Rule list R, packet distribution F, and positive integer K.
Question: Is there an order o, such that L(R,,F) < K and Vp € P, R(p) = Ro(p) ?

Corollary 3.1.1. Decision version of RORO is NP-hard.

Proof. An instance R of the RAO can be regarded as an instance of RORO by considering it
as a rule list in which the actions of all rules except the default rule are “Allow”. And RAO
and RORO clearly make the same decision in the same instance. Therefore, since RAO is a
limited version of RORO, the decision version of RORO is NP-hard. O

3.2 Improved SGM

In this section, we propose improved methods of SGM. SGM is a method that reduces latency
by considering dependencies and placing rules with high weights at the top of the list.

To begin with, we provide an outline of SGM. For rules ry,7s,...,7,, SGM makes the
reachable rule set G(r;) for every rule, compares these average weights, and selects the heaviest
rule set G(r,). If the rule set G(r;) is a singleton set, SGM adds element r, to the sorted rule

list and repeats the above operations until the input rule list becomes empty. Otherwise, SGM

23

Table 3.4: Rule list R.

Table 3.5: The packet arrival distribution F': P — N.

adjacent to rs.

SGM is formalized as follows. For each rule r;, rule set G(r;) consisting of rules that can
reach 7; and its weight Z(r;) are defined. For instance, for the rule list in Figure 3.1,

Z(r7) =

G(T’7) = {Tla 2,73, T7}7

Z (the weight of r)
r€G(r7)

=14416+4412 = 46.

24

Filtr Ry |E(R,{)|z 00000++10 0000150 00010 17 00011+ 23
7'{1 —0%101 87 00100 — 20 00101 — 60 00110+—8 00111+~ 8
01000 — 200 01001+ 5 01010 +— 20 01011+ 35
r4} =0000x* 60
2 01100 — 200 01101 — 27 01110 +— 15 01111+~ 40
rg =0x+01 5 10000 8 100012 10010 — 12 10011 — 13
Tf =0101x 55 10100 — 6 10101 — 2 10110 — 12 10111+ 28
7‘61 — O Lok 400 11100 — 3 11101 —3 11110~ 7 11111+~ 2
7";4 =00x*x 60
ré“ =10%1% 65
rgD =skkkokk 50
L(R,F) = 4684
Figure 3.1: The dependent graph in Table 3.4.
selects the heaviest rule set from rule sets G(r3),...,G(r;) based on rules 74,...,7;, which are

Figure 3.2: Reachable rules from r¢.

The quotient of the sum of weight Z(r;) divided by its cardinality |G(r;)| is the average weight
of G(r;). For rule set G(r7) in Figure 3.1, the average weight is 46/4 = 11.5.

First, SGM focuses on rule r; whose Z(r;)/|G(r;)| is the maximum, to set a heavier rule in
an early position. Then, in order to decide the rule to select, SGM searches rules r;, 7, ..., r; that
are adjacent to r;, computes their average weights Z(r;)/|G(r;)|, Z(rrk) /|G(r)|, - . ., Z (1) /|G(T1)],
and selects the heaviest rule. Repeating this process, SGM takes rule 7}, which depends on no
rule (i.e., it’s out—degree deg™ (rp) is 0). 7 is inserted in the sorted list. SGM repeats the above
two processes, selecting rule 7, and inserting it in the sorted list until the input rule list becomes
empty.

We demonstrate the selection of a rule in SGM for the rule list in Figure 3.1. First, for rules
T1,T2,...,7T9 in the rule list, we compose the reachable set G(r1),G(r2),...,G(rg9) and their
average weights. Among the sub—graphs for the rule list in Figure 3.1, the sub—graph G(rg)
is the heaviest, with its average weight being 101/6. Since the out—degree of ¢ is not 0, we
focus on sub—graph G(r¢) as shown in Figure 3.2. Since 73, 74, and 75 are adjacent to 76 in
graph G(rg), we compute their average weights as Z(r3)/|G(rs)| = 34/3, Z(r4)/|G(r4)| = 12,
and Z(r5)/|G(rs)| = 13, respectively. Then, the heaviest rule, rs, is selected. As the out—degree
of r5 is 0, we add 75 to the sorted list and remove 75 from the input rule list. For the rule list

in Table 3.4, repeating the above process results in the rule list

v rP e v ol ol .

In Figure 1, we show the pseudocode of SGM in [11]. Parameters S, Q, X, C, PROB, and
DEP in Figure 1 represent the empty list, an input rule list, an array of length n (which contains
Z(r;) for each rule 7;), an array of length n (which consists of the size of G(r;)), an array of
length n (which stores the weight for each rule), and a two—dimensional array representing the
preceding relations for the rules.

After SGM inserts a rule in the sorted list, the algorithm should delete the rule from the
input rule list, as described above. This update process corresponds to lines 26 to 28 in Figure 1.
In this part of the process, the algorithm decrements only C[r;] of r;, which is adjacent to 7sefect-
It is thought that since 7seect is inserted in the sorted list, the algorithm removes the preceding

relations of rgeect, that is, the edges contain r;.

25

However, there is a possibility that rule r; exists, which contains 7sejee; in G(r;j) and is not
directly dependent on rule rsejeet. Thus, the algorithm often falls into an infinite loop.

Therefore, we fix the algorithm such that when removing rule r; from the graph, the algorithm
decrements not only C[r;] but also all C[ry], where 7; is adjacent to r;, and 7y is reachable from
;. We show the fixed algorithm in Figure 2.

3.2.1 Using the Adjacency List

Since the algorithm in [11] manages the preceding relation with the two—dimensional array
DEP(][], a considerable amount of time is consumed to reorder rules when the preceding relation
is complex. Identifying adjacent rules for r; with the two—dimensional array DEP(][] requires at
most n steps. For example, consider the loop from 15 to 22 in Figure 1. The algorithm must
access DEP[r1][rp] to DEP[ry,][] to decide whether rule r; is adjacent to r; or not.

When managing the preceding relation with the adjacency list, we do not search for rules

adjacent to rule r; and can thus reorder rules faster.

3.2.2 Comprehensive Construction of Sub—Graphs

In this section, We propose an improved SGM, that can reorder large—scale rule sets practically.

First, SGM selects rule 7, such that the average weight of sub—graph G(r) is maximum.
If G(rp) is not a singleton, SGM searches for rules r;,,7s,,...,7; that are adjacent to 74, and
compares the average weights of sub—graphs based on those rules, as shown in line 16 in Figure 1.
However, a rule r can exist such that it is not adjacent to 73, and the average weight of G ('r')
based on 7’ is the highest among sub-graphs G(ry,), G(r,), . .., G(r;,). Then, selecting rule r’
reduces the latency compared to SGM in most cases. When average weight G(r;), based on r;
(which is adjacent to 73) is low, and average weight G(r'), based on 7 (which is reachable from
rp) is large, SGM does not select r’ instead of r;. For instance, for the rule list in Figure 3.1,
SGM computes the average weights G(r3), G(r4) and G(rs), because only r3, 74, and 75 are
adjacent r¢. Then, since the average weight of G(rs) is maximum, it selects r5. However, since
the average weight of G(r2), Z(r2)/|G(r2)| = 16 is larger than that of G(rs), Z(rs)/|G(rs| = 13,
we should select ro instead of rs.

For the rule list in 3.1, the latencies of the rule list reordered by SGM and the above method
are 4468 and 4364, respectively.

As shown above, we modify the process in line 16 in the pseudocode 1 such that the algorithm
compares not only sub—graphs based on rules 74, 7,,...,7; that are adjacent to 73, but also
rules 7j;,7j,,...,7j that are reachable from 7. This algorithm is shown in Figure 3.

The main part of the algorithm 3 is the recursive function selectMazWeightRule() that takes
a graph as an input and returns the heaviest sub—graph G(r) of the input graph. select-
MazWeightRule() shown in the algorithm 4 computes the average weights of G(r;) for all rules
r; in the input graph, and returns the heaviest sub—graph G(rp). SG(r;) in line 6 in Figure 4
denotes the average weight of G(r;), Z(r;)/|G(r3)|.

26

°::°'°

Figure 3.3: The dependent graph in Table 3.6.

The algorithm shown in Algorithm 3 reorders the rules in Table 3.4 as

7'51""14’7'?’Tz?,T?’TéaTéa"'l?‘l,"'QD,
and the latency of this rule list is 4352 while that of SGM is 4406. The proposed algorithm thus

decreases latency compared to SGM.

3.3 Improved Hikage’s Method

In this section, we propose an improved method of Hikage’s method.

Hikage et al. proposed the following rule-reordering method [13]: First, a dependency graph
is regarded as an undirected graph and decomposed into connected components. Thereafter,
in each component, rules are determined in the order of the rule weights. Subsequently, the
smallest rule is moved to a lower position as far as possible. !

Furthermore, based on the above approach, they proposed another method that determines
an order in the component via each rule weight instead of each rule evaluation, which is the
average weight of the rules that are reachable from the rule including itself. The time complexity
of their method was O(n?). In the following, we refer to the latter algorithm of Hikage et al. as
Hikage’s method. We demonstrate the method in Algorithms 5 and 6.

Algorithm 5 divides the digraph constructed from the dependency relations over the rules
into connected components Ci, Cy, ..., Ci by regarding the digraph as an undirected graph in
line 1, where k is the number of components when a digraph is regarded as an undirected graph.
Next, it determines the order in each component C; by applying Algorithm 6 to each component
C;. Algorithm 6 inserts a rule with an indegree of 0 in the order of the rule weight into a list N
that denotes the order of a component. For each component C;, the list N; denotes the order
of the rules in C;. Thereafter, in 4 to 6, for all rules r, it computes W, which is the ratio of
the sum of weights of j rules 7y, ..., N.last divided by j, where j is the position of the rule r
from the tail in V;. The algorithm determines the order of the rules according to the following

process until all of the lists become empty: In line 8, the rule r is selected in the non-empty list

! Although the time complexity of the method in [13] was O(n?), they fixed it as O(n?*"?®), which is the time
complexity of computing the transitive closure of a digraph, where n is the number of nodes.

27

G

wi 10 27 30 27 26

Cy
31 19 27 28 30

W;

Figure 3.4: Divide rules into two sets of rules (components).

w; 10 27 30 27 26

Ny = {}

Figure 3.5: Select the lightest rule 719 among the rules r7 and r19 with indegrees of 0.

Cy
w; 10 27 30 27
Ny = {rio}

Figure 3.6: Select rule r7 with indegree of 0.

N, for which W is the smallest among the remaining rules. Thereafter, the rules from r to the

last rule in N are added into the sorted list R’ and they are removed from N.

Hikage’s algorithm 5 is explained in Table 3.6. First, the algorithm divides the graph of the

precedence relation illustrated in Figure 3.3, which is constructed from the rule list in Table 3.6,
into two components C; and Cs, as indicated in Figure 3.4. We explain Algorithm 6 using the
component C;. Two rules 77 and r1g in C; exist with indegrees of 0, as shown in Figure 3.5.
As wig is less than wy, the algorithm inserts 71 into N; and removes it from Cj. The graph in
Figure 3.6 is obtained, and because only r7 has an indegree of 0, the algorithm inserts r7 into

N; and removes it from C;. Similarly, by determining the order of 71, r2, and rg, we obtain the

following order:

N1 = [re,T2,71,T7,T10]-

28

® 0 0 @ 6

30 27 10 27 26
W; 24 22.5 21 26.5 26
Na
wi 31 19 28 27 30
W, 27 26 28.3 28.5 30

Figure 3.7: Compute W; for each rule in N7 and N.

1

® 0 ® 0 o

wi 30 27 10 27 26
W, 24 22.5 21 26.5 26

® © 0 6 ©

31 19 28 27 30
Wi 27 26 28.3 28.5 30

Figure 3.8: Insert rules from r; to r1g that is last of N7 into R’.

For Cy, we obtain Ny = [r3,74,78,75,T9).

Subsequently, Algorithm 5 computes W; for each rule r; belonging to the list NV;, as illustrated
in Figure 3.7, where W; is the ratio of the sum of the weights of rules from the tail of N; to r;,
divided by the number of rules. For example, as r; in N; is the third rule from the tail of N; and
r7 exists between r; and 719 that is the last rule of Ny, Wi = (w1 + w7 + w10 = (104 27+ 26)/3

The algorithm determines the order of the rules with W; computed, as explained above.
Because W7 = 21 is the smallest in N7 and N, 71 and the rules from 71 to the tail rule 77 are
inserted into the sorted list R/, as illustrated in Figure 3.8. Thereafter, the algorithm removes
r1, 77, and r19 from N; and updates the values of Wg and W; to (30 + 27)/2 = 28.5 and 27,
respectively. Subsequently, as Wy = (19 + 28 + 27 + 30)/4 = 26 is the smallest, the algorithm

29

Ny

© @

wi 30 27
W; 28.5 27
Ny —————
wi 31 19 28 27 30
Wi 27 26 28.3 28.5 30

Figure 3.9: Insert rules from 74 to rg that is last of Ny into R’.

inserts rules 74, 73, 75, and rg into R’, as indicated in Figure 3.9. By repeating this process until
g g

N; and N3 become empty, the following order is obtained:

/
R' = [rs,r6,72,74,78,7T5,T9,T1,77, T10)-

3.3.1 Comparison considering weights of directly dependent rules

As per Algorithm 5, we propose a novel rule-reordering algorithm based on Hikage’s method.

As Hikage’s method determines the order of the rules based on the single weights in each
component, it cannot order appropriately when a heavy rule depends on a light rule. By com-
puting the set of rules that are reachable from each rule, the order of the rules can be determined
accurately. However, there is currently no algorithm that computes these sets in O(n?). Thus,
we propose a rule-reordering algorithm that uses the weights of the rules on which the rule is
directly dependent instead of the average weights of the rules that are reachable from each rule.
We present our method in Algorithms 7 and 8. The difference between Hikage’s method and
our method is the determination of the order of the rules in each component, as demonstrated
in Algorithm 8. Therefore, we only explain this difference.

In lines 1 to 2 of Algorithm 8, for each rule r; that belongs to the list N, the algorithm
sums the weights of the rules on which r; directly depends and r; itself, and computes its mean.
For example, for the component C; in Figure 3.10, as r7 depends on 7, 72, and 7¢, wh =
(27 + 10+ 27+ 30) /4 = 23.5.

In lines 3 to 5, our method determines the order of the rules in a component, as computed
by Algorithm 6. For components C; and Cj in Figure 3.10, we obtain the following rule order
by applying Algorithm 8:

Ny = [re,72,710,71,77], N2 = [r3,75,74,78,79].

30

w; 10 27 30 27 26

w; 10 27 30 23.5 28
Cy

w; 31 19 27 28 30

w; 31 19 29 26 28.3

Figure 3.10: For each rule r;, compute w} by adding children weights.

Thereafter, by determining the order of rules as per Algorithm 5, we obtain the following order:
R = [T3’ T6,75,72,710,74,78,79,7T1, T7]-

The latency of the rule list reordered by Hikage’s method is 1317, whereas that of our method
is 1293.

3.4 A Reordering Method via Dependent Subgraph Enumera-

tion

In general, if a rule that matches many packets is placed at the top of the rule list, many packets
that match the rule will be evaluated with fewer comparisons, thus reducing latency. Therefore,
it is desirable to place the heavy rules at the top of the rule list, but some rules can not be
placed at the top due to dependencies. On the other hand, if several heavy rules depend on a
rule, even if the weight of the rule is small, then placing the rule at the top of the list will help
to place the heavier rules that depend on the rule at the higher positions in the list and help
to reduce the latency. Therefore, we propose a reordering method that takes into account not
only the rules that precede the rule but also the rules that depend on it when calculating the
evaluation value.

Dependent subgraph enumeration is a reordering method based on the divide-and-conquer
method, which enumerates rule sets that can be placed in an aligned list, partitions the rule list
into the rule set with the highest average weight in the set and other rule sets, and recursively

repeats partitions within each range. The rules that are dependent only on the candidate rules

31

wi

Figure 3.11: The dependent graph in Tabel 3.8.

are focused on in turn, and if the addition of the rule contributes to increasing the average
weight of the candidate rules, it is added to the new rule set. Where if there is a rule that is
dependent on a rule other than the candidate rule, it is not added to the rule set, because even
if the candidate rule is placed in the list, it is not possible to place the focused rule into the
sorted list. Based on this idea, dependent subgraphs that determine the range of rule selection
are enumerated in order. Because enumerating the entire set of rules would be computationally
exponentially expensive, the dependent subgraph enumeration method identifies and excludes
rule sets whose addition to the rule set would reduce the average weight, and enumerates only

those rule sets with large average weights.

3.4.1 Rule Set Enumeration and Comparison

The algorithm that divides the rule list and adds each rule to the sorted list is shown in Algo-
rithm 9. Algorithm 9 divides the rule list into two lists, the list placed higher in the sorted list,
Rupper, and the list placed lower in the sorted list, Rjower. This operation repeats the above
operations until the number of rules in the divided list reaches one, and finally, each rule is
placed in a sorted list. The algorithm that returns the set of rules that should be placed at the
top of the rule list is shown in Algorithm 10. In Algorithm10, G(r) is the set of rules reachable
from rule r, D(r) is the set of rules that are only dependent on 7, and T'(r) is the set of all
rules that have the maximum average weight when r is a candidate. The S(r) is a set of rules
constructed simultaneously in the process of finding T'(r) and summed with {r} for all S(u) such
that the average of weight about 7'(r) U S(u) is increasing for all u € D(r). Let X (r) denote the
sum of the weights of the rules in S(r), Z(r) denote the sum of the weights of the rules in T'(r),
and LD denote the lists in which u are stored in order of increasing weight average of S(u).

Algorithm10 constructs G(r) and D(r) for each rule r in line.1-4. Initialize S(r) as {r} and
T(r) as G(r). Based on this, S(r) and T'(r) are constructed in order from the lower rules.

32

The line.7 finds a list of D(r) for each 7, constructs a rule set S(u) for each rule u that
depends only on 7, and sorts LD in descending order by the average value. line.8-9 extracts
rule u from LD in order, and line.10 finds the union set of T'(r) and S(u). In line.11, the average
weight of the rule set that S(u) is added to T'(r) is compared with the average weight of the rule
set before the addition, and if the average weight after the addition is larger than the average
weight before the addition, the set is set as the new T'(r), and S(r) is also updated at the same
time. In this way, all rules that are dependent only on r and that contribute to increasing the
average weights are added to T'(r). When T'(r) has been constructed for all rules, search for the
candidate rule 7 that maximizes the T'(r) average weight in line.15-16. If 7 is reachable from
all the rules in the rule list, the search is repeated with the list excluding r from the rule list
with line.18. Finally, T'(r") is returned in the list structure.

Consider the case where the rule list in Table 3.8 is reordered using the proposed method.
First, Algorithm 10 constructs G(r), D(r),T(r),S(r) for each rule r in the rule list, starting
from the bottom. In line.7, the rule set of average weight is constructed with 77 as a candidate,
however, since D(r7) is an empty set, S(r7) and T'(r7) are not updated and remain at their initial
values. 76, 75,74 are also the same. Then, the algorithm constructs D(r3) with r3 as a candidate.
Since 7 is dependent on 73 and rg is not dependent on any other rule, add r¢ to D(r3). Now
compare the average weights of T'(r3) and T'(r3) U S(re). Since the average weight of T'(r3) is
10430 — 20 and the average weight of T'(r3) U S(rg) is 12433450 = 30, the rules included in S(rg)
are added to T'(r3) and S(rs). Then, the algorithm constructs D(rq) with r9 as a candidate.
Since 79 is dependent on r4 and 75, and each rule is not dependent on any rule except rq, 74 and
rs are added to D(ry). The algorithm then compares the average weights of S(r4) and S(r5)
added to each rule. Since the average weights of S(r4) and S(rs) are the same, the comparison
is performed starting from S(r4) with the smallest rule number. The average weight of T'(r2)
is 145 = 7.5 and that of T'(ry) U S(ry) is 143+™ = 29.66, so S(r4) is added to T(rz) and
S(r2). The same comparison is made with S(r5), and S(rs) is added to T'(rg) and S(rq). These
steps are repeated to construct the rule set in Table 3.12. Since 7'(r) has the highest average
weight among the T'(r) that can be placed in the Figure 3.11, T'(r1) is listed and returned to
Algorithm9. Algorithm9 takes the list received from Algorithm10 as Rypper and returns the rule
set excluding Rypper from the rule list as Rypper. Let Riower be the rule set excluding Rypper
from the rule list, and recursively apply Algorithm9 to each list.

Repeat this operation until the number of rules in the list returned by Algorithm10 is 1, and
then add each rule to the sorted list to obtain the order

o=[1,2,5,3,4,6,7].

3.4.2 Time Complexity for the Proposed Method

In this section, we show the time complexity of the proposed method. For each rule r, in the
rule u included in D(r), Z(r)/|T(r)| < Z'(r)/|T’(r)| is determined in line. 11. The number

of comparisons for line. 11 is at most n, so the time complexity is O(n). Where T'(r) =

33

Figure 3.12: The dependency graph where the mean of weights does not work.

T(r)U S(u), and Z'(r) is the sum of the weights of the rules included in T"(r) . After T'(r) has
been constructed, search for the candidate rule with the largest average weight in line. 15. The
number of comparisons for line. 15 is at most n, so the time complexity is O(n). This operation
is repeated until the number of rules in the list that Algorithm 9 receives from Algorithm 10
reaches 1. The number of calls of line. 3 in Algorithm 9 is n at most, so it is O(n). Therefore,

the time complexity of the dependent subgraph enumeration method is O(n3).

3.5 A Reordering Method via Difference of Latency

Many heuristics to the optimal rule ordering problem reorder the rules by following the dependent
graph and using the average weight of the reachable rules [11,13,44,45]. However, there are
rule lists that cannot be reordered using average weights to sufficiently reduce the latency. For
example, in the rule list with the dependent relations in Figure 3.12, the following five orderings
are possible, and the order of rules with smaller latency changes depending on the weights of
r1,72,73,T4. Where the default rule is omitted because it is placed at the bottom of the list and
does not affect latency difference.

(i) T1,72,73,T4
(i) 7i1,7r2,74,73
(iii) T1,73,T2,T4
(iv) ro,71,73,74

(V) T2,T1,T4,T3

If the weights of the sink rules 71 and 79 are larger than those of the other rules r3 and 74, the
rule with the larger weights is added first to the top of the sorted list to get an ordering of rules
with smaller latency. However, when R; and Ry have smaller weights than R3 and R4, simple
reordering by weight or average of weights may not result in an ordering of rules with small
latency.

In reordering rules, most heuristics that greatly reduce latency use the average of the weight
of rule r; and the weights of the rules that r; is dependent on as the evaluation value £(r;), and
find a ordering of rules with smaller latency by placing the rule with the larger weight higher
in the order of the rules [11,44]. For example, in the rule list with the dependent relations
in Figure 3.12, the evaluation value of 74 is E(r4) = Jﬂ]ﬂr—;]—ﬂr—‘*l because it is the average of

the weights of r4 and the rules to which r4 is dependent, and the evaluation value of r3 is

34

E(r4) > E(r3). The previous heuristic places r4 higher than rs if £(r4) > £(r3). The condition
for placing 74 higher than r3 is as follows.

E(ra) > E(r3)

1|+ |T2| + |74 1]+ |73
ol i 54
2 2 —
o A+ 2l

> |r3]

Now consider the difference in latency of each ordering of (i)~(v). The order of (ii) and (iii) is
a ordering that places 71 higher than 79, and the difference in latency between the respective
lists R;j) and Ry;) is as follows.

L(Riy, F) — L(Ry, F)
= |r1] 4 2|re| + 3|r4| + 4|rs| — (Jr1]| + 2|73| + 3|r2| + 4|r4]) (3.5)
= 2|rs| — (Ire| + |ral)

If |r3| > JT—”# in the equation (3.5), then the order of (iii) has smaller latency than (ii). Thus,
in the reordering method using average weights, one of the conditions for the weights that do

not reduce the latency of the list is as follows.

2|ra| + 2Jra| — || [ra| + |74
3 2
When the weight of rg is in this range, the reordering method using average weights will select

> |r3| > (3.6)

the order (ii) even though the order (iii) has a smaller latency, thus leading to an incorrect
selection. By comparing the latency, a better ordering can be found if such an ordering can be
eliminated.

In the next section, we generalize this idea so that it can be applied to the comparison of
sub lists in a rule list. We propose a method to reduce the latency by replacing the sub lists

based on a decision using the difference in latency.

3.5.1 Proposed Method

To generalize the idea of the previous section, consider the difference of latency when the L;
and Ly sub lists from the ith to the jth and from j+ 1 to k of the rule list are swapped. Where
the rules in Ly do not depend on any of the rules in L;. By considering such, the front-back
relationship between L; and Ls is not affected by the policy. The latency L(R,F) of the rule
list R in the ordering before replacing the partial list is as follows. where L(i) is the i-th rule in
the list L and |L| is the number of rules in the list L.

35

i—1 |L1|

L(R,F) =Y ulR(w)|+ Y (i — 1+ u)|L(u)]

u=1 u=1
|La|
+) (6= 1+ |La| +u)|Ly(w)| (3.7)
u=1
n—1
+ Y uRw)|+ (n— 1)|R(n)]
u=k+1

Equation (3.7) is an expression that divides the parts of the partial lists L; and Lg in formula
(2.3). Each term is the sum of the number of matches for the first rule through the i — 1th rule,
the rules in L, the rules in Lo, the rules placed lower than Lo, and the default rule. On the
other hand, the latency L(R', F) of the rule list R’ with L; and Ly swapped is as follows.

i—1 |La|
LR, F) =Y ulR(w)| + Y (i — 1+ u)|La(u)]
u=1 u=1
|L1|
+) (6= 1+ |Lg| +u)| L1 (u)] (3.8)
u=1
n—1
+ Y uRw)| + (n—1)|R(n)]
u=k+1

The difference between these latencies is as follows.

L(R,F) — L(R, F)
| L]

= (i—1+u)|Li(u)]
u=1

|L2|
+) (i — 1+ |Ly| + w)| Lo(u)|

Ll (3.9)
=Y (i—1+u)|Ly(u)

| L1

— > (i =14 |La| +)| L1 (u)]

u=1
|L2| | L]

=LY |La(u)| — |La| D |La (u)]
u=1 u=1

If the (3.9) is greater than 0, then R’ has a smaller latency than R. We propose a method to
search for a partial list that should be placed at the top using this decision.
Let D(L1,L2) be a formula to decide whether the latency would be smaller if Ly and Lo

were swapped in adjacent partial lists L1 and Lo in the rule list, and define it as follows.

36

Search

..... I

it | o @@@ @Q@

Figure 3.13: Search a dependent rule with 7 in the provisional list.

Definition 3.5.1.
|La| | L]

D(L1,Lo) = |La| Y |La(k)| — |La|) | La (k)|
k=1 k=1

Note that the (3.5) is an example of the definition 3.5.1. By letting L; be 79,74 and Lo be
r3, D(L1, Lg) = 2|r3| — (|r2| + |ra|), which is the same as (3.5). If D(L1, Lg) is greater than 0,
R (is1), which is a ordering with Ly placed higher, has a smaller latency.

In the proposed method, in advance, there is an ordering that is based on the average weight
of the rules that are expected to reduce the latency. From this ordering, we obtain a partial list
Ly of rules that are candidates for placement at upper positions and determine whether placing
them at upper positions reduces the latency by the difference D (L1, L) using the list L; of rules
that currently exist at the upper positions.

To make a decision using Definition 3.5.1, it is important that none of the rules in Ly are
subordinate to L;. We describe below how to obtain such a partial list Lo from =’.

The details of the algorithm are as follows. First, rules are ordered from the top of the rule
list R/ sorted by the existing method, and are added to the preliminary list R” in order. If the
rule 7, to be added is not a sink rule, it is added to Ly as a candidate to be placed upper, and
the partial list Lo is compared with the partial list of R’ to find an ordering with lower latency.
As shown in Figure3.13, the rules that r; depends on are searched in order from the lower rules
in the preliminary list. D(L1, Lg) is used to decide whether L; or Lg should be placed at the
upper position.

If D(L;, Lg) is less than 0, then placing Ly lower in the list, as shown in the upper part of
Figure 3.15, results in lower latency. If D(L1, Lo) is greater than 0, then Ly including 7y should
be placed next to 7; as shown in the bottom part of Figure 3.15. If D(L1, L) is greater than
0, r; is added to the top of the list Ly, and the proposed method adds the rules to which r;
depends on PrecedingSet. The PrecedingSet is the set of rules that must be placed before Ly
to place it on the upper position. This operation is repeated until D(L;, Lg) is less than 0 or
until the top of the list is reached to decide where Lo should be placed. When D(L4, Lg) = 0,
it means that the latency is the same for both orders of D(L1, Lg). In this case, there may be
an order with lower latency that places Lo higher, and thus the search is restarted with Lo as
the order that places Lo higher. This operation is repeated for all rules to reorder the rules.

The entire algorithm is shown in Algorithm 11. In Algorithm 11, first, it determines whether
the rule r in focus is a sink rule. If it is a sink rule, it is added to the preliminary list R’ by

line. 1. If it is not a sink rule, use Algorithm 12 to search for a rule that should be placed upper

37

Ly Lo

[@WDIO O~ O Ol

Ly Ly

IO O ~ OOl

D00 - 00

The list that places 7 at the end of the list
and the list that places 7, at the next to r;.

Figure 3.15:

Figure 3.16: Dependency graph of Table .

and reorder the rules. In line. 1, 7 is added to the list Ly and the position where it should be
added to R" is decided. Searching for rules that have a dependency relationship with r from
the subordinate rules of the tentative list by line. 7 to the line. 14, if focused rule r; depends
on 7k, then it searches an ordering with lower latency using the decision formula D(L1, Lg). If
D(Ly, Ly) > 0, then placing Lo next to r; will reduce the latency to less than that of the original
ordering, so r; is added to the top of Ly at line. 9 and the rules that 7; depends on are added to
PrecedingSet. Also, at the line. 11, the rules that should be placed lower are added than Ls to
lowerlist. By repeating this operation until D(Lj, L) < 0 or until reaching the first rule, the
position of Ly including 7y is decided and R is returned to Algorithm 11. This operation is

performed for all the rules.

38

CIoIoI0|0Io

EIoIoI0|OI0

The Order by weight sorting in the list
and Ls is upper in the list.

Figure 3.17:

3.5.2 Execution example

We consider reordering a rule list in Table 3.13 with the dependency in Figure 3.16 using the
proposed method. First, the rules are reordered using previous heuristics. In this section, we
use an improved version of Hikage’s method proposed in 3.3. The rule list of Table 3.13 with
the dependencies of Figure 3.16 is reordered using the improved Hikage’s method to produce
the order in Table 3.15.

Then, search for rules that depend on the upper rules, beginning with the first rule. Since
T9,T3,T1 are sink rules, they are added to the preliminary list. Since rg is not a sink rule, it is
searched in order from the lower rules. Since r¢ depends on all the rules in the preliminary list,
all the rules in the preliminary list are added to Lo, and 7 is placed at the end of the list. As
a result, L; becomes empty. Since D(L1, Ly) > 0, we assume the ordering with Ly at the top is
used as the preliminary list. Since r4 is also a sink rule, it is added to the preliminary list. 77 is
not a sink rule and does not depend on all the rules in the preliminary list, so 77 is added to Ls.
Then, r4 and 73 are added to PrecedingSet. Since ry is included in PrecedingSet but is the
lowest in the preliminary list, 74 is added to the top of Ly and the search is restarted. As 73 is
included in the PrecedingSet, and the lower position of the ordering in Figure 3.17 may reduce

the latency, a decision is made using the definition 3.5.1. In this case, D(L, Ly) is as follows.

D(L1, Lg) = 2(|ra| + |r7]) — 2(|r1| + |76])
= 2(74 + 95) — 2(20 4 131) > 0 (3.10)

This shows that placing Ly next to r3 reduces the latency. Therefore, 73 is added at the beginning
of Ly and the search is restarted. Since 7 is not included in PrecedingSet, the search reaches
the top of the preliminary list. Then, a decision is made whether Ly should be placed at the
top or not. In this case, D(Lj, L) is as follows.

D(La, Lg) = |r3| + |ra| + |r7| — 3|ro
=178+ T4+ 95— 360 < 0 (3.11)

39

Simple Rule Sorting [10] —+—
80 | SWBP (14| ---m-- ; : 1
Hikin [12] - :
Takeyama [9] -
70 + Hikage [13
HikageX (47| ---
SGM [11] -~
60 SGMX (44| -
SGE [45] -

O X 0 %

dbo

50

Decrease Ratio (%)

40

1 1 1 Il 1

30 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Rules

Figure 3.18: The latency of ACL.

As a result, because Ly should be placed lower than ro to minimize the latency, the position
where Lo should be placed is decided. Repeating the operation in the same way results in the
ordering shown in Table 3.16. As shown in Table3.16, the latency of the rule list is reduced by
reordering using the proposed method.

3.6 Experiments

We demonstrate the effectiveness of the proposed algorithm and reordering algorithms through
computer experiments.

The proposed methods were implemented in Java under Ubuntu 22.04.3 LTS on Intel Core
i7-8700 with 8 GB of main memory. We used ClassBench which is known as the benchmark
tool for the packet classification algorithm. It generates a rule list and a header list based on
data obtained from an actual environment. So, ClassBench can build an experimental environ-
ment closer to the real environment. We generated 270 rule sets of 1,000 to 9,000 rules using
ClassBench [46] with the seed file of the Access Control List (ACL). The evaluation type P or
D was added to each rule in the rule list, each with a probability of 1/2. There were 100,000
headers for each rule list. We implemented the methods of simple rule sorting [10], swapping
window-based paradigm [14], Takeyama et al. [9], Hikage et al. [13], and three proposed meth-
ods that are the improved SGM (SGMX), the improved Hikage’s method (HikageX) and the
method via dependent subgraph enumeration (SGE). The decrease ratio and reordering times
were measured. The averages of 30 trials are depicted in Figs. 3.18 and 3.21.

For clarity, each result is divided into O(n?) and O(n3) methods, which are shown in Fig-
ure 3.18, Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22 and Figure 3.23 respectively.

As shown in Figure 3.18, the O(n®) methods have higher latency reduction than the O(n?)

methods, and thus find an order of rules with lower latency. Also, as shown in Figure 3.19 and

40

Simple Rule Sorting [10] —+— ! i
s | SWBP [14] @]
Hikin [12] ¥
e Yo Hikage [13] - 1
= HikageX [47] ---©---
: . : .
g .
~
Q
3
o
8
A
1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Rules
Figure 3.19: The latency of ACL(O(n?) methods).
58 T T T T T T T
SGM [11] —e—
56
54
L
E 52
2 50
()
8
A 48
46
44

1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Rules

Figure 3.20: The latency of ACL(O(n%) methods).

Figure 3.20, the proposed method reduces the latency on average, and as the number of rules
increases, it reduces the latency more than the previous methods.

As shown in Figure 3.21, the method of O(n?) reorders the rules faster than that of O(n3)
in many cases.

As shown in Figure 3.21, SGMX reorders the rules faster than SGM in many cases. Also, as
shown in Figure 3.22, HikageX reorders rules faster than many O (n?) methods when the number

of rules increases.

41

Reordering Time (ns)

Reordering Time (ns)

le+13

SimpleRuleSorting [10
SWBP |14
let12 | Hikin [12] %
Takeyama [9
Hikage [13
le+11 HikageX [47
SGM [11] -~
SGMX [44] —-Beme
45| -y

le+10

1e+09

1e+08 | ol e -

1e+07 *
1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Rules

Figure 3.21: The reordering time for Table 3.18.

le+11

SimpleRuleSorting [10] —+— ' : '
SWBP [14] @
Hikin [12] ~%- A
Takeyama [g B -
le+10 E Hikage [13] --%-- — _.-

HikageX

47 Qe EE

le+09

1e+08

lepo7
1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Rules

Figure 3.22: The reordering time of ACL(O(n?) methods).

3.7 Auxiliary Methods

Most heuristic methods for optimal rule ordering according to precedence constraints are based
on overlap and dependency relations. However, there exist orders of rules that hold policies
without these precedence constraints, and such orders may have lower latency. When all match-
able packets match the rule placed higher in the list, the number of packets that match the rule
is zero, so placing the rule lower than the default rule does not violate the policy. Also, such
a rule does not have any matching packets, but the packets are compared, so the latency will
not be sufficiently reduced. Therefore, we propose an auxiliary method to find an order of rules

with lower latency by searching for rules with no matching packets and placing them lower than

42

le+11

=

£

” le+10

B

E

a0

g

E le+09 |

@ iy .
A SGM [11] —e—
< SGMX [44] &

SGE [45] -
1e+08 Il 1 1 L 1 L

1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Rules

Figure 3.23: The reordering time of ACL(O(n?) methods).

the default rule.

For overlapping rules r; and r;, the set of packets M (r;) N M (r;) that can match both rules
is called the common part of those rules. The set of packets to which the applicable action may
change when the dependent rules are interchanged is the common part of those rules. Therefore,
when all packets in the common part match the rule placed above, there is no policy violation
even if the precedence relation by the dependent relation in focus does not hold. Therefore, we
propose an auxiliary method to find a lower latency order of rules by removing the precedence
relations that do not affect the policy.

3.7.1 A Reordering Method via Deleting 0 Weights Rules

Reordering rules or adding rules due to policy changes may result in a rule that does not match
a packet. If all matchable packets match the rule placed above, there is no packet that matches
the rule.

In the case of Table 3.19, the matchable packet set for 74 is M (r4) = {1100,1101,1110,1111}.
r4 depends on 1,79, 73, and the set of matchable packets for these rules is M(r;) = {1001, 1011,
1101, 1111}, M (r2) = {1000,1110}, M (r3) = {0110,0111,1110,1111}, respectively. This shows
that E(R,4) = 0 since all packets in M(r4) are included in either M(r1), M(rg), or M(rs),
and the number of matching packets with r4 is zero. Such a rule does not match any packet
in any order that holds the policy, but packets that match a rule lower than this rule are also
compared with this rule, thus increasing the number of comparisons. Placing such a rule lower
than the default rule prevents comparison between the packet and the rule. We call this action
the deletion of a rule in rule reordering.

In addition, rules dependent on rule 7; that are removed according to the conditions de-

scribed above do not violate the policy even if they do not hold precedence constraints due to

43

their dependencies with r;. This makes it possible to place rules with higher weights that are
dependent on 7; at higher positions, and thus reduce the latency. In the case of Table 3.19,
removing r4 reduces the latency in the rule list to L(R, F) = 580. Also, 75 and r¢ depend on 74
and could not be placed higher than 74 if the rules are reordered according to the dependency
relation, but by deleting r4, the precedence constraint by the dependency relation is removed
and they can be placed higher. Thus, the latency is reduced to L(R,F) = 345 when the rules
are reordered into the order o = {6,5,3,1,2,7,4}.

In this section, we propose a method to decide whether the number of packets that match
the rule r; is zero or not. Since the problem of finding packets that match r; is {P-complete, we
propose a method to search for rules with no packets matching r; using the SAT solver. The
conditions of the rules from the top of the rule list to r; are expressed in Conjunctive Normal
Form (CNF), and the solver determines whether there exists a packet that satisfies the following
logical equation. If there is no packet with an assignment that is true in the propositional logic
formula for E(R,r;) = 0, we know that E(R,r;) = (). Where in the logical variables, false means

that the packet does not match the corresponding rule, and true means that it does.

STy Ao A3 A1 AT (3.12)

For each bit of the rule, a propositional variable with the corresponding bit number if it is 1, or
its negation if it is 0, is combined by logical OR to form a clause for each rule. For example, in
the Table 3.19, the condition of 71 is b; A bg and the condition of 7o is by A —bg A —bs. For the
formula (3.12), negation is added to the clauses corresponding to rules from the top of the rule
list to r;—1, and the logical product is combined with the clause of r; to form a logical formula
that determines whether the packet matches r; or not. The logical formula to determine whether

or not a packet matching r4 exists in the rule list in Table 3.19 is as follows.

“ry A=rg A—rg3 ATy
2 = (by Abg) A =(by A —bg A —bg) A =(bz2 Ab3) A (by A bz)
(mb1 V —bg) A (mb1 V bg V bg) A (—bg V —b3) A by A be (3.13)

IR

When the logical formula (3.13) is determined whether it is satisfiable using MiniSat, the result
is UNSAT. Thus, there is no assignment that satisfies the formula (3.13), and the number of
packets matching r4 is zero. This determination is performed for all rules, and the rule whose

weight is determined to be 0 is removed from the rule list rule list.

3.7.2 A Rule Reordering Method via Deleting Pre-Constraints that do not
Affect Policies

Most of the heuristic methods to solve rule-order optimization problems reorder the rules ac-

cording to the precedence constraints by the dependency relation. Therefore, we define a set of

44

.

'HCE'R,ﬂ,])

Dependent graph of {1, 34, rkD (left)

and actual restriction(right).

2
<.

H C E(Rg, k)

Figure 3.24:

Figure 3.25: Dependent graph of TzA) f) 7']? (left)
and actual restriction(right).

rules such as to encompass the common part M (r;)NM (r;) corresponding to the prior constraint
(4,).
Definition 3.7.1. (covering)

For a rule set I, C is said to cover I or I is said to be covered by C if the common part ﬂ M(r) of
rel
the set of packets matching the rules belonging to I is contained in the union M (C) = U M(r)

reC
of the packets matching the rules belonging to rule set C.

When a single set C = {r} covers I, r is called a covering rule of I. For a precedence
constraint (j,%), if there exists a set of rules C' covering {r;,r;}, we call C a covering rule of
(4,7). Also, r is called a covering (j,%) if (4,1) is covered by a covering rule r.

Consider three rules r;,7;, 7, with the same common part % = M (r;) N M(r;) = M(r;) N
M(ry) = M(r;) N M(rg). Where the order of these rules before reordering is r;,7;,7%. For
example, when the actions of these rules are P, P, D, the dependency relations are on the left

side of Figure 3.24. Since these rules are overlapped by a common part H, if either r; or r; is

45

placed first, the rule set consisting of only the lower two rules is covered by the rule placed first.
Thus, the precedence constraints between the remaining rules can be removed, and the case can
actually be divided into precedence constraints such as the one on the right side of Figure 3.24.
For example, if we know that ; is placed above 7y, we know that (k, j) does not affect the policy
because (k, j) is covered by 7;, and we can remove (k, j).

Then if the actions of these rules are D, P, D, the dependent relation is on the left side of
Figure 3.25. However, since these rules are overlapped in the same packet H, if i or r; is placed
on the top, as shown on the right side of Figure 3.25, the rule set consists of only the lower two
rules The rule set consisting of only the lower two rules is covered by the previously placed rule.
Thus, there exists a sequence of rules that preserves the policy even if it violates the precedence
constraint by the dependency relation.

Reordering the rule list in Table 3.20 using the improved version of SGM proposed in 3.2.2
results in the ordering in Table 3.21. Since 7 covers (7,4), (7,4) does not affect the policy
when 75 is placed on higher positions. Reordering the rules with this in view, an ordering of the
Table 3.22 can be obtained, which has a lower latency. As shown above, there are cases in which
an ordering with lower latency exists that violates the precedence constraint by the dependency
relation but still holds the policy. However, methods such as SGM follow the constraints based
on the dependency relation, so such a sequence cannot be obtained in principle. Thus, we
propose the reordering method that relaxes the precedence constraints by searching for and
eliminating the precedence constraints that are covered by the upper-level rules.

The proposed method is based on reordering methods such as SGM, which builds up a
sorted list starting from the rule on the top. The proposed method considers this sorted list
as the upper-level rule and finds the set of rules covered by it, thereby relaxing the precedence
constraint. In the following, we propose two methods for determining coverages, one using a

SAT solver and the other using covering rules.

Search for removable precedence constraints

The determination of whether the precedence constraint (j,%) is covered can be converted into
a determination of whether there exist packets that do not match the rule in the upper level
in the packets that are in the common part M(r;) N M(r;). This problem corresponds to the
determination problem of the satisfiability of a logical formula consisting of the rules placed at
the upper level and r;,7;. The proposed method determines whether all precedence constraints
are covered, and if so, it removes the precedence constraints. This process is repeated each time
the sorted list is updated, thereby relaxing the precedence constraints in the reordering process.

When the improved SGM reorders the rules, the algorithm for relaxing the prior constraints
using the SAT solver is shown in Algorithm 15. Algorithm 15 first constructs the precedence
constraints by dependency relations as an adjacency list A, the same as the improved version
of SGM proposed in 3.2.2. The rules to be placed in the sorted list are selected in line 2, added
to the sorted list in line 3, and removed from the rule list in line 4. Then, the updated sorted

list is used in line 5 to remove precedence constraints that do not affect the policy. This process

46

is repeated until the rule list R is empty.

The algorithm for removing precedence constraints covered by rules placed at the upper level
for precedence constraints in the adjacency list A is shown in Algorithm 13. In Algorithm 13, at
line 2-5, all precedence constraints in A are determined whether they are covered by the SAT
solver, and if they are covered, the corresponding dependent relation is removed from .A. Line 3
determines whether (74,1) is covered by the rule placed at the top of (j,4) in line 3. The logical
equation used to determine this is constructed as follows.

Construction of decision formula

At first, the rules that can be matched to the common part M(r;) N M(r;) of the precedence
constraint (7,7) in the sorted list are searched and placed in the list L. At first, the rules that
can be matched to the common part M (r;) N M(r;) of the precedence constraint (j,7) in the
sorted list are searched and placed in the list L. Whether (7,1) is covered or not corresponds to
the existence of packets belonging to the common part M(r;) N M (r;) that do not match the
rules placed in the list L, thus the following logical formula is generated. Where L(3) is the i-th
rule in the list L.

F((G9), L) ==L(1) A=L(2) A~L(3) - A~L(h) Ari ATj (3.14)

If there is no packet corresponding to the assignment that would be true in the propositional
logic formula (3.14), then the precedence constraint (7,) is covered by the set of rules located in
L. Where in the logical variables, false means that the packet does not match the corresponding
rule, and true means that it does.

Then, by transforming the conditions of the rules in the same way as in the 3.7.1, the logical
variables are mapped to the bit values of the packet.

For example, in the case of Table 3.20, the condition for 71 is —b; A b A —b3, and for rg is
—b1 A bg. By (3.14), negate the clauses corresponding to the rules placed in the list L and take
the logical conjunction. Finally, by taking the logical union between the rule r; and the rule
r; from the precedence constraint (j,7) under consideration, the logical expression determines
whether (j,4) affects the policy or not.

In Table 3.20, r4 and rg have precedence constraints based on the dependency relation, but
if 71 and 73 are placed in the aligned list R, the logical formula to determine if the precedence
constraint (6,4) affects the policy is as follows.

f((6,4), 'R,/) =1 A T3 AT4 AT
=—|(—'b1 Abg A ﬂbg)
N —l(“lbl Aby A b3)

N (b2 N b4) A (—|b1 N b4)

(3.15)

For every precedence constraint in the rule list, this determination is performed each time the

sorted list is updated to determine whether or not each precedence constraint is covered.

47

This method can be used to determine if a precedence constraint (j,) is not covered by a

single rule, even in complex cases where it is covered by multiple rules.

Time Complexity for determining coverages using SAT solver

In this section, we show the time complexity of the precedence constraint elimination method
using SAT solver.

The first step in this method is to construct a common part for each precedence constraint
(4,7). The common part is a string of length [consisting of three characters {0,1,+}. The
computational complexity of this process is O(l) for the rule pairs r; and r;. This process
is performed for all precedence constraints. The number of precedence constraints based on
dependencies is at most %n2 for all rules in the rule list, since the maximum number of precedence
constraints is reached when the rule is dependent on all rules placed higher than itself. As a
result, the complexity of finding the common part of all dependent rule pairs in the rule list R
is O(In?).

Then, for each precedence constraint (j,%), a list L is constructed from the rules placed at
the upper level. If the number of rules in the input rule list is n, the number of rules placed at
the top is at most n, so the computational complexity of constructing L is O(In). Since this is
done for all (j,4) precedence constraints, the computational complexity is O(in®). This process
is performed each time a rule is placed in the sorted list, so the computational complexity of
this method is O(In? + In*z) = O(In’z) if the SAT solver determines the dependency of a rule
by O(z). Since the computational complexity of the SAT solver is exponential with respect to
the literals of the input logic formulas, it is important to be able to find a solution for a realistic

size problem.

Search for rules covering precedence constrains

The time complexity of the method that eliminates precedence constraint using the SAT solver is
exponential. Therefore, a method that operates in polynomial time while maintaining accuracy
as much as possible is required. In this section, we propose a method to search for and remove
precedence constraints covered by a single rule.

The proposed method first searches for a covering rule for each precedence constraint (7, 1)
from the rules that overlap with ;. When the searched rules are placed in the ordered list by
the reordering method, the precedence constraints due to their dependencies are removed. This
process is repeated each time the ordered list is updated.

The algorithm for removing precedence constraints using covered rules while selecting rules
from the rule list and adding them to the aligned list is shown in Algorithm 16. Algorithm 16
first constructs precedence constraints by dependency relations in the form of an adjacency list
A, the same as the method proposed in 3.7.2. line 2 constructs a hash map C whose keys are
the rule numbers and whose values are the list of precedence constraints covered by the rule. In

line 4-6, same as the method proposed in 3.7.2, the proposed method selects rules to be added

48

to the aligned list, places the selected rules in the sorted list and removes them from the rule
list. At this time, the precedence constraints are relaxed by removing from the adjacent list A
the precedence constraints based on the dependency relations belonging to the list that can be
obtained from the rule numbers of the selected rules in the map C. This process is repeated
until the rule list is empty.

In the case of Table 3.20, the precedence constraint (7,4) is covered by r9. This shows that
(7,4) does not affect the policy below 7o.

Time Complexity for the Covered Rule Search Method

In this section, we show the time complexity of the covered rule search method. The method first
constructs the common part for each precedence constraint (j,%). The computational complexity
is O(In?) as in 3.7.2. Then, for each rule in the rule list, the algorithm determines whether
the precedence constraint (4,4) is covered or not. If the rule in focus covers (j,), a map is
constructed with the rule number of the covering rule as the key and the list of precedence
constraints covered by the rule as the value, and (j,4) is stored in the list whose key is the
rule number in focus. The computational complexity of comparing the common part with the
rules and determining whether the rule is covered is O(l), and the computational complexity
of determining which rule covers a single precedence constraint is O(In) because the common
part is compared with all rules. Since this process is performed for all precedence constraints,
the computational complexity of map construction is O(in®). When placing a rule in the sorted
list, the precedence constraints whose key value is the rule number of the rule to be placed
are deleted. The complexity of repeating this process until the rule list is empty is O(n). The
complexity of this method is O(In? + In® + n) = O(In3).

3.7.3 Experiments

To demonstrate the effectiveness of the proposed methods, computer experiments were con-
ducted using the Java language.

The PC used for the experiments on the rule reordering method by deleting rules with zero
weight was an Intel Core i5-3470 CPU with 3.20GHz x 4 and CentOS release 7.6.1810 as the
0S. We generated 100 rule sets of 1,000 to 10,000 rules and 100,000 headers for each rule list
using ClassBench [46]. We applied the method to these rule lists to remove the rules that have
no matching packets and measured the latency whether decreases or not. We also used SGM
to reorder the generated rule list and the rule list without 0-weighted rules and measured the
latency whether decreased or not. The average latency for each number of rules is shown in
Figure 3.26. Since it is difficult to see the difference between our method and the proposed
method in Figure 3.26, the results are also shown in the Tables 3.23 and 3.24, and the difference
in latency is shown in Figure 3.27 and 3.28.

As shown in Table 3.23, by removing the rules with weight 0, the latency is reduced com-

pared to the given rule list. Figure3.28 shows that the proposed method relaxes the precedence

49

4.5e+09

Given —i— D
4e+09 Use SAT —-©--
SGM [11] -k
Q 3.5e+09 SGM after using SAT —B&—
S 3e409 |
) A
5 2.5et+09 | A
2 p
= 2409 | A
bp R
E 15e+09 | » A
B 1e+09 | /E//m/ :
5e+08 ¢ W™
oL

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Rules

Figure 3.26: The latency of Packet classification.

1.4e+07 — T T T T T T T 1.1e+07
Given —+— o7
126407 | Tk
2 e 9e+06 -
3 1e+07 | <3 8e-+06 |
& &
8 8e+06 | g 7e+06 |
3 3 6e+06 |-
Fi 6e+06 | Ed 5e+06 |
% 4e+06 | ‘g 4e+06
o) o 3e+06 -
2e+06 |
et 2-+06 |
0 1 1 1 1 1 1 1 1 le+06 1 1 1. 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Number of Rules Number of Rules

Figure 3.27: The difference of latency. Figure 3.28: The difference of latency using
SGM.

constraint due to the dependency relation, and the SGM reduces the latency more. When the
number of rules is fewer, removing rules with weight 0 from the rule list before reordering of-
ten reduces the comparison frequency of packets matching the lower rules with higher weights.
Therefore, the reduction in latency shown in Figure 3.27 is larger than that shown in Figure 3.28
after each rule list is reordered using SGM. However, when the number of rules exceeds 7000, the
reduction in latency due to the ability to place rules with heavier weights at the upper positions
by relaxing the dependency relation is larger than the reduction in the number of comparisons
due to the deletion of rules with zero weights. =~ The PC used for the experiments of the rule
reordering method based on the elimination of precedence constraints via dependent relations
has 8GB of main memory, an Intel Core i7-8700 CPU, and CentOS release 7.8.2003 as the OS.
For the computer experiments, we generated a rule list with 100 ~ 1000 rules and a header
list with 100,000 corresponding headers using ClassBench. These rule lists were reordered using
SGM and the two proposed methods were used to remove precedence constraints by dependent
relations that do not affect the policy. For each result, we measured the latency and the reorder-
ing time. We used the SAT solver MiniSat [48] for the satisfiability determination. For each

50

Average of reduction (%)

Reordering Time (ns)

52

'SGM[10] —x— A

50 | SAT base 8- - 2 AN\,
heuristics & B
H ccasscac S

48
46
44
42
40
38
36
34 . . : . :

100 200 300 400 500 600 700 800 900 1000

Number of Rules

Figure 3.29: The average rate of decrease in ACL.

le+14 T r ' . : ‘ :
SGM[10] —>—

le+13 ¢ SAT Base —8-- . : I
heuristics A~ e a

le+12 ¢ e =8 \ /]

/E—‘ ‘\\,/
le+11 ; .]
i 74
le+10

le+09
1e+08)

le+07

1e+06 1 1 i i 1 1

100 200 300 400 500 600 700 800 900 1000

Number of Rules

Figure 3.30: The reordering time of ACL.

as the number of rules increases.

o1

number of rules, 10 rule lists and their corresponding header lists were tested once, for a total of
100 trials. The average of the reduction rate after reordering with respect to the latency of the
generated rule lists and the average reordering time for each methods are shown in Figure 3.29,
Table 3.25 and Figure 3.30. Figure3.29 shows the number of rules on the horizontal axis and
the rate of reduction of latency on the vertical axis, and Figure3.30 shows the number of rules
on the horizontal axis and the reordering time on the vertical axis. As shown in Figure 3.29 and
Table 3.25, the proposed method reduces the latency compared to reordering using SGM alone

In addition, for more than 300 rules, the method using the SAT solver reduces the latency

more than the covered-rule search method. Since the method using the SAT solver can deter-

57

SGM[10] —+—
56 | heuristics - X

55
54
53
92
51

Expected value of reduction (%)

50

49 1 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Rules

Figure 3.31: The average rate of decrease in ACL that have 1000 to 5000 rules.

mine complex precedence constraints that are covered by several rules, it can eliminate more
precedence constraints, which may contribute to the reduction in latency. On the other hand,
the covered rule search method cannot determine precedence constraints that are covered by
several rules, so it is considered to be less accurate than the method using the SAT solver, and
therefore, it did not reduce the latency sufficiently.

We performed computational experiments to demonstrate the effectiveness of the proposed
method for rule lists with more than 1000 rules. The average reduction rate of latency when
the rule list with 1000 rules is reordered using the SGM and covered rule search methods is
shown in Figure 3.31. The horizontal axis is the number of rules and the vertical axis is the
latency reduction rate. As shown in Figure 3.31, the covered rule search method reduces the
latency more than the SGM for all rule numbers. Although the difference in the reduction rate
between the proposed method and SGM is about 0.05% to 1%, this difference is meaningful
because it indicates that there actually exists the order of rules with lower latency in the search
area extended by the proposed method and such an order is required. As shown in Figure 3.30,
the reordering time increases as the number of rules increases for the method using the SAT
solver, but only up to 20 times for the covered rule search method. The reordering of rules in
the real environment can be done by other computers based on the rule list and the number of
evaluated packets, rather than directly on the rule list implemented in the network device so that
the latency improvement rate and the reordering time can be considered separately. Therefore,
the proposed method is an effective algorithm because the elimination of precedence constraints
that do not affect the policy reduces the latency.

52

3.8 Optimal Allow Rule Ordering

An allowlist is a rule list in which all rule actions except the default rule are allow, and the
default rule action is deny. So, in OAQ, there are no precedence constraints with rules other
than the default rule. In general, placing rules that match a large number of packets at the
higher of the list tends to decrease the latency. However, the reordering method using the
weight calculated before reordering can not account for the rule that will have a bigger weight

by weight fluctuation. Thus, these methods can not reduce efficiently the latency.

3.8.1 Greedy Method for OAO

We propose a method that places the rule that is more matched with given packets in the upper
place. For each rule, the method counts the number of packets that can be matchable with that
and adds the rule with the largest value at the sorted list. Then, the method removes packets
that match the added rule from the set of packets and removes the rule from the rule list. This
process is repeated until the given rule list is empty.

We explain the proposed method using the rule list R in Table 3.26 and the packet distribu-
tion F in Table 3.27. For each rule, the algorithm computes the number of matchable packets

regardless of the order. In this case, the numbers of the matchable packets are as follows.

|M(r1)|7 = 1{1000,1010, 1100, 1110}| = 90
|M(rs)| 7 = |{0101,0111,1101,1111}|# = 70
|M (r3)| 7 = |{0001,0101}|7 = 90

|M (r4)|7 = |{0110,1110}| = 150

|M(rs)| 7 =]{1010,1011, 1110, 1111}| = 110
|M(76)| = |{0100,0101, 0110,0111}| 7 = 200
|M (r7)| 7 = |{0000, 0100, 1000, 1100}| = = 90

Since r¢ has the highest number of matchable packets, it is added to the top of the sorted
list. Then the algorithm removes packets {0100,0101,0110,0111} that match 7 from the set of
packets and removes rg from the rule list R. To determine the rule to be added to the sorted

list, for each remaining rule, the algorithm computes the number of packets that match the rule

53

'f / weight sorting —+—
1x107 b ; .) | 1x107 T roposed —%— 1
weight sorting —+— prop

proposed —>—

€ 3
~ ~
& &
=] =]
& 8
3 ix1P (\"\x/x\ 3 1x10° 1
=] =]
S 8
g g
2 100000 | 2 100000 | ;]
8 o
O O
10000 1 1 L L 1 1 L 10000 1 1 1 1 . i 1
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Rules Number of Rules
Figure 3.32: The latency of ACL. Figure 3.33: The latency of IPC.

in the set of packets F'.

|7 = |{1110}|% = 30
|7 = |{1010,1011,1110, 1111}z = 110
|

At this time, 75 has the highest number of matchable packets. So, 75 is added sorted list and
removed from the rule list and the packets {1010,1011,1110,1111} are removed from the set of
packets F’. This process is repeated until the rule list is empty. Table 3.28 is the rule list that
is reordered by the proposed method from the rule list in Table 3.26 and the packet distribution
F in Table 3.27. As shown in Table 3.28, the proposed method reduces the latency.

3.8.2 Time complexity of the proposed method

We explain the time complexity of the proposed method. First, the algorithm searches the rule
that has the highest number of matchable packets regardless of the order. The time complexity
of this process is O(ng) where n is the number of rules and g is the number of packets in F.
Since that process is repeated n times, the time complexity of the proposed method is O(n2q)

and so, the method is the polynomial time algorithm.

3.8.3 Experiments

We demonstrate the effectiveness of the proposed algorithm through computer experiments.
The proposed method was implemented in Java under CentOS release 7.8.2003 on an Intel Core
i7-8700 with 8 GB of main memory. ClassBench [46] is known as the benchmark tool for packet

54

7 L i i i J
I'x10 weight sorting ——
proposed —>—

b ‘\X\’R,é’/—)

100000

Classification Latency L(R)

10000 1 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Rules

Figure 3.34: The latency of FW.

le+12 —_— 1x 101 ' i e
weight sorting —+—
proposed - A S g
, deFll pesslens R B 1 . i
I 2 1x10% ¢ ~ weight sorting —+— |
s Py proposed —>—
H el } g
= & 9
0 E‘, 1x10° £
£ o1et0o | 5
= £
3 3 s
e 1x10° f
Q% le+08 | E i i i
1+ Jr T — +-— ! T T
1e+07 L i ' L L ! L 1x 107 L L 1 i L i L
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Rules Number of Rules
Figure 3.35: The time of ACL. Figure 3.36: The time of IPC.

classification algorithms. It generates a rule list and a header list based on data obtained from
actual environments. Therefore it can build an experimental environment closer to the real
environment. We generated 50 rule sets of 1,000 to 5,000 rules with the seed file of the Access
Control List (ACL), IP chain (IPC), and Fire Wall (FW). There were 100,000 headers for each
rule list. We implemented the methods of the descending order of weight and the proposed
method.

The averages of 10 trials are depicted in Figs. 3.32, 3.33, 3.34, 3.35, 3.36, and 3.37. Note
that we plotted the latencies and the reordering times on logarithmic scales in these graphs.

In Figs. 3.32, 3.33, and 3.34, the horizontal axes indicate the number of rules, whereas the
vertical axes show the latencies. Figs. 3.32, 3.33, and 3.34 show that the proposed method
reduced the latency compared to the other method. Furthermore, these graphs show that the
proposed method reduces the latency as the number of rules increases. This is because as the
number of rules increases, it is more likely that rule matching more packets will be generated in
the rule list.

In Figs. 3.35, 3.36, and 3.37, the horizontal axis indicates the number of rules, whereas

the vertical axis shows the reordering times. As shown in Figure 3.35, the proposed method

55

1 x 1012

u | : i]
& proposed —>—
Q
B 1x10°
5
b0
g 1x10° b
o
g
A 1x 108 | i
B S S,
1% 107 L L 1 L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Rules

Figure 3.37: The time of FW.

takes about 1000 times longer than the methods of the descending order of weight. As shown
in Figs. 3.36 and 3.37, in some cases, the reordering time increased for IPC and FW. This may
be due to the inability to find rules that are matchable with many packets, which increased the

number of packet matches.

3.9 Conclusion

In this chapter, we proposed several solution methods for RORO. To show the effectiveness of
these methods, computational experiments were performed.

The future work is to develop a method that takes into account weight fluctuations in rule
reordering. In OAQ, existing heuristic methods sort rules in descending order of their weights
at the time of input. However, in practice, when a rule that can match many packets is placed
lower, the weight is calculated lower by the rule placed higher.

In general, processing more packets with a single rule results in lower latency, so there is
a need to calculate the essential match count and develop a reordering method that uses this
count. In addition, although Allow lists tend to be adopted in actual environments, there are
cases where the environment is not necessarily limited to Allow lists. When changing partial
policies, it is easier to accept the addition of rules with the Deny action. Therefore, it is a future
challenge to devise a reordering method that takes into account weight fluctuations for general

rule lists.

56

Algorithm 1: Sub-Graph Merging.

ok ®

@

10
11

12

13

14
16
16
17
18

19

20
21

22

23

24
26
26
27

28

29

input : Rule List S and @, Arrays X, C and PROB, and Two—dimensional Array DEP
output : Reordered rule list S
function policySort(S, @, X, C, PROB, DEP);

while (Q # ¢) do
/* Select the best rule in Q */

set 7y to a rule in Q;
foreach r; € Q and r; # ry do
if ((X[re]/Clrs]) < (X[r;]/C[rs])) then
set Ty to 755
end
end
boolean selected = false;

while (/selected) do
/* Check if the selected rule has any dependents */

if (Cfry] == 1) then

add 7 to S and remove 7 from Q;
set selected to true;

set Tselected tO Tb;

end

else
/* Select the best rule from G*(rp) */

bool temp = false;
for (i=1;i<b;i++) do
if (DEP[r;][ry] == 1) then
if (temp == false) then
set T¢mp 1O 745
set temp to true;
end
end
else
if ((X[remp]/Clrimp]) < (X[ri]/Clrs])) then
set Timp to 7y

end

end

end

set 75 O Ttmp;

end

end

/* Update Data Structures */

for i = selected+ 1 ton — 1 do

if (DEP[Tselected][Ti] == 1) then
set DEP[rseiected][Ti] to 0;
decrement C[r;] by 1;
[ri] = X[rs] - PROB|rsetected];

end

end
end

return S ;

57

Algorithm 2: Fixed SGM algorithm.

input : Weighted Rule List @), Empty Rule List S, Arrays X, C and PROB, and
Two—dimensional Array DEP
output: Rulelist S

1 while (Q # ¢) do
/*The same as line 3 to 23 in Figure 1*/

/* Update Data Structures */
2 A = get rules that are reachable from 7.ccted;
3 for i = selected+1 ton—1do
| set DEP[seiected][Ti] to O;
end
foreach r; € A do
set DEP[Tselected] [Tz] to 0;
decrement C[r;] by 1;
X[r;] = X[rs] - PROB[F'selected);

end

N o o« B

end

8 return S,

Algorithm 3: ImprovedSGM.

input : Rule List R
output: Rulelist R/
1 make an empty list R/;

2 while R # ¢ do
/* select the best rule in R */

3 | G(rp) < selectMaxWeightRule(R);
4 add 7, to S and remove 7, from R;
end

5 return R/;

58

Algorithm 4: selectMaxWeight.

input : Weighted Rule List R
output: RuleSet R,
1 if the size of R = 1 then
2 return the only one element Rs; € R;
end
set r to a'rule in R;
valy < —1;
foreach 7, € R do
set val; to the average of weights of SG(r;) ;
if waly < val; then

valy < val;;

© ® N O W A ®

Tb <= Ti;

end

end
10 return selectMaxWeightRule(SG(ry));

Table 3.6: Rule list R.

Filter R w; Filter R w;
P =%001 10 P =x101 30
rP =000 27 7 =0x0% 27
r{ =101% 31 rP =11 28
rd =001x 19 7§ ==x11x 30
P =1x10 27 rf{y =110« 26

59

Table 3.7: Packet distribution F'.

0000 ~ 12
0010 — 9

0100 — 27
0110 — 30
1000 — 15
1010 — 18
1100 — 26
1110 — 27

0001 — 14
0011 — 10
0101 — 6

0111 — 15
1001 — 16
1011 — 13
1101 — 4

1111 — 13

Algorithm 5: Hikage’s Method.

input : Weighted Rule List R,Dependent Graph G
output: RuleList R’/
1 Regarding G as an undirected graph, divide G into components C1, Co, ..., Ck. ;
2 foreach C; do
3 ‘ N; « Algorithm6(C;)
end
4 for i+ 1tokdo

5 for j < 0 to the size of N; do
/*I is a rule number of (N;.length - k)-th rule*/

Wr e (Shoowr) / (k1) 5

end

end

7 while there is a non empty list do

8 select the lightest rule r; according to W; in some N ;
9 add rules (rj,. .., N.length) to R’ ;
10 remove rules 7j, ..., N.last from N
end

11 return R/;

Algorithm 6: Sort component.

input : Weighted Digraph C

output: List of rule number (vertices) in C
1 while C is not empty do
2 select the lightest rule 7 among the rules with deg™(r) = 0;
3 add r to N and remove r from C;

end

4 return N

Algorithm 7: Hikage’s Method based on Comparison using with dependent rules.

input : Weighted Rule List R,Dependent Graph G
output: RuleList R’/
/* the same as line 1 in Algorithm 5 */
1 foreach C; do
2 ' N; < Algorithm 8;
end
3 /* the same as lines 4 to 10 in Algorithm 5 */
4 return R/;

60

Algorithm 8: Sort component with children weights.

input : Weighted digraph C
output: List of rule numbers in C
/*S is the children of ;*/

1 foreach r; € C do

2 l W} (Zjeswj)/|5| :
end

3 while C is not empty do

4 select the lightest rule 7 according to w’ among the rules with deg™(r) = 0;
5 add r to N and remove r from C ;
end

6 return N

Table 3.8: Rule list R.

Filter R |E(R,)|F

Tf =#x11 10 Table 3.9: The packet arrival distaribution F : P — N.
TZD =1%x1 5
D —0xx1 30 00001 0001+ 18 0010+ 2 0011+ 3
1 0100 —~3 0101 +—12 0110~ 50 0111+0
g =111x 74
1000~ 35 1001~ 2 1010~ 39 1011+ 2
A
g =10%x 74 1100 4 11013 1110~ 74 11115
7‘{54 =011% 50
7'%3 =Kk 10
L(R,F) = 1132

61

Table 3.10: Reordering Table 3.11: Better reordering.

by SGM.
Filter R, |E(Ro,%)|F Filter R |E(Rs,%)|7
i =xx11 10 r{l =4x11 10
P =0xx1 30 rP =1xx1 5
rg =011% 50 ré =10%+ 74
ry =1xxl 5 ri =111x 74
rf =10%x 74 P =0xx1 30
rf =111x 74 rd =011x 50
TP =srxx 10 TP =srxx 10
L(Ry,F) = 1074 L(R,, F) = 1048

Algorithm 9: DividingAndConqueringRules.

input : Weighted rule list R
output: Reordered rule list R
1 if [R| = 1 then
2 | return R ;
end
// select the rules to be placed upper position ;
3 Rupper < DivideRules(R) ;
4 Riower + R \ Rupper)
5 Rupper + DividingAndConqueringRules(Rypper) ;
8 Riower + DividingAndConqueringRules(Rjower) ;
7 R < concatenate ﬁupper and Riower ;

8 return R ;

62

Algorithm 10: DivideRules.

1
2
3

© 0 g o w

10
11
12
13

14
15

16

1

~3

18

19

input : Weighted rule list R

output: Sub rule list Rypper C R

foreach r € R do

make G(r) and D(r) ;

S(r) « r;

T(r) < G(r);

nd

or i = size of R to 1 do

r < The i’th Rule in R;

make list LD of D(r) and sort LD according to X (u)/|S(u)| for v € D(r);

for j =1 to size of LD do

u 4+ The j’th Rule in LD ;

T'(r) « T(r) U S(u) ;

if Z(r)/|T(r)| < Z'(r)/|T'(r)| then
T(r) « T (r) ;
S(r) « S(r) U S(u);

end

= 0

end
end
r < head of R ;
foreach r € R do
if Z(r')/T (") < Z(r)/T(r) then
o
end
end
if |G(r')] = |R| then
return DividingAndConqueringRules(R \ ');
end

return T(r') as a rule list;

63

Table 3.12: Constructed sets.

T G(r:) D(r;) T(r;) S(ri)

r7 | {r1,72,73,74,75,76, 77} {} {r1,ra,73,74,75,76, 77} {r}

Te {r1,73,7m6} {} {r1,73,76} {re}

75 {r1,r2,75} {} {r1,r2,75} {rs}

T4 {r1,r2,74} {} {r1,m2,74} {ra}

T3 {r1,r3} {re} {r1,r3,r6} {rs,r6}

9 {r1,m2} {ra,rs} {r1,r2,74,75} {ra,r4,75}
1 {r1} {ra, 73} {r1,r2,74,75} {r1,r2,74,75}

Algorithm 11: PartialBlockReordering.

input : Weighted rule list R’
output: Reordered rule list R”
for k =1 to the size of R' do

if R/(k) is sink then
| add R/(k) to R”;
end

else

end

end

3 return R”;

‘ R" <MakeBlockAndReplace(R', R”, k);

64

Algorithm 12: MakeBlockAndReplace.

[I S L

10
11
12

13

14

15

16

17

18

input : Weighted rule list R’, R” ,Integer k
output: Reordered rule list R"”
add R/(k) to the front of Ly;

PrecedingSet < the set of rules that R'(k) depends on;

Ly + 0;

lowerlist < 0;

upperlist +

i = size of R”;

while 7 > 1 do

if R"(i) € PrecedingSet then

if D(Ll, Lz) < 0 then
‘ break;

end

else

move 7; to the front of Ls;

add L, to the front of lowerlist;
Ly + @;

end

end
else

add r; to the front of Ly;
end

1=1—1;

end
if 7 <1 then
if D(L1,Ly) < 0 then
‘ R" < L1 + Lo + lowerlist;
end
else
| R < Lo+ Ly + lowerlist

end

end
else

| R" « upperlist 4 r; + L1 + Lo + lowerlist;
end

return R";

65

upperlist < the rules R”(1),R"(2),...,R"(3);

add rules that r; depends on to PrecedingSet;

Table 3.13: Rule list R.

Filter R |r4
rf =110 20
g = 01x0 120 Table 3.14: A packet arrival distribution F : P — N.
4 =010 78
ri = 0x01 74 0000+ 131 0001~ 74 0010 +— 10 0011+ 0
7‘5D =10«0 &80 0100 — 110 0101 — 78 0110~ 10 0111+~ 60
ré) = %xx00 131 1000 — 20 1001 — 150 1010+ 60 1011+~ 100
’I‘7D =x1x1 95 1100~ 15 1101 +—30 11105 1111+ 5
'rg1 = 1x0x 150
r§ = 1x11 100
""{)0 = kkkx 10

L(R,F) = 4883

Table 3.15: by gup oot mmenging. Table 3.16: 1,/ he romoned.

Filter R |ry]
4 = 001 120
r{ = 01x1 78

=010 20
D

Filter R” |ry]
r{ = 0x01 120
r{=01x1 78
rf =011 74

rP = x1x1 131 r? = 0x1x 95
ri =011 74 r§ = x1x0 100
r? = 0xlx 95 rf =01x0 20
rét =001 80 rd = +1x1 131
4 = 00+ 150 ré = %001 80
7‘§4 = x1x0 100 ré“ = 00%x 150

r{% = kkkk 10
L(R',F) = 4550

rﬁ) = kokkok 10
L(R",F) = 4495

66

Table 3.17: Rule list R.

Filter R |E(R,i)|r

rf =1xx1 10

rP =1x00 5

7':? =x11x 30

'rf =11xx% 0

T =+10% 40

Té‘l =sx11 50

7‘%7 =skkkk 10
L(R,F) =670

Table 3.18: The packet arrival distaribution F :

P —N.
0000 —+3 0001—1 00102 0011+ 50
0100 — 20 010120 0110—6 01110
1000 — 10 1001+ 5 10104 1011+~ 0
1100—0 1101 —0 1110—4 11110

Table 3.19: Remove r4 from search space.

Filter R |E(R,%)|F

ré =#x11 50

ré =+10% 40

rP =x11x 30

rf =1xx1 10

rP =1x00 5

7‘? =skokkk 10

r{ =11%% 0
L(R,F) = 345

67

Table 3.20: Rule list R.

Filter R |E(R,%)|F
r{ = 010% 10
4 = 1x01 20
r{ = 011 30
'rf = x1x1 5
rP = 11x0 5
T = Oxx1 100
i = 1x0% 120
7‘5 = skkkk 10

L(R,F) = 1695

Table 3.21: Reordering R by SGM.

Table 3.22: Better ordering.

Filter R |E(Rsem,i)|F Filter R |E(Rbetter,)| 7
4 = 011* 30 r{ = 011% 30
T4 = 1x01 20 4 = 1x01 20
r{t = 010% 10 rP = 11x0 5
rP = ¥1x1 5 ré = 140% 120
g = 0xx1 100 rf = 010% 10
rP = 11x0 5 rP = x1x1 5
rét = 1x0% 120 g = 0%x1 100
'réj = kkkk 10 r8D = kkkk 10

L(RSGMa]:) = 1560 L(Rbettera]:) = 1320

Algorithm 13: SearchAndDeletePre-Constraints.

input : constraints A ,the middle of sorted list R
output: constraints A
1 A+ A
foreach Constraints (j,7) in A do
2 | L < rules that are matchable with the packet in M(r;) N M (r;);
3 | CNF F <+ MakeCNFForTheDependency((j,1),L);
4 if F' is UNSAT then
//The judgment is based on the SAT solver;
5 Delete (j,1) in A;

end

end

6 return .71;

68

Algorithm 14: SearchCoveringRule.

input : Pre-Constraints.4,RuleListR
output: Map C
foreach (j,1) in A do
foreach Rule 7. that is depended on r; or r; do
if r. overlapped with r; then
if 7. cover (j,7) then
1 | (4,4) add to the List C;;

end

end

end
end

2 return C|

Algorithm 15: SATbased.

input : Weighted rule list R
output: Reordered rule list R

-

Make the adjacency list A by dependency relation on R;
while |R| # 0 do

Select a rule r from R by SGM;

add r to R;

Delete r from R;

A < SearchAndDeletePre-Constraints(.A4,R);

end

(2L U

return R 3

=]

Algorithm 16: DeleteConstraintsCovered BySingleRule.

input : Weighted rule list R
output: Reordered rule list R

1 Make the adjacency list A by dependency relation on R;
2 Map(RuleNum,List of (j,7)) C «SearchCoverRule(A,R);
3 for |R| # 0 do
4 R < The Rule 7, decided by SGM in R;
5 Delete r; from R;
foreach Dependency D in Cs do
6 Delete D in A ;
end
end

7 return R ;

69

Table 3.23: The result of Delete 0 Weight Rules.

Given Proposed
1000 4.60087e + 08 4.52561e + 08
2000 7.20902e + 08 7.14581e + 08
3000 1.21889%e+ 09 1.20615e + 09
4000 1.88454e+ 09 1.87632¢ + 09
5000 2.28286e + 09 2.27996e + 09
6000 2.60218e + 09 2.60046e + 09
7000 3.12566e + 09 3.12409e + 09
8000 3.21211e+09 3.21083e + 09
9000 4.05510e 4+ 09 4.05291e + 09
10000 4.32193e +09 4.31985e + 09

Table 3.24: The result of reordered by SGM.

SGM

Proposed

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

2.17318e + 08
4.8534e + 08
9.04147e + 08
1.23941e + 09
1.61881e + 09
1.85364e + 09
2.14838e + 09
2.08214e + 09
2.60803e + 09
3.00534e + 09

2.13202e + 08
4.8249¢e +- 08
8.94115e + 08
1.23405e + 09
1.61595¢ + 09
1.85241e + 09
2.14642e 4 09
2.08001e 4 09
2.60463e + 09
3.00236¢e + 09

Table 3.25: The average rate of decrease for reordered rule list.

rule SGM SATbased heuristic
100 34.9665 35.0159 35.0159
200 36.5317 37.0713 37.0713
300 40.6770 41.1706 41.1714
400 46.6387 47.0479 47.0867
500 48.1987 48.9199 48.9393
600 50.5280 51.3132 51.3577
700 46.8984 48.2835 48.3015
800 45.2458 46.1945 46.2073
900 46.2897 46.8658 46.8690
1000 47.6016 48.5121 48.5191

70

Table 3.26: Allow list.
Filter R |E(R,i)|r
rf = 150 90
r? = x1x1 70
4 = 0x01 60
rit = %110 120
7‘54 = 1x1x 30
ré = Ol%x 40
7'.‘74 = %00 20
7'8D = kokkk 30
L(R,F) = 1630

Table 3.27: Packet distribution F : P — N.

0000 ~ 20
0100 — 40
1000 — 10
1100 — 10

0001 — 60
0101 — 30
1001 — 10
1101 — 10

0010 — 10
0110 — 120
1010 — 30
1110 — 30

0011 — 10
0111 — 10
1011 — 30
1111 — 30

71

Algorithm 17: Proposed Method.

input : Allowlist R and Packet Distribution F
output: Reorderd allowlist R’
while R is not empty do

1 max = 0;

foreach r; € R do

foreach p € F do
2 if p matches r; then
3 matchcount < matchcount + 1;
end
end
4 if maz < matchcount V mazxz = 0 then
5 mazrule < r;;
6 maz < matchcount;
end
end
foreach p € F do
7 if p matches mazrule then
8 | F e F\{pk;
end
end
9 mazrule adds to R;
10 mazxrule removes from R;
end

11 return R/;

72

Table 3.28: Reordered by proposed.

Filter R |E(R,i)|r

ré = Ol 200
rét = 1xlx 110
4 = 0x01 60
r%‘l = *x00 50
r§ = %11 10
it = 1xx0 0
rit = 110 0
7'8D = kkkk 30
L(R, F) = 1060

73

Chapter 4
Rule List Reconstruction

The rule list optimization problem takes a rule list and a frequency distribution of packets as
input and finds a rule list with minimized latency while holding policy. In general, reducing the
number of rules results in a rule list with lower latency, so a method that considers the rule list
as a logical expression and constructs a rule list with fewer rules using the Kwein-McCluskey
method has been proposed [42]. In this chapter, we show the computational complexity of the

rule list optimization problem and propose a heuristic solution for this problem.

4.1 Complexity of ORL

We define the optimization problem as follows: given a list and a frequency distribution, con-

struct a list that has the same policy as the given list and minimizes the classification latency.
Definition 4.1.1. (Optimal Rule List(ORL))

Input : Rule List R, Packet Arrival Distribution F
Output : Rule List R’ such that the following conditions are satisfied
R' =R and VS =R, L(R,F) < L(S, F)

Furthermore, a decision problem version of this optimization problem is defined as follows.

Definition 4.1.2. (Rule List Reconstruction(RLR))

Table 4.1: Allow list. Table 4.2: Merge and separate. Table 4.3: Merge and separate.
Filter R |E(R,%)|r Filter R |E(R,4)|F Filter R |E(R,i)|F

rit 11x1 2 ri 00 4 rft 1001 1

i 0x0x 4 i 1lkx 3 T4 0% 7

r{ 11x0 2 rf 0x01 2 r{ 111% 2

r4 1000 1 PP ek 7 P krnx 6

7‘5D *okokok 7

74

Input : Rule List R, Packet Arrival Distribution F and Positive integer K
Question : Is there a Rule List R’ that satisfies the following condition?
R'=Rand L(R',F) < K

We prove that this determination problem is NP-hard by reducing from Min-DNF. Min-DNF
is the problem to find the minimum disjunction form of f given an n-variable logic function f as
a truth table and is known to be NP-hard. The decision problem version of this optimization
problem is as follows.

Definition 4.1.3. (Min-DNF)

Input : m-variable logic function f as a truth table ¢t and Positive integer K
Question : Is there a disjunction form with less than or equal to the number of K disjuncts

for a logic function?

In the following, we refer to the decision problem version of Min-DNF' as Min-DNF.

For an n-variable oolean function f, define the setON(f) C 0,1™ as ON(f) = {z|f(z) = 1}.
Furthermore, OFF'(f) = {0,1}" \ ON(f). For example, ON(f) = {001,101,110} for a three-
variable logic function f whose truth table is 01000110.

4.1.1 Definition and Lemma for Reduction

In this section, we present definitions and lemma to show the polynomial-time reduction from
Min-DNF to RLR. The strategy of the reduction is to generate from the truth table tt, an
instance of Min-DNF, a list R of RLRs, a frequency distribution F, and a threshold X such
that the latency is not less than £ unless the Allow list has fewer than K rules. The details
of the proofs of some of the corollaries are taken from the literature [49]. Details are given in
Appendix C.

Definition 4.1.4. (Rule Merging)

Assume that for several rules ry,...,7;, the set M(ry) of packets that can be matched by rule
Tk is equal to M (r;) U---U M(r;). In this case, merging 7; and r; into a single rule 7y, is called
rule merging.

Definition 4.1.5. (Rule Decomposition)
Dividing a rule r; into two rules r; and ry such that M (r;)UM (ry) = M(r;) and M (r;)NM (ry) =
() is called rule decomposition.

The list in Table 4.2 is produced by decomposing 'ré‘l into rf{l = 0% 00 and r£2 = 0x*01 and
7'34 into 7':?,1 = 1100 and 7‘{;"2 = 1110 in Table 4.1 and merging 7‘21, r:’f’l, 4, 7"{3471, r{iz and 74

Definition 4.1.6. (Merging rules by supplementation)
When it is possible to add a rule merging 7, . .., r; under r by inserting rule ry above it to hold
the policy for several rules 7y, ...,7;, the addition and merging of rules by such an operation is

called merging rules by supplementation.

75

Rule 7‘5‘ in Table 4.3 with the Allow action is generated by merging r3 1 = 1100 and 74, which
are decompositions of 79 and 73 in Table 4.1, by supplementing P with the Deny action.

It should be noted that in the Min-DNF to RLR reduction, it is not necessarily that the
fewer rules in the list the smaller the latency. The following is a complement to be used in the
proof.

Lemma 4.1.1. Given an Allow list R consisting of n allow rules, the latency of reordering the

rules in descending order of weight, such as
|E(Rs,1)| 2 |E(Re,2)| 2 -+ 2 |E(Rg,n — 1)| 2 |E(Ro, n)|

is the minimal latency of the Allow list obtained by the rule reordering.

Definition 4.1.7. Let the list R consisting of n rules without masks * is as follows.
R=[rf,rd,. .. ra]

Let the list S consisting of K rules that express the same policy as R be as follows.
Sk = [si, 55, ..., s%]

Where for the weight of each rule |E(S,1)| in S, |E(S,1)| > |E(S5,2)| > -+ > |E(Ss,n—1)| >

|E(Sy,n)| and |E(S,i)| > 1. In addition, R has the default rule v, with a weight of 0.

Lemma 4.1.2. From the literature [49], the lower bound on the latency L(Sk,F) of Sk is
on + E=HED g,

We denote the upper bound of the latency in Sk by B(K).

Lemma 4.1.3. From the literature [49], the upper bound on the latency L(Sk,F) of Sk is
2l + q(K+2%(K_1) + T(T;r 3 Where [= min{l|2" > %} and ¢ and r are is a natural number

satisfying the following fomula.

n—20=(K-1)g+r(K—-1>r)

We denote the upper bound of the latency in Sk by W (K).

Lemma 4.1.4. For any natural numbern > 2,K > 1, B(K + 1) < W(K), if W(K)—B(K + 1)
18 a polynomial order in n and K.

Lemma 4.1.5. Assume that for an Allow list R, suppose that W(K) — B(K +1) =d > 0. Let
R’ be the Allow list where the rules that cannot be merged with any rule in R, have a weight of
1, and do not contain * are added to R. For R', W(K +1)— B(K +2) =d— 1.

Although fewer rules do not necessarily mean lower latency, from the lemma4.1.5, we can
add W(K) — B(K + 1) + 1 of non-mergeable rules so that the difference between the upper
bound of latency of an Allow list with size K and the lower bound of latency of an Allow list
with size K +1 is exactly 1. This allows us to generate an Allow list with lower latency for fewer
rules. Also, from the complement4.1.4, this difference can be computed in polynomial time, and
this difference fits into a polynomial of size K and ON(f) of size n, which is an instance of
Min-DNF.

76

4.1.2 Reduction from Min-DNF to RLR

In addition to the previous section, it should be noted that the merging rules by supplementation
of the Deny rule may decrease the latency in the reduction from Min-DNF to RLR. Therefore,
the algorithm for reducing from Min-DNF to RLR is shown in Algorithm18 so that the latency
cannot be reduced by such a merging. The list generation in this algorithm first generates a
permission list consisting of m; permission rules corresponding to each element of ON(fi) from
the input truth table tt. To this list, the algorithm adds m1my permission rules corresponding to
OF F(fi) in order to avoid latency reduction in the merging of permission rules by supplementing
denial rules. Then, to adjust the number of terms K in Min-DNF and the latency L in RLR,
d+1 permission rules are added when d > 0. Where fi; denotes the logic function corresponding
to the truth table, and m1 = |ON(fw)|,m2 = |OFF(fi)|- The loop from the algorithm line. 8
generates permission rules corresponding to ON(fi;). Since these rules only have an additional
* column of length Il at the end, the rules can be merged if the part corresponding to fi can
be merged.

Then the loop from the line. 19 in the algorithm generates dummy Allow rules and adds
them to the list. Since the trailing Il bits of these dummy Allow rules are not * but a string
of bits, at least m; supplementation is required to merge the Allow rules with the deny rules
generated in the loop of line. 8. Since the rules differ from each other by at least 2 bits, these
rules cannot be merged either. Therefore, the merging of Allow rules by supplementing denial
rules does not reduce the latency.

Then, in a loop from the line.26, the algorithm adds a permission rule that cannot be merged
with any rule and has a weight of 1 so that the list with a latency less than L is limited when the
rules corresponding to ON(f;) can be merged into K permission rules or less. In other words,
we add rules to fill the difference mentioned in the lemma 4.1.4.

This completes the generation of the Min-DNF' truth table ¢t and the list R corresponding to

the nonnegative integer K. Assume that the frequency distribution F for this list is as follows.

{ 1 ifpeP

0 otherwise

F(p) =

Where P’ is the packet set obtained by the reduction algorithm Red. This is the distribution in
which exactly one packet appears that matches only one of each of the rules generated by the
loop from line.8 to line.26, and in which the nth and subsequent bits differ from each other by
2 bits.

And we assume that the threshold L is set as d + 1 if W(K) — B(K + 1) = d > 0, otherwise
B(K).

Theorem 4.1.1. RLR is NP-hard.

proof. 1. We show (tt, K) € Min-DNF <= Red(tt,K) € RLR.
If there exists a disjunction form with less than or equal to K terms for an n-variable logic
function fy represented by a truth table tt, then (tt,K) € Min-DNF = Red(tt,K) € RLR is

7

valid because there exists a disjunction list with equal policy and latency to the allow list R.
On the other hand, if there is no disjunction form with K or fewer terms for fu, then the
rules corresponding to ON(f) cannot be merged into K or fewer rules, and there is no list that
achieves L or less latency. From this, (tt,K) ¢ Min-DNF = Red(tt,K) ¢ LRR also holds.
And since Algorithm 18 is a polynomial-time algorithm for input size, Red is a polynomial-time
attribution algorithm from Min-DNF to RLR, and RLR is NP-hard.

4.2 Allow List Reconstruction

When considering an optimal rule list problem, generally the number of rules is reduced by
merging rules that have the same actions, thereby reducing the latency. Therefore, we treat an
optimization problem limited to the Allow list and consider how much latency reduction can be
expected without merging rules by supplementation.

The optimization problem restricted to the Allow list is defined as follows

Definition 4.2.1. (Optimal Allow List)
Input : Allow list R, Packet Arrival Distribution F
Output : Allow List R’ such that the following conditions are satisfied
R'=R and VS =R, L(R',F) < L(S,F)

Since this problem has been shown to be NP-hard, [49] we propose a heuristic solution for
this problem.
In general, when finding an Allow list with lower latency, it is required to generate a rule

that matches more packets. We present the following theorem.

Theorem 4.2.1. In the Allow list optimization problem, the Allow list can be regarded as a
logical formula such that the assignment corresponding to the packet to which the Allow action
is applied is true. When the main terms of the formula are enumerated, there exists an Allow
list with the minimum latency that consists only of the rule rq € Q corresponding to the main
term in the logical formula. Where Q is the set of rules corresponding to the principal terms of

the logical formula corresponding to the Allow list.

Proof. In the Allow list R, let F'(R) be the logical expression for which the allocation corre-
sponding to the packet to which the Allow action is applied is true.

Consider a minimal latency Allow list R containing ¢ rules 7, that have no correspondence
with the main term of F'(R). Since R is a minimal latency Allow list, there is no rule in R that
can be included in a rule in R. All ¢ rules r, have to be included in at least one rule contained in
Q. We assume that R’ be an Allow list in which every rule 7, in R is replaced by a rule ry € Q
such that ry, is included. We prove the theorem by showing that the latency of R’ is always less
than or equal to the latency of R.

We consider whether the packets in F(o(u),R) increase the number of comparisons at R’.

Since R’ is an allow list where 7, in R is replaced by the rule 7, € @ that contains the rule,

78

the number of rules in R’ and R is the same. Also, the replaced rules are placed in the same
positions as before. Since the packets in E(o(u),R) \ E(c(g), R") do not match 4 in R/, they
match rules higher than rq. Therefore, the number of comparisons is decreasing. The packets
in E(o(u),R) N E(c(g), R') match rq, which is located at the same position as 7, in R’, so the
number of comparisons are same. Thus, in R/, all packets that matched the rule replaced from
‘R match the rule that is placed at the same or higher position than before the replacement, so
L(R!',F) < L(R!,F). This means that the latency of the Allow list R’ is the same or less than
the Allow list R’ latency. 0

The rule contained in @ is called the maximal rule. A maximal rule is a rule such that
M(r;) € B and M(r;) € M(r;) when B is the set of packets to which the Allow action is
applied, and M (r;) C M(r;) when there is no ;. From the theorem4.2.1, there exists a rule list
with the minimal latency in the allow list constructed only by the maximal rules, so we propose

a method to construct an allow list with smaller latency by enumerating the maximal rules.

4.2.1 Allow list Reconstruction Method using Consensus

The maximal rule can be computed by enumerating the principal terms in the logical formulas
corresponding to the input Allow list. The consensus method is used to enumerate the principal
terms.

The consensus method is an algorithm that enumerates the principal terms from a set of
product terms of an input logical expression [50]. The main terms are obtained by constructing
product terms combining two variables from pairs of product terms that differ by only one bit
except *. For two product terms ¢ = 2173 ...z, and ¢ = x|z}, ...z}, if the variables differing in

value are at most 1 except for *, the following product term ¢” can be constructed from them.

gl =ziUgl=sUsx=xUz=g
/! / — —
T, = Uz, =2zUT =*L*=x%

forz=0and 1

Where there is at most one variable for which z; LIz} = zUZ, since the number of variables that
differ in value except for * is at most one. The operation of constructing the product term in
this way is called a consensus, denoted c LI c.

We describe an algorithm for enumerating the principal terms for a given assignment using
the consensus method.

We describe an algorithm for enumerating the principal terms for a given assignment using
the consensus method. The algorithm first takes consensus for all given sets of product terms C.
Since a product term with more * is required, the generated term is stored in C’ if the number
of % in the term generated by consensus is greater than the number of iterations j. The product
terms in C are then removed such that the product terms in C’ are included in the product
terms in C’. The product terms contained in C’ are added to C. The product terms that are

obtained by consensus and have a number of * corresponding to the number of iterations j or

79

more are added to C’, and the product terms that could not be generated are added to the
output set as the principal terms. Once all pairs of product terms have been consesed, add C’
to C and j = j + 1. This process is repeated until C' is empty. As a result, the principal terms
for the input assignments are obtained.

By using the consensus method to enumerate the maximal rules for the Allow list optimiza-
tion problem, the maximal rules can be enumerated without enumerating the set of packets to
which the Allow action applies.

The rule construction method for the maximum using the consensus method is shown in
Algorithm19. First, Algorithm19 removes rules that are included in other rules from the input
set of rules C. Then, line 3 takes consensus on all pairs of rules contained in C. If the number of
* in the rule is larger than j, it is added to the set C’ at the line 4. If the rule can not generate
a rule with % greater than j + 1 by consensus, it is added to the output set C” and deleted from
C at line 5 Then, the rules in C’ are added to C, and j is updated by deleting the rules included
in C. This process is repeated until C is empty, and the set of maximal rules C” is output.

From the enumerated set of maximal rules, the Allow list is reconstructed by finding a rule
list with lower latency.

By constructing an Allow list, which is a list for a set of maximal rules, formulating it into
an integer programming problem, and obtaining the optimal solution, the Allow list with the
minimal latency in the Allow list optimization problem can be obtained. However, since the
computational complexity of this method is exponential in relation to the number of rules, the
operation will not be completed in a realistic time as the number of rules increases. Therefore, a
reordering method based on the greedy method shown in 3.8.1 can be used to obtain a sequence
of rules with smaller latency.

4.2.2 Experiments

We demonstrate the effectiveness of the proposed algorithm and reordering algorithms through
computer experiments.

The proposed methods were implemented in Java under Ubuntu 22.04.3 LTS on Intel Core
i7-8700 with 8 GB of main memory. We used ClassBench which is known as the benchmark
tool for the packet classification algorithm. We generated 300 rule sets of 100 to 1000 rules and
corresponding 100,000 headers for each rule list using ClassBench [46] with the seed file of the
Access Control List (ACL).

For these Allow lists, we applied the reconstruction method using consensus and measured
the rate of reduction in latency and the reconstruction time.

The average ratio of latency reduction for each number of rules is shown in Figure 4.1.
Figure 4.1 shows the number of rules on the horizontal axis and latency on the vertical axis. As
shown in Figure 4.1, the latency reduction rate increases as the number of rules increases, and
the input Allow list is significantly reduced in latency.

In addition, the average reconstructing time for each number of rules is shown in Figure 4.2.

The horizontal axis is the number of rules and the vertical axis is the average reconstruction time.

80

5e+07 — ; . v]
given —+—
4.5e+07 | proposed - :

4e4-07
3.5e4+-07
3e+07
2.5e4-07
2e4-07
1.5e+07
le+07

59_{,_06 e i i H ; ‘. =
I i e e S

100 200 300 400 500 600 700 800 900 1000
Number of Rules

Filtering Latency L(R)

Figure 4.1: The latency of ACL.

1.1e+10
le+10 r
9e+09
8e+09 |
7e+09 |
6e+09 r
5e+09 r
4e+09
3e+09
2e+09 : : - » 1

1e+09 1 1 1 1 1 L L 1
100 200 300 400 500 600 700 800 900 1000

Number of Rules

pfoposéd — |

Reconstructing Time (ns)

Figure 4.2: The reconstructing time of ACL.

As shown in Figure 4.2, the reconstructing time increases as the number of rules increases. How-
ever, the operation time of the proposed method is highly dependent on the policies expressed
in the input rule list, so the reconstructing time does not necessarily increase as the number of

rules increases.

4.3 Rule List Reconstruction

Previous approaches to the rule list optimization problem have achieved packet classification
with fewer rules by merging similar rules in the input rule list. However, such approaches have

limited effectiveness, and their performance depends greatly on the input rule list. Therefore,

81

a method to reconstruct rules by focusing on the policy represented by the input rule list is
required. It is difficult to obtain the policy expressed in the rule list from the rule list. In
addition, it is impractical to maintain the actions to be applied to each packet, because the
amount of space calculation is exponential to the bit length. Therefore, by removing overlap
relations from the input rule list, a rule list corresponding to a set of packets to which the same
action is applied can be obtained. Using this rule list, we propose a method to find a rule list
with lower latency.

In a list of rules with overlapping relationships, the packets in the common part match the
rules placed above, so the rules placed below are not necessarily the same as the set of packets
M(r;) that can be matched and E(R,7) that are actually matched. Therefore, in a rule list
containing rules with some overlap relations, it is not immediately clear which rule matches how
many packets.

In addition, the action that is applied to the packet in the common part is the action of the
rule that is placed at the highest level among the rules that are in a dependent relationship.
This means that for each rule r;, not all packets in the set M (r;) of matchable packets will have
the same action applied. This means that for each rule 7;, not all packets in the set M(r;) of
matchable packets will have the same action applied. Therefore, we proposed a method that
rewrites the lower-placed rules into rules that do not match the packets in the common part to

obtain a rule list that is not dependent on any rules.

4.3.1 Find common parts

First, we explain how to find the common part of two rules r; and r; that have an overlap
relation. By comparing each bit of each rule and taking the value if they are the same, or the
bit value of the other if one is *, we can obtain a string c(r;,7;) that represents the packet set
of the common part.

For example, consider the common part of rules r; and r; in Table 4.6. In this case, the 1th
bit of ¢(r;,7;) is 0 because the 1th bit of 7; is 0 and the 1th bit of r; is *. Also, the 2th bit of
r; is *, but the 2th bit of r; is 1, so the 1th bit of ¢(r;,7;) is 1. By performing this operation
for all bits, a string ¢(r;,7;) = 01001 % 1111 representing the packet set of the common part is
obtained. This means that the packets contained in the common part ¢(r;, ;) of r; and r; are
{0100101111,010011111111}.

4.3.2 Take Setminus of r;

To remove the overlap relation between r; and r;, we can rewrite either rule so that it does not
overlap with the common part. By focusing on the bits that are * in the rewritten rule but not
* in the common part of the string and splitting the rule into a rule with 0 and a rule with 1,
one of the rules will always not match the common part. This operation can be rewritten by
repeating it for each bit to be focused on.

For example, consider the case where rule r; in Table 4.6 is rewritten to a rule that does not

82

match the common part ¢(r;,7;). In this case, the first bit of r; is * and the common part is
0, so we know that in M(r;), the packet with the first bit of 1 is not included in the common
part c(ri, ;). Therefore, 7; is divided into r%; = 11% 01 %%+ 11 and 7} 5 = 01 %01 %% * 11. This
makes 7/ ; a rule that does not match the common part. Then, we rewrite 7';,2 as a rule that

does not] ,match the common part ¢(r;,7;). Since the third bit of 7‘9’2 is * but the common part
is 0, we know that the packet with the third bit of 1 in M (r;,z) is not included in the common
part. Therefore, r’, is divided into two parts: 7}3 = 11101 x * * 11 and 7% 4 = 01001 * % 11
This makes r9’3 a rule that does not match the common part. By repeating this operation until
the generated rules do not match the packets in the common part, r; can be rewritten as rules
that do not match the common part with r;. Table 4.7 is the result of rewriting ;. Similarly,
Table 4.8 is the result of rewriting r; to a rule that does not match c(r;, ;).

However, if r; encompasses r;, r; cannot be rewritten because r; = c(r;,7;). In that case,
there is no packet that matches r;, so the policy holds even if r; is deleted. For this reason,
when creating a rule list with no overlap relation, we assume that the rules placed at the lower

levels are rewritten.

4.3.3 Algorithm for Removing Overlap

An Algorithm that takes 7; and r; as input and rewrites r; into m rules that have no overlap
relation with 7; is shown in Algorithm 20. First, Algorithm 20 constructs the common part of
r; and r; in 5 line to 11 line. Then, rules that do not have overlap relations with the strings
in the common part are created in the 6 to 14 lines. As with the Allow list, a rule list with
no dependencies does not violate the policy no matter how the rules are reordered above the
default rules. Therefore, we propose a method to construct a rule list with no dependencies
using Algorithm20, and to sort the rules in order of the number of matching packets using
Algorithm 17.

4.3.4 Proposed Method for ORL

First, the proposed method applies the Algorithm20 to the dependent rules r; and r;, and
rewrites 7; into m rules that do not have an overlap relation with r;. This operation is performed
for all dependent pairs, and the dependent relations in the rule list are deleted. The rules are
then sorted in order of the number of matching packets using Algorithm 17. Then, we determine
whether the rule riD should be deleted or not. In the R’ rule list sorted using Algorithm 17,
whether rz-D , the ith rule in the list, should be deleted or not is judged based on whether the

following high/low relation is satisfied, using the latency expression.

83

n—1

iIBR,)+GE+1) Y K(ER,K)))+ (0~ DIER)|
k=i+1

n—1
> Y (k=1(ER,K))+(n-2(ER n)+[ER,)) (41)

k=i+1
n—1
Y (BR,K))—-(n—2—-9)|E(R,i)| + |E(R',n)| > 0
k=i+1

If the inequality 4.1 is satisfied, then r? should be removed from the rule list R’ to reduce the
latency. Rewrite the rule list in Table 4.9 to a rule list with no dependencies, using Algorithm 20
to construct a rule list with lower latency. In the case of Table 4.9, rP and 'ré“ are dependent, so
these rules are entered into Algorithm 20. It outputs the set of rules S = {ré’:‘l =11%1, ré‘é =
1011}. By replacing these rules with rg‘l, the overlap relation between r{) and ré‘l can be removed.
Since no other rule is dependent on r1, we search for a dependent relation with ro. Repeating
this operation results in a rule list like Table 4.12. The rule list in Table 4.13 is the result of
sorting by Algorithm 17 using the packet set in Table 4.11. Then, redundant rules with Deny
actions are removed, starting from the lowest rule. For example, the problem of determining

whether the latency would be lower if T3D were removed is as follows.

8—1

> (E(R,K)) - (8 —2-5)|E(R,5)| + |E(R,8)| > 0
k=5+1 (4.2)
(13+10) — 16+ 10> 0
17>0

This shows that removing r3 reduces the latency. Table 4.14 shows the rule list with 73 removed
from the rule list in Table 4.13. As shown in Table 4.14, the latency is lower than that of the
rule list in Table 4.13. By repeating this operation for all the Deny rules, we can obtain a rule
list with lower latency. In the case of the rule list in Table 4.13, removing all the Deny rules
results in a rule list with lower latency. Table 4.15 shows the rule list of Table 4.13 when all the

Deny rules are removed. As shown in Table 4.15, the latency is reduced compared to Table 4.9.

4.3.5 Experiments

To demonstrate the effectiveness of the proposed method, we performed computer experiments.
The proposed method was implemented in Java under Ubuntu 22.04.3 LTS on Intel Core i7-8700
with 8 GB of main memory. We generated 30 rule sets of 100 to 1,000 rules using ClassBench [46]
with the seed file of the Access Control List (ACL).

We applied the proposed method to the generated rule lists and measured the latency and
reconstruction time. The latency of the generated rule list and the latency of the reconstructed

rule list are shown in Figure4.3. Figure 4.3 shows the number of rules on the horizontal axis

84

5e+07 T T T T
Given —+—
4.5e+07 - Proposed - 1

4e+07
3.5e+07
3e4-07
2.5e+07
2e+07
1.5e+07
1e+4-07
Be-+06

0 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Number of Rules

Filtering Latency L(R)

Figure 4.3: The latency of ACL.

l.le+11
le+11 |
9e+10 | i ' : .
8e+10 | ; - .
Te+10 oo .
6e+10 : : VA
5e+10 | ' : : » .
4e+10 | : : ' : 1
3e_|_10 - i : i i i 4
2e+10 | e : .
le+10 : e » : .

0 1 1 Il 1 1 L
100 200 300 400 500 600 700 800 900 1000

Number of Rules

Pfoposéd S

Reconstructing Time ns

Figure 4.4: The reconstructing time of ACL.

and latency on the vertical axis. As shown in Figure 4.3, the latency is decreases as the number
of rules increases.

Figure 4.4 shows the reconstruction time. The horizontal axis is the number of rules and the
vertical axis is the average reconstruction time. As shown in Figure 4.4, the reconstruction time
increases as the number of rules increases. However, the operation time is faster in the part
with 900 rules, which is thought to be due to the fact that the number of rules to be divided
was fewer due to the dependencies in the rule list.

85

4.4 Conclusion

In this section, we show the computational complexity of the rule list optimization problem
and propose a heuristic solution method for OAL and general rule list reconstruction. In the
reconstruction method for general rule lists, we proposed a method to construct a rule list with
lower latency by removing dependency relations so that the rule with the highest matching
frequency can be placed at the top. By removing the dependency relation, the proposed method
can determine whether a rule with the Deny action should be removed or not from the latency
expression because it can be seen that the rule with the Deny action matches the default rule
when it is removed. As the number of packets that match the default rule increases, the fewer
rules there are, the lower the latency will generally be. However, in the proposed method, the
number of rules increases due to the deletion of dependencies. Future work is to propose a
method for determining whether dependency relations increase latency due to an increase in the
number of rules when removed. Another future work is to develop a method to construct a rule

list that can satisfy the same policy with fewer rules.

86

Algorithm 18: Red.

© ® N @ o b~

10
o b
12
13
14
15
16

17

18
19
20
21
22
23
24
256

26
27
28
29
30
31
32
33
34
35
36

37

38

input : Truth table ¢t,Integer K
output : Rulelist R, Packet distribution P’, Integer L
d + W(K) - B(K);
if d < 0 then
| L« BE&)
else
| Led+
end
Il < 2mima;
R < an empty list;
P« 0
14 1;
forall z € ON(fi) do
set b to the empty string € and p to ¢;
b b++z,p+—p++x;
b b+ ++pp++1%
b+ b+ +0% p < p++0%
set the condition of 7; to b;
add rf to R;
Pnt2i—1 < 0,Pnt2i < 0;
add p to P’;
i it 1

end

J+<0;

forall z € OFF(fi) do

set b to ¢

b+ b+ +x;

b+ b+ +0te;

set the condition of r; to b;
add r# to R;
t—i+1,j+<75+1

end

while ¢ < mimo + d do

set b to ¢, and p to ¢

b+ b++1"p <+ p++17;
b+ b+ 404, p « p+ 40"
b+ b++1%p+ p+ +1%
b2j+1 < 0,ba¢j41) < 05

set the condition of r; to b;
add r{! to R;

p2j+1 + 0,p2(j+1) + 0;
add p to P';

i1+ 1,j75+1

end
add P to R;
return (R,P’,L) ;

87

Table 4.4: Allow list R.
Filter R |E(R,%)|F

rft = 0%00 10
r4 = 0x11 27
r{ = *1x1 31
4 = 0x10 19
rét = 10%1 27
r6D = sokkk 27

L(R,F) =503

Table 4.5: Packet Arrival Distribution F :
P —N

0000 +— 4 0001 — 19 0010 — 2 0011 ~ 10
0100 — 6 0101 +—5 0110+ 5 0111 — 17
1000 — 7 1001 +— 13 1010 — 1 1011+ 14
1100 — 9 1101 — 10 1110 +— 3 1111+~ 16

Algorithm 19: Consensus method.

input : The Product terms SetC
output: The Prime terms SetsC”

1 j=0;

2 remove ¢ € C such that ¢ C ¢ € C;
while C is not empty do

foreach c € C do

foreach ¢ € C do

3 d'+—cld;
if num of x € ¢’ > j then
4 | add ¢ to C';
end
end

5 add ¢ to C”;
6 remove ¢ from C;
end
end

7 add C' to C;
8 | remove c € C such that ¢ C ¢ € C;
9 | j=j+1

end

10 return C”;

if ¢ could not take the consensus ¢’ such that num of x € ¢’ > j then

88

Table 4.6: The common part be- Table 4.7: Rewrites 7; into the Table 4.8: Rewrites r; into the

tween r; and r;. rules that do not match ¢(r, r;). rules that do not match c(r;, ;).
r; 0x00%*11xx 7';. 1 11x01#xx11 7‘2’1 0000511k
rj *1x0Lsxk11 755 O110Lsexx1l 7i5 01000%11kx
c(ri,mj) 01001x1111 7‘;-’7 01001011 7‘2’7 01001%110x%
"';',8 010011011 TQ,B 010011110

Algorithm 20: Separate(r;, ;).

input : Overlapped rules 75, r;
output: rule set S

1 common < empty;

2 jmask < emptySet;

3 for k=1tol do

4 if b, = bjx then
5 ‘ common < b;g;
end
6 else
7 if b;;, = * then
8 I common < bjk;
end
9 else
10 add k to jmask;
11 common < b;x;
end
end
end
12 foreach n € jmask do
13 Sn + Setminus(common,rj,n);
14 add S, to S;
end

15 return S;

89

Algorithm 21: Setminus(r;,7;, K).

input : Overlapped rules r;, r;,Integer T'
output: rule
17« empty;
2 fork=1toldo
3 if £ < T then
’ ' bk
else if £k =T then
l v —bjk;

else

@ N & o M

/ .
‘ ™ 4 ijc,
end

end

9 return 7/;

Table 4.9: Rule list R.
Filter R |E(R,1)|
P 0x0x% 24
r{ 10%0 8
rd 1kl 23
rP 1x00 9
rd 100% 13
T *1xl 34
8 #x10 35

rdDef *okokk 10

L(R,F)="T729

Table 4.10

D

: Rewrite 7
0x0x
100
Tx1x
1x00
100%
11x1
0111
*%10

Tdef FHx

Table 4.11: Packet Arrival Distribution F : P — N.

0000 — 4 0001 —9
0100 — 6 0101 — 5

0010 — 25
0110 — 10
1000 — 7 1001 — 13 1010+—1
1100 —~9 1101 +—10 1110+~ 3

0011 — 10
0111 — 24
1011 — 14
11116

90

A
6 .

Table 4.12: Remove Overlap m; 10 4 13. Sort Table 4.12

in Table 4.9. in order of d . ioh Table 4.14: Delete rg from

D 0x0% in order of decreasing weight. Toibles 413

" et Filter R' |E(R,1)] 2 ;,lt- o ERD)
'y * lter T
» 111 rgy 0410 35 AT 0410 35
T * ’ T *

D 1011 iy Ol 25 A 0111 25
T ! T

3D 1400 7‘{3 00 24 5}% 040 o4
T * *kUk

9 1001 g lels A b 11 94
T T *1%

/4 1101 g 1400 16 A s 1
T T

" 0111 rgy 1001 13 i 1101 10
T 4 r

A 4 1101 10 o 26

*) kkkk

TZ’: rfi)ef Kokokok 10 "def
7y 1010 . L(R',F) =534
5 L(R!,F) = 551
Tdep FHH*

Table 4.15: Removed Deny rule from Table 4.14.
Filter R' |E(R,1)|
réh 0«10 35
rifh 0111 25
iy 1001 13
g4 1101 10
rD §oRRkRk 26

L(R!,F) = 460

91

Algorithm 22: Rulelist_Reconstruction(R, F).

input : Rule list R, Packet distribution F
output: Rule list R’

11=1;

2 List L <~ R except default rule 74.y;
while ¢ = size of L — 1 do

3 r; adds to L';

for j =1+ 1 to size of L do

4 relation < RelationCheck(r;, 7;);
if relation = O then

5 S «Separate(r;, 5);

6 S add to L/;
end

else if relation = N then
7 ‘ r; adds to L';
end

end
8 Le L i+i+1;

end
10 R« L;
11 Default rule adds to R/;
12 R’ < OAO_Greedy(R/, F);
13 W =0;

14 defweight = |E(R/,n)|;
for i = size of R’ — 1 to 1 do
if the action of r; is Deny then
if W—(n—1-1)|E(R,i)| + defweight > 0 then
15 defweight < defweight + |E(R/,1)];
16 r; remove from R';
end
else
17 | W W +|E®R,);
end
end
else
18 W« W+ |E(R,1));
end

end

19 return 0;

92

Algorithm 23: RelationCheck(r;, ;).

input : Rule r;, Rule 7;
output: String C, O or N
iscovered < true;

for k = 0 to bitlength of r; do
b;, < kth bit of r;;

bjr < kth bit of r;;

if b;x # bji then

if b, = * then

5 ‘ iscovered < false;

AW N -

end
else if by, # * then
6 l return N,

end

end

end
if iscovered then
7] return C;
end
else
8 I return O;

end

93

Chapter 5
Conclusion

In this paper, we describe the problem of acceleration of packet classification using rule lists and
present the computational complexity of the problem and several methods to solve it.

First, the paper shows the reduction from XC3 to RORO via RAQ. This clarified the
computational complexity of the optimal rule ordering problem and theoretically demonstrated
the difficulty of constructing a polynomial algorithm and the necessity of a heuristic method as
well.

In addition, we proposed methods to deal with the following problems in solving the optimal

rule ordering problem.

e In SGM, when deciding which rule to place in the next sorted list, we have been focusing
on the rules that are directly related to the preceding rules in order, but we proposed a
method to decide which rule to focus on next from the set of rules reachable from that

rule.

e In SGM, only the rules that are required to place the rule under focus in the sorted list
are considered, but it is not possible to consider the rules that can be placed by placing
the rule in the sorted list. Therefore, we proposed the method O(n?), which can find an
order of rules with lower latency than SGM by considering not only the rules reachable

from the rules but also the rules that are dependent on those rules.

e When the method of Hikage et al. constructs a list for each connected component of a
dependent relation, the method with time complexity O(n?) constructs the list using only
weights of single rules. Therefore, we proposed a method to find the order of rules with
lower latency while maintaining O(n?) by constructing the list using the average weights
of the rules to which the rules are directly dependent, instead of the weights of the single
rules.

e Most of the heuristic methods for RORO trace the precedence constraints and reorder the
rules using reachable weighted averages. However, there are some orderings that cannot be
taken into account by the weighted average-based rule reordering method. Therefore, we

proposed a method to find ordering with lower latency by using the difference in latency.

9

XC3 > OAO > RORO
Min-DNF > RLR
Decision list | Rule List
Equivalence "| Equivalence
Computing the number of
#SAT > .
packet Matching

Figure 5.1: The Reduction Relation.

e We proposed a method that aims to reduce the number of packet comparisons by searching

the rules that have no matching packets and placing them lower than the default rules.

e We proposed a method to find an order of rules with lower latency by relaxing the prece-
dence constraint by removing dependencies that no longer affect the policy due to rules

placed higher in the order.

e We proposed a heuristic method for solving the rule-order optimization problem for Allow
lists.

We also showed a reduction from Min-DNF' to RLR, which demonstrates the computational
complexity of the optimal rule list problem and the importance of heuristics for this problem.
We show the relation between the reduction of the optimization problems for acceleration of
packet classification using rule lists, including the problem presented in this paper, and the
results in Figure 5.1.

In addition, we proposed two methods for solving the rule list optimization problem: a
consensus-based method for OAL and a general rule list reconstruction method that removes
the dependent relations. In the consensus-based method, the Allow list is regarded as a logical
formula, and by constructing a maximal rule, one rule is able to match more packets and obtain
an Allow list with lower latency. In the consensus-based method, the Allow list is regarded as
a logical formula, and by constructing a maximal rule, one rule is able to match more packets
and obtain an Allow list with lower latency.

In Appendix A, we proposed a method to solve the rule list equivalence decision problem
using the SAT solver by transforming it into a satisfiability problem.

95

With this method, we obtained a problem related to the optimization problem of acceleration
of packet classification using rule lists.

The issues related to the optimal rule ordering problem are described below.

e There are cases in which SGM reduces latency when the dependencies become more com-
plex. In such cases, the O(n®) method is required to find an order of rules with lower
latency.

e When swapping rules that are overlap relations but not dependencies, weight fluctuations
occur. This can result in a sequence of rules with lower latency since the number of
matching packets increases when a rule with a lower weight is placed higher. However,

existing methods of rule reordering cannot take such an ordering into account.

e For finding rules with no matching packets and removing dependencies that do not affect
the policy, we proposed a method that uses the SAT solver and a method that operates
in polynomial time. The method using a solver has a time complexity that is exponential
to the number of rules, so it cannot finish its operation in a realistic time as the number
of rules increases. The polynomial-time method is less accurate than the solver-based
method. Therefore, there is a need to propose a method that operates in polynomial time

with the same level of accuracy as the method using the SAT solver.

We present issues for the rule list optimization problem. In the rule list reconstruction method
that removes dependencies from the input rule list, the rule with the largest number of matched
packets is placed on top of the rule list, resulting in a rule list with smaller latency. However,
since the number of rules increases due to the removal of dependencies, the latency cannot be
reduced sufficiently when the number of packets that match the default rules increases. Future
work is needed to develop a method to find a rule list with lower latency while maintaining
fewer rules. Furthermore, we need to develop the method that is able to find the rule list with
minimum latency.

Allow list reconstruction using the consensus method is exponential in space computation
with respect to the number of bits, so the operation does not terminate in realistic time for allow
lists with complex policies. Therefore, it is necessary to develop a polynomial-time algorithm
that can find the maximal rule.

Harada et al. proposed a rule list equivalence decision using data structures such as ZDD,
which is faster than the rule list equivalence decision method in Appendix A. However, the
decision time and the amount of memory required for rule list equivalence judgment using ZDD
increase as the number of rules increases. Therefore, devising a faster rule list equivalence

decision method is a future issue.

96

Acknowledgment

I would like to express my sincere gratitude to my supervisor, Professor Ken TANAKA. I am
grateful to Dr. Kenji Mikawa from Informatics Biotechnology Engineering, Maebashi Institute
of Technology for his assistance. My sincere thanks to Professors Leo NAGAMATSU and
Haruhiko KAIYA from the Field of Information Sciences, Graduate School of Science, Kanagawa
University for their helpful comments. I am grateful to Dr. Takashi HARADA from the School
of Information, Kochi University of Technology for his assistance. Finally, I would like to thank
the members of the TANAKA laboratory for their support.

97

Appendix A

Deciding Equivalence of Rule Lists

This chapter describes the rule list equivalence problem. In ORO, the policy equivalence be-
tween the reordered rule list and the input rule list is determined by the overlap relation. This
chapter describes the rule list equivalence problem. In ORO, the policy equivalence between the
reordered rule list and the input rule list is determined by the overlap relation. If the number
of rules is n and the number of bits in a rule is I, the rule list policy equivalence decision in
ORO is O(n?l). However, the rule list policy equivalence decision in reordering and rule list
optimization problems that do not depend on overlap relations or dependency relations is more
complicated. In general, given two decision lists, the problem of determining their equivalence is
known to be coNP-complete. Since the equivalence decision of a decision list can be attributed
in polynomial time to the equivalence decision of a rule list, the equivalence decision of two rule
lists R1 and Ry is also coNP-complete.

Thus, it is generally difficult to determine in polynomial time whether a policy violation has
occurred when the rules are reordered or the rule list is reconstructed. On the other hand, for
relatively small rule lists, it is possible to determine whether policy violations have occurred by
constructing logical expressions corresponding to each rule and transforming them into satisfia-
bility problems. In the following, we show how to construct a logic formula corresponding to a
rule list and propose a method for determining the equivalence of rule list policies.

In A.1, we explain how to convert a rule list into a logical expression. In A.2, we explain
the transformation to a satisfiability problem and propose a method for constructing instances

to be input to the SAT solver. Finally, in A.4, we summarize and discuss future issues.

A.1 Transformation into a Satisfiability Problem

When determining policy equivalence, we focus on packets to which the Allow action is applied.
The packets that match the rule r; of Allow can be expressed as follows, where each rule is

regarded as a propositional variable.

PP AT A AT AT (A.1)

98

Table A.1: Rule list R. Table A.2: Reconstructing R.

Filter R |E(R,i)|F Filter R |E(R,)|7
rP =0%00 4 r{ =1011 45
74 =x100 4 rD =1x1x 64
r4 =0x01 15 4 =1%00 64
g =01%% 5 rf =001x 31
g =00%1 20 rg =1x01 27
g =x1x1 40 rg =0x01 15
P =+x10 52 TR =skxk 2
g =#x11 45 L(R,F) =726
ré =10%0 60
7‘{% =skkokk 10

L(R,F) = 1761

Table A.3: The packet arrival distaribution F : P -+ N

0000 —1 0001+ 8 0010+~ 11 0011+ 20
0100 —3 0101—7 01105 01110

1000 — 60 1001+ 10 10102 1011+ 45
1100 —4 1101 +— 17 1110—39 1111+~ 23

However, in each propositional variable, 1 indicates that the corresponding rule is satisfied and
0 indicates that it is not. Such a formula is constructed for all rules with Allow action, and then
they are combined by logical OR to form a formula for whether or not each packet is applied
with Allow action. At this time, using the distribution rule, the formula can be shortened as
follows when 7 < j.

(r2i ATV (r2y Ay A
D A D D A (A2)
= (il ATV (i A AT
To determine whether a packet matches a rule, the conditions of the rule are converted to
logical expressions. For each bit in the rule, a propositional variable with the corresponding
bit number is concatenated with the logical conjunction of its negation if the variable is 1 or 0,
resulting in a clause for each rule. For example, the condition for 7o in Table A.1 is by A—bg A—by
and the condition for 74 is —b1 A ba.

99

From (A.1) and (A.2), it can be seen that, in each rule in the rule list, by negating the clause
corresponding to the rule with the action of Deny and combining them by logical conjunction,
it is a logical expression to determine whether the variable assignment corresponding to a packet
is adapted to Allow. This is a logical expression that determines whether or not the variable
assignment corresponding to the packet is applicable to Allow. The logical expression Tz that
determines whether a packet is given the Allow action in the rule list in Table A.1 is as follows.

Tr =-|(—|b1 A —b3 A —|b4) N (bg A —bg A —|b4) A (ﬁbl A —bg A b4) A (—|b1 N b2)

(A.3)
N ﬁ(—|b1 A —bg A b4) A ﬂ(bz A b4) A —'(b3 A —|b4) A (b3 N b4) A (bl A —bgy A —|b4)
Using the distribution rule for logical expressions, the shortening is as follows.
Tr =(—|(*lb1 A —bg A “lb4) A by A —bg A —lb4) \% (—lbl A —bg A b4) \% (—lbl N bz) (A 4)

\% (ﬁ("bl A —bg A b4) N —|(b2 N b4) A (b3 N —1b4) A bz A b4) \Y (bl A —by A —1b4)

A.2 Determination using SAT Solver

Whether the policies in the rule list R; and R2 are equivalent or not corresponds to whether
Ty = Tb is constant true or not. In other words, if (71 V Ty) A (=11 V —T3) is unsatisfiable, we
can show that R; and Ry are equivalent.

The satisfiability problem is the problem of determining whether there exists an assignment
of values to variables such that all constraints are satisfied when the set of variables, the domain
of each variable, and the set of constraints among variables are input-solved.

In this study, we use Sugar [51,52], a SAT-type constraint solver, to encode the constructed
logical expressions into satisfiability problems. Since Sugar has a predicate if f, there is no need
to convert the formula to (71 V T2) A (=T V —T%). Also, since Sugar does not require the input
logic formula to be a CNF, there is no need to convert the logic formula created from the rule
list to the CNF required for the input of a general SAT solver.

A.3 Time Complexity of Proposed Method

If the number of rules is n and the bit length is w, when constructing a logical expression, the
computational complexity to construct a logical expression from a single rule is O(w) when all bit
values are 0 or 1. Since this is constructed for all rules, the computational complexity to convert
the conditions of all rules into a logical expression is O(wn). These are combined according to
(A.1) and (A.2). Therefore, the computational complexity of the method to construct the logic
equation to be input to Sugar is O(wn).

A.4 Conclusion

The rule list equivalence problem essentially corresponds to a search for the action to which

packet p applies, and to a search for which rule in the rule list the packet p matches. Calculating

100

the number of packets matching a rule is generally a difficult problem because it is exponential
in the number of bits when done accurately. However, in the optimal rule ordering problem,
reordering with weight fluctuation requires a more accurate match frequency for each rule in
each order. To address this problem, Misherghi’s method constructs a packet space. A packet
space is a set of packets that can match the same rule. The packet space is constructed rapidly
by using data structures based on ZDDs and BDDs and can be considered as an applied version
of the solution method for rule list equivalence decisions using ZDDs proposed by Harada et al.
In the optimal rule list problem, if it is possible to calculate the frequency of packet matching
of the generated rules, it will be possible to determine whether the rules contribute to latency
reduction or not. Thus, research on the rule list equivalence decision problem is an important

problem for the rule list optimization problem.

101

Appendix B

Policy equivalence determination for

multi-valued rule lists

In this paper, we present an equivalence decision algorithm for a rule list policy consisting of only
two rules, A and D, that apply to packets. Here, we propose an equivalence decision algorithm
for a rule list policy consisting of rules that do not limit actions to only A and D, as shown
in Table B.1. Hereafter, rule lists whose actions are not restricted to P and D are referred
to as the multi-valued rule lists. For a multi-valued rule list in which there are three or more
candidates of actions to be applied to a packet, such as Aj, Ag, A3, - -+ , Ap,, we construct logical
formulas as described in the previous section for the number of actions. For a multi-valued rule
list, construct logical expressions 11,75, - - , T, and compare whether the actions are consistent
with A;.

For the rule lists R1 and Ro, Th1,T12, + , Tim and To1,Tha, - - - , Tom, 2m logical expressions
are constructed and m satisfiability problems (73; V Ty;) A (—T1; V —T%;) is unsatisfiable, we can
determine the policy equivalence of R; and Ra.

The computational complexity of the construction is O(mwn), because m, the number of

actions, is required by the logical formula in the previous section.

102

Table B.1: multi-valued rule lists R

Filter R

rf =1011
r? =1x1x%
r? =1x00
r{ =001
rét =1x01
r§ =0%01
r? =skokkk

103

Appendix C

Lower and Upper bounds for Rule
List Latency

For an Allow list R, the upper bound of the latency of an Allow list Wx 1 = R with size K is
L(Wk) and that of an Allow list Bx = R, and the lower bound of the latency of the Allow list
of size K is L(Bg). We show that the order of the Allow lists with the minimal latency is in

descending order of weight.

Lemma C.0.1. Let R be an Allow list such that the weight of the default rTule 5, is 0 and
the weights of other rules are at least 1. Let w; be the weight of the i-th rule in the rule list
Rs under the order o and frequency distribution F, then for the sequence o of rules with the

minimal latency in the Allow list R, we have w1 > wg > ... wp > wp + 1.

Proof. We prove this by contradiction. Let 7 be an order and v; be the ith rule weight of the
Allow list R, in the frequency distribution F. Assume that v; > va > --+ > vp41 not order 7
minimizes the latency of the rule list.

The latency in the frequency distribution F of R, is

n
E ’l:’Ui
i=1

because the weight of the default rule is zero. By the assumption, there exists K(1 < i < n)
such that vy < vy 1. Since the actions of all rules except the default rule are the same, the rules

Tr-1(k) and 7.-1(x41) are interchangeable and the reordering of these rules The latency of the

rule is
k—1 n+1
Zivi + kvgy1 + (k + 1)’l)k + Z ;.
=1 i=k+2

Since vg < Vky1, kvgy + (k+ 1)vg < kvg + (k+ 1)vgy1, the latency of the rule list reordered by
rules 7,-1(x) and 7.—1(k41) is lower than that of the rule. This is inconsistent with the fact that

the latency of the rule list sorted by 7 is the lowest. a

Thus, the Lemma C.0.1 is true.

104

Definition C.0.1. The Allow list consisting of K rules and having no x rule list
R=[r{rd, ... rd]
and representing the same policy is denoted as
Sk = [sf, 58, ..., s8]
From the Lemma C.0.1, we do not lose generality by assuming the above.

Definition C.0.2. . The list of the number of packets (weights) evaluated for each rule in the
rule list Sic = [s{,s4,...,s%] is denoted by
ﬁ: [gag,a;?:]

Because of this, the latency of the rule list Sk is

K
L(Sk,F) =) is.
=1

Since rule s; is the first rule in the rule list, its weight is equal to |M(s1)|, the number of
packets that can match s;. This makes s7 a power of 2.

First, a lower bound on the latency of the Allow list is shown.
Theorem C.0.1. The lower bound on the latency of the Allow list Sk is 2n + @22!@ =9,
Where | = maz{l € N|2! <n — K +1}.

Proof. Let Tk is an Allow list where the weight #; of rule ¢; is 2!, the weight #3 of rule t; is
n—1t — (K —2), t3,%4,...,tx is 1. Where, | = max{l € N|2! <n — K +1}. Then, the latency
L(Tk,F) of Tk is as follows.

K
L(Tk,F) = iti
i=1

K
=t +2%+) it
=3
K
=fh+2n—t—(K—-2)+) i
=3
K
=h+2n—t—(K-2)+) i—3
i=1 (C.1)
K-2
=t +2m—2 —2K+4+) i+(K-1)+K-3
=1
K-—2
=t +2n—20 —2K+4+) i+(K-1)+K-3
=1
K-2
=t +on—20+ Y i
=1
4+ EZDE =D o on

2

105

We show Theorem C.0.1 by proving that there is no Allow list whose latency is smaller than
Tk.
Show that for any Allow list Sk, the following holds.

Zzt < Zzsz

=1
Thus, we show the following,.
K
(F1—51) + 20— %) < Y _i(m — &)
=3

Where
K K
S E=Y i
i=1 i=1
From the above, it follows that

K
(t1 —31) +2(t2 — 52) Zz i — i)
=3

As a result, we show the following.

X

(G-5) <> (- 1)E)

i=1

If (f2 — 32) < 0, the weight of each rule |E(Sk,%)| > 1, so the formula (C) clearly holds. If
(t2 — 52) > 0, we show that the formula (C) holds.

Let the set of subscripts in (33 —%3), (81 —%4), - . . (Sk — tk’) where the difference is more than
1 be 7 is as follows.

EG-52) <) (i-1)(

i€l C.2
=Y @G-+ (i-2)(E %) 2
i€ 1€L

Thus, it is sufficient to show the following,.

B-%2) <Y G-h)+Y (i—2)GE—h)

€T 1€T

where 3 — 83 = > ;c7(Si — &;) and at i greater than 3, 5 > 1, #; = 1, the inequality (C)
holds. o

Then, we show the upper bound on the latency of the Allow list Sk.

106

Theorem C.0.2. The upper bound on the latency of the Allow list Sk is 2l 4 ﬂﬁzm{—_—l) +
it/ Where, | = min{l|2! > &} and q and x are natural numbers satisfying the followin
2 K g

equations.

n—20=(K-1)q+z (K—1>z)
Proof. We assume that Uk is an Allow list where the rule u; weight uy is o U3, Uz, ..., Ugy1
is ¢+ 1, and Uggs,...,ux is ¢. Where | = min{l|2" > %} and ¢ and = are natural numbers

satisfying the following equations.
n—20=(K—-1)g+r (K—1>r)

The latency of U is as follows.

r+1
L({Uk,F Z'Luz—ul—l—Zzuz—k Z 1u;
=2 1=r+2
r+1
=214+ i(g+ 1)+ Z iq
1=2 i=r+2 (03)
z+1
=2 4+ qu + Zz
=2
(K+2)(-1) n z(z + 3)

=9l
+ 2 2

We show that there is no Allow list whose latency is greater than Uk, and we show that the
theorem C.0.2. For any Allow list Sk, we show the following holds.

K

Z'Lsz < Zz’u,z

=1

If 5; = w; for any 4, then the inequality (C) holds. If there exists h > 1 such that 55 < up, then

U — Uig1 < 1 for any 2 or more i and 55 > ;41 for any j, the following two conditions that are
31 > U1,82 2 U, ..., Sh—1 = Uh—1

and

Sht1 < Upt1, Shy2 < Uhy2,---5SK S UK

are satisfied. Let Z be the set of subscripts such that s, > up with 1 <4 < h —1, T be the
set of subscripts such that 5, < Uy with h < j < K. The following inequalities are shown by

assuming J.
Doimk Y G <Y) i
i€l JjeJ €T JjegJ

Z (5 —w) <Zg -—sJ

i€T JjET

(C.4)

107

Then let) be the set of subscripts such that 5, = %, as follows.

Y osi=) w

i€l...K] i€[l..K]
DS G H=D WA G
i€l jieJ yey i€l JjeJ yey
DHHY H=D WD T
€T JjeT €T jeT
> (i—w) =) (@3
i€L JjeTJ

Thus, the following holds.

h-1)) G-m) <h) (G-5)
i€l jeJ
As a result, The inequality(C) is satisfied by the following two formulas that are
YoiE-m) < (h—1)) (5 —w)
i€T i€
and

hY @ —55) < Y i@ —5;)

jeT JjE€T

108

(C.6)

(C.7)

(C.8)

Appendix D

Research Achievement

D.1 Journals and Transactions

1. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “Acceleration of Packet Classification
Using the Difference of Latency,”IPSJ Journal,Vol. 64, No. 9, pp. 1217-1226,Sep.,2023(in

Japanese)

2. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “Computational Complexity of Allow Rule
Ordering and Its Greedy Algorithm,”IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E106-A, No.9, pp.1111-1118,Sep., 2023

3. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “A Rule Reordering Method via Deleting
Pre-Constraints that do not Affect Policy,” B - Abstracts of IEICE TRANSACTIONS on
Communications (Japanese Edition) ,Vol. J104-B, No.10, pp.783-791, Jul., 2021

4. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “A Rule Reordering Method via Dependent
Subgraph Enumeration,”D - Abstracts of IEICE TRANSACTIONS on Information and
Systems (Japanese Edition),Vol. J103-D, No.4, pp.228-237, Apr., 2020

D.2 Conference proceedings

1. T. Fuchino, T. Harada, K. Tanaka, “Accelerating Packet Classification via Direct Depen-
dent Rules,” 12th International Conference on Network of the Future(NoF2021) , Oct. 06
- 08, 2021

2. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “Acceleration of Packet Classification Using
Adjacency List of Rules,” The 28th International Conference on Computer Communication
and Networks(ICCCN2019), Jul. 29 - Aug. 1, 2019

109

D.3 Technical Reports

1. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “A Rule Reordering Method via Deleting
Dependencies Unaffecting the Policy,” Forum on Information Technology,Vol. 2020-09, No.
19, pp. 61-62, Sep., 2020

2. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “Deciding Equivalence of The Rule List
Policies via SAT solver,” IEICE Technical Report, Institute of Electronics, Information

and Communication Engineers, vol. 119, no. 329, pp. 13-19,Dec.,2019

3. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “A Rule Reordering Method via Delet-
ing 0 Weights Rules,” IEICE Technical Report, Institute of Electronics, Information and
Communication Engineers,vol. 119, no. 249, pp. 47-52,0ct.,2019

4. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, “A Reordering Method via Rules Pairing
based on Average Weights,” IEICE Technical Report, Institute of Electronics, Information
and Communication Engineers,Vol.118;, No.295, pp.31-36, 15,Nov.,2018

110

Bibliography

[1]

2]

[3]

[6]

[7]

8]

[9]

[10]

[11]

Thilan Ganegedara, Weirong Jiang, and Viktor K Prasanna. A scalable and modular
architecture for high-performance packet classification. IEEE Transactions on Parallel and
Distributed Systems, 25(5):1135-1144, 2013.

T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using efficient
multi-dimensional range matching. SIGCOMM Comput. Commun. Rev., 28(4):203-214,
October 1998.

Florin Baboescu and George Varghese. Scalable packet classification. SIGCOMM Comput.
Commun. Rev., 31(4):199-210, August 2001.

V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four switch-
ing. SIGCOMM Comput. Commun. Rev., 28(4):191-202, October 1998.

Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. SIGCOMM
Comput. Commun. Rev., 29(4):147-160, August 1999.

P. Gupta and N. McKeown. Algorithms for packet classification. Network. Mag. of Global
Internetwkg., 15(2):24-32, March 2001.

Wenjun Li, Dagang Li, Yongjie Bai, Wenxia Le, and Hui Li. Memory-efficient recursive
scheme for multi-field packet classification. IET Communications, 13(9):1319-1325, 2019.

E. S. M. El-Alfy and S. Z. Selim. On optimal firewall rule ordering. In 2007 IEEE/ACS
International Conference on Computer Systems and Applications, pages 819-824, May 2007.

Ken Tanaka, Kenji Mikawa, and Kouhei Takeyama. Optimization of packet filter with
maintenance of rule dependencies. IEICE Communications Ezpress, 2(2):80-85, Feb 2013.

Errin W. Fulp. Optimization of network firewall policies using directed acyclic graphs. In
In Proc. IEEE Internet Management Conf, extended abstract, 2005.

A. Tapdiya and E.W. Fulp. Towards optimal firewall rule ordering utilizing directed acycli-
cal graphs. In Computer Communications and Networks, 2009. ICCCN 2009. Proceedings
of 18th International Conference on, pages 1-6, Aug 2009.

111

[12]

[13]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ken Tanaka, Kenji Mikawa, and Manabu Hikin. A heuristic algorithm for reconstructing a
packet filter with dependent rules. IEICE Trans. Commun., 96(1):155-162, Jan 2013.

K. Hikage and T. Yamada. Algorithm for minimizing overhead of firewall with mainte-
nance of rule dependencies. Proc. IEICE General Conference 2018, 2016(1):6, mar 2016 (in
Japanese).

Ratish Mohan, Anis Yazidi, Boning Feng, and B. John Oommen. Dynamic ordering of
firewall rules using a novel swapping window-based paradigm. In Proceedings of the 6th
International Conference on Communication and Network Security, ICCNS ’16, pages 11—
20, New York, NY, USA, 2016. ACM.

X. Shao, K. Tanaka, and K. Mikawa. Rule list optimization method via dag. In Proc.
IEICE General Conference 2018, page 334, March 2018 (in Japanese).

G. Misherghi, L. Yuan, Z. Su, C. N. Chuah, and H. Chen. A general framework for bench-
marking firewall optimization techniques. IEEE Transactions on Network and Service Man-
agement, 5(4):227-238, December 2008.

Ryosuke Fumiiwa and Toshinori Yamada. Exact algorithm for sorting rules in firewall.
Technical Report 15, Technical Committee on Circuits and Systems (CAS), 2019.

Vitalii Demianiuk, Kirill Kogan, and Sergey Nikolenko. Approximate packet classifiers with
controlled accuracy. IEEE/ACM Transactions on Networking, 29(3):1141-1154, 2021.

P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent cuttings. Micro,
IEEE, 20(1):34-41, Jan 2000.

Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. Efficuts: Optimizing
packet classification for memory and throughput. SIGCOMM Comput. Commun. Rev.,
40(4):207-218, August 2010.

T. Y. C. Woo. A modular approach to packet classification: algorithms and results.
In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nine-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat.
No.00CHS87064), volume 3, pages 1213-1222 vol.3, March 2000.

Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’03,
pages 213-224, New York, NY, USA, 2003. ACM.

Sorrachai Yingchareonthawornchai, James Daly, Alex X. Liu, and Eric Torng. A sorted
partitioning approach to high-speed and fast-update openflow classification. In 2016 IEEE
24th International Conference on Network Protocols (ICNP), pages 1-10, 2016.

112

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

FEric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural packet classification. In Proceedings
of the ACM Special Interest Group on Data Communication, pages 256-269. 2019.

Yu-Hsiang Lin, Wen-Chi Shih, and Yeim-Kuan Chang. Efficient hierarchical hash tree for
openflow packet classification with fast updates on gpus. Journal of Parallel and Distributed
Computing, 167:136-147, 2022.

Longlong Zhu, Jiashuo Yu, Jiayi Cai, Jinfeng Pan, Zhigao Li, Zhengyan Zhou, Dong Zhang,
and Chunming Wu. Frod: An efficient framework for optimizing decision trees in packet
classification. In 2022 IEEE/ACM 80th International Symposium on Quality of Service
(IWQoS), pages 1-10. IEEE, 2022.

Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. Cutsplit: A decision-tree combining
cutting and splitting for scalable packet classification. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pages 2645-2653. IEEE, 2018.

James Daly and Eric Torng. Bytecuts: Fast packet classification by interior bit extraction.
In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 2654—
2662. IEEE, 2018.

Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. Scaling open {vSwitch} with
a computational cache. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1359-1374, 2022.

Wenjun Li, Tong Yang, Yeim-Kuan Chang, Tao Li, and Hui Li. Tabtree: A tss-assisted
bit-selecting tree scheme for packet classification with balanced rule mapping. In 2019
ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS), pages 1-8. IEEE, 2019.

Yao Xin, Yuxi Liu, Wenjun Li, Ruyi Yao, Yang Xu, and Yi Wang. Kicktree: A recursive
algorithmic scheme for packet classification with bounded worst-case performance. In Pro-
ceedings of the Symposium on Architectures for Networking and Communications Systems,
pages 23-30, 2021.

Y Ishikawa, T.Harada, K.Tanaka, and K.Mikawa. Decision tree construction based on run-
based tries with pointers. B- IEICE TRANSACTIONS on Communications (Japanese
Edition), 103(2):48-56, 2020.

F. Baboescu, , and G. Varghese. Packet classification for core routers: is there an alternative
to cams? In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Cat. No.03CH37428), volume 1, pages
53-63 vol.1, March 2003.

Hasibul Jamil and Ning Weng. Multibit tries packet classification with deep reinforcement
learning. In 2020 IEEE 21st International Conference on High Performance Switching and
Routing (HPSR), pages 1-6. IEEE, 2020.

113

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Milind M Buddhikot, Subhash Suri, and Marcel Waldvogel. Space decomposition techniques
for fast layer-4 switching. In International Workshop on Protocols for High Speed Networks,
pages 25—41. Springer, 1999.

A. Feldman and S. Muthukrishnan. Tradeoffs for packet classification. In Proceedings IEEE
INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064),
volume 3, pages 1193-1202 vol.3, March 2000.

V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search.
SIGCOMM Comput. Commun. Rev., 29(4):135-146, August 1999.

Holden Gordon, Christopher Batula, Bhagyashri Tushir, Behnam Dezfouli, and Yuhong Liu.
Securing smart homes via software-defined networking and low-cost traffic classification. In
2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC),
pages 1049-1057. IEEE, 2021.

James Daly, Valerio Bruschi, Leonardo Linguaglossa, Salvatore Pontarelli, Dario Rossi,
Jerome Tollet, Eric Torng, and Andrew Yourtchenko. Tuplemerge: Fast software packet pro-
cessing for online packet classification. IEEE/ACM transactions on networking, 27(4):1417-
1431, 2019.

Meiyi Yang, Deyun Gao, Chuan Heng Foh, Yajuan Qin, and Victor CM Leung. A learned
bloom filter-assisted scheme for packet classification in software-defined networking. IEEE
Transactions on Network and Service Management, 19(4):5064-5077, 2022.

Kenji Mikawa and Ken Tanaka. Run-based trie involving the structure of arbitrary bitmask
rules. IEICE Transactions on Information and Systems, E98.D(6):1206-1212, 2015.

Ken Tanaka and Suguru Itoh. Reconstruction method of filtering rules in order to mitigate
load of network gears. B-IEICE TRANSACTIONS on Communications (Japanese Edition,),
88(5):905-912, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first
edition edition, 1979.

Takashi Fuchino, Takashi Harada, Ken Tanaka, and Kenji Mikawa. Acceleration of packet
classification using adjacency list of rules. In 2019 28th International Conference on Com-
puter Communication and Networks (ICCCN), pages 1-9, 2019.

Takashi Fuchino, Takashi Harada, Ken Tanaka, and Kenji Mikawa. A rule reordering
method via dependent subgraph enumeration. D - Abstracts of IEICE TRANSACTIONS
on Information and Systems (Japanese Edition), J103-D(4):228-237, 04 2020.

114

[46] David E. Taylor and Jonathan S. Turner. Classbench: A packet classification benchmark.
IEEE/ACM Trans. Netw., 15(3):499-511, June 2007.

[47] Takashi Fuchino, Takashi Harada, and Ken Tanaka. Accelerating packet classification via
direct dependent rules. In 2021 12th International Conference on Network of the Future
(NoF), pages 1-8, 2021.

[48] Niklas Eén and Niklas Sérensson. An extensible sat-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, pages 502—
518, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[49] Takashi Harada and Ken Tanaka. Computational complexity of whitelist constructing.

Technical Report 249, Technical Committee on Theoretical Foundations of Computing
(COMP), Oct 2019.

[50] Arlene Fink, Jacqueline Kosecoff, Mark Chassin, and Robert H Brook. Consensus methods:
characteristics and guidelines for use. American journal of public health, 74(9):979-983,
1984.

[61] Naoyuki Tamura and Mutsunori Banbara. Sugar: A csp to sat translator based on order
encoding. Proceedings of the Second International CSP Solver Competition, pages 65—69,
2008.

[52] Naoyuki Tamura, Tomoya Tanjo, and Mutsunori Banbara. System description of a sat-
based csp solver sugar. Proceedings of the Third International CSP Solver Competition,
pages 71-75, 2008.

115

