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ABSTRACT

During a seismic event, ground movement transfers a massive amount of energy to
structures; even comparatively weak seismic motions may result in tremendous
constructive damage and many fatalities. To reduce inelastic energy dissipation
demand on the framing system of structures, viscous dampers (VDs) are used in new
structures as well as the deficient structures due to its adaptability, easy installation,
and simple design. The use of VDs reduces damage to the frame systems, and where
the VDs are positioned in the structure directly affects its seismic performance. In
particular, high-rise structures offer more options for damper placement, so it is
necessary to find an appropriate method for placing dampers optimally in a structure.

The krill herd (KH) algorithm is widely used in engineering optimization as no
gradient information is necessary, and only a few parameters require adjustment.
However, in high-rise structures, whén dampers can place in many locations, KH
often falls into local optimality. Therefore, this study proposes a novel target-oriented
krill herd (TOKH) algorithm to solve complex engineering optimization problems.
Especially the optimal placement of dampers in high-rise buildings. The following
main conclusions are drawn:

- 1). The time complexity experiment performed using the Rastrigin benchmark
function demonstrated that the running time of TOKH algorithm was linear based on
the number of iterations, which was consistent with the inference of big-O. The two
operators introduced do not change the time complexity of TOKH.

2). TOKH algorithm was compared with nine other algorithms using 15 benchmark
functions. The performance of TOKH algorithm for most functions and different
dimensions, particularly for different types of high-dimensional functions, was
statistically superior fo those of the other metaheuristic algorithms.

3). TOKH algorithm was applied to four discrete truss optimization problems under
multiple loading conditions. We compared the numerical results for various trusses
obtained using TOKH algorithm with other methods in the literature to verify the
effectiveness, efficiency, and robustness. The results indicated that, among the ten
algorithms, TOKH algorithm is competitive in terms of optimal weight, average
weight, and stability. Furthermore, TOKH algorithm demonstrated significantly faster
convergence to the optimal solution compared to other methods. Compared to KH
algorithm, although TOKH required slightly more computational cost, its optimization
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efficiency improved by 20.90, 17.37, 53.53, and 88.01%, respectively. As the
complexity of the truss increased, the advantage of TOKH became more evident. The
proposed TOKH algorithm can serve as an ideal method for handling discrete truss
problems.

4). The high-rise structural example indicate that compared with other algorithms,
the VD locations found by TOKH algorithm give better seismic performance.
Meanwhile, the TOKH also has good global convergence.

5). The VD placements obtained by TOKH are mainly in the middle and lower
stories of the high-rise structure, which is consistent with practical experience.

6). TOKH offers a practical and powerful method for determining the optimal

damper placement in high-rise structures.

Keywords: Viscous damper, Optimal placement, Discrete truss optimization, Target-

oriented, Krill herd algorithm, Robustness.
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CHAPTER 1. INTRODUCTION
1.1 Research background

During a seismic event, ground movement transfers a massive amount of energy to
structures; even comparatively weak seismic motions may result in tremendous
constructive damage and many fatalities [1]. To reduce inelastic energy dissipation
demand on the framing system of structures, viscous dampers (VDs) are used in new
structures as well as the deficient structures [2]. The use of VDs reduces damage to
the frame systems, and where the VDs are positioned in the structure directly affects
its seismic performance [3]. In particular, high-rise structures offer more options for
damper placement, so it is necessary to find an appropriate method for placing
dampers optimally in a structure [4-5]. VDs distribution methods have been
recommended for response reduction in structures, and dampers can be located along
the. height of a building by three approaches: analytical, heuristic, and evolutionary
(metaheuristic) methods, respectively [6]. Of these, the metaheuristic approach is
receiving increasing attention because of its easy implementation, parallel computing,
and absence of gradient calculations [7], and some examples of this approach are
given below.

Apostolakis and Dargush [8] established a computational method on the basis of
genetic algorithm (GA) for the hysteretic passive dampers design inside steel
moment-resisting frames. Furthermore, the computational framework explored the
optimum locations for relinquishing metallic buckling restrained braces and moment-
resisting frames.

Sarcheshmehpour et al. [9] determined the optimal location of dampers for 2D steel
moment frames by GA to satisfy three levels of service performance, life safety, and
collapse prevention as target performance. The endurance time method was utilized
for the frames analysis and seismic response estimation. Results show that the
maximum drift ratio reduction is obtained at low excitation intensities; however, less
drift is calculated in the upper floors of the fixed-based frames in comparison with the
soil-structure systems.

Bogdanovic and Rakicevic [10] performed the optimization process of damper
placement by GA and thirty optimum solutions were concluded. Without optimization,

the process is complex and takes a long computational time to achieve the required



solutions but considering the reduction in drifts and acceleration as objective
functions, leads to better structural performance for optimum damper placement.

Sonmez et al. [11] presented and utilized artificial bee colony (ABC) algorithm to
optimize the location and size of VDs in planar buildings, which effectively increase
the resistance of frame systems to earthquakes. For a planar building frame, the
design variables were the damper coefficients and objective function was defined as
the elastic base shear force and the top displacement transfer function amplitude. The
presented technique is proved by considering the steepest direction search algorithm.
The ABC algorithm is a relatively simple method to solve the damper configuration
issue.

Amini and Ghaderi [12] developed a hybridized search algorithm named Ant
Harmony Search (AntHS) for combinatorial optimization problems and in particular
for finding optimal locations of dampers in a structural system. Based on numerical
examples the idea of a dynamic probability mass function helps the AntHS to identify
potentially qualified areas in the search space faster while avoid stagnation and being
trapped in local optima.

Miguel et al. [13] studied a technique that performs efficiently to discover the
optimum design for both placement and force of dampers located in the footbridges.
This was achieved by implementing the firefly algorithm (FA). Two footbridges were
analyzed, considering the positions and forces of the friction dampers as the design
variables, and minimizing the maximum acceleration as the cost function. This
method was useful in determining both the optimal friction force and the ideal
location of each damper.

Cergevik et al. [14] used two metaheuristic algorithms (the bat algorithm and the
dragonfly algorithm) for position optimization to find the minimum number of
dampers subject to the specified limits for the peak floor acceleration and inter-story
drift ratios. Using these approaches, they managed to place the fewest dampers in the
most suitable spans.

Ayyash and Hejazi [15] hybridized the particle swarm optimization (PSO) and
gravitational search algorithm (GSA) to optimize the performance of earthquake
energy dissipation systems (i.e., damper devices) simultaneously with optimizing the
characteristics of the structure. To examine the performance of the proposed PSO-

GSA optimization method, it was applied to a three-story reinforced structure
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equipped with a seismic damper. The results revealed that the method successfully
optimized the earthquake energy dissipation systems and reduced the effects of
earthquakes on structures, which significantly increase the building’s stability and
safety during seismic excitation.

The above metaheuristic algorithms have been extensively used for optimally
placing dampers in structures. However, high-rise buildings subjected to seismic
excitation exhibit stronger dynamic responses, and there is an urgent need to find the
optimal location of dampers in such buildings [16]. Unfortunately, as the number of
structural stories increases, so does the number of damper placement combinations,
which in turn places higher demands on the global optimization performance of
existing metaheuristic algorithms.

The target-oriented krill herd (TOKH) algorithm is an improved krill herd (KH)
algorithm that is both robust and competitive. Compared with other metaheuristic
algorithms, TOKH shows stronger global optimization performance, and its
robustness has been verified by benchmark functions and structural reliability analysis.
In this paper, the TOKH algorithm is proposed to solve the optimal placement of VDs
in high-rise structures. The effectiveness of TOKH is evaluated using a 22-story shear
building and a 20-story frame structure [17], and the results show that its damper
placement gives seismic performance that is more efficient than that obtained with
other methods in the literature.

1.2 Objectives and organization

The objectives of this dissertation would be:

(1). To optimize the damper placement in high-rise structures, a TOKH algorithm is
proposed.

(2). The robustness of the proposed TOKH algorithm is verified by benchmark
function and truss optimization, and it is applied to the optimal placement of dampers
in high-rise structures.

For the purpose, four chapters will be covered in this dissertation. The organization
is given as follows:

In chapter two, the implementation principle of the TOKH algorithm is introduced
in detail, and the robustness of TOKH in solving discrete optimization problems is

verified through benchmark function and truss optimization examples.



In chapter three, the optimization performance of TOKH in the damper placement of
high-rise structures is verified through three damper optimization placement examples.

In chapter four, the conclusions will be summarized.
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CHAPTER 2. TARGET-ORIENTED KRILL HERD (TOKH)
ALGORITHM

Truss optimization has gained considerable attention because of its direct
applicability to the design of structures. Designers and owners require optimized
trusses to reduce building costs [1]. However, the implementation of discrete truss
optimization problems is challenging as several truss designs generally entail a
complex design space. Traditionally, researchers have used mathematical approaches
that employ rounding off techniques based on continuous solutions to solve discrete
truss optimization problems. However, these methods may become infeasible or
generate increasingly suboptimal solutions with numerous variables [2]. Therefore,
simulation-based metaheuristic algorithms to solve truss optimization problems are
required.

Metaheuristic algorithms combine rules and randomness to imitate natural
phenomena and attempt to identify the optimum design in a reasonable amount of
computing time using trial-and-error techniques [3]. The ability to balance
exploitation (intensification) and exploration (diversification) during a search
determines the efficiency of a specific metaheuristic algorithm. Exploration ensures
the validity and breadth of the algorithm in the search area, which can be beneficial
for global optimization. Exploitation expands the local search for the currently
explored optimal area and further finds the minimum [4]. To address global search
requirements, modern metaheuristic algorithms have evolved to incorporate three
primary purposes, namely, solving problems faster, solving larger problems, and
enhancing algorithm robustness [4]. Modern metaheuristic algorithms include the
genetic algorithm (GA) [5-7], biogeography-based optimization [8—10], harmony
search (HS) [11-13], differential evolution [14, 15], ant colony optimization [16],
particle swarm optimization [17-19], artificial bee colony [20-22], teaching-learning
based optimization (TLBO) [23], artificial fish swarm [24], firefly algorithm [25-27],
political optimizer (PO) [28], cuckoo search [29, 30], bat algorithm [31, 32], manta
ray foraging optimization (MRFO) [33] and krill herd (KH) algorithm [34]. Among
these algorithms, the KH algorithm is known for its powerful exploitation ability,

adjustment of fewer parameters, and easy implementation.
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The KH algorithm was inspired by the herding behavior of Antarctic krill swarms.
During optimization, each krill is primarily affected by other krill individuals,
foraging action, and physical diffusion. Foraging and other krill-induced motions
include two global and two local strategies that operate in parallel, rendering KH a
robust algorithm [34]. Compared to earlier metaheuristic algorithms, the KH
algorithm imposes fewer mathematical requirements and can be easily adapted to
solve various engineering optimization problems. Furthermore, rather than using a
gradient search, the KH algorithm uses a stochastic search based on the krill
population, which eliminates the need for derivative information. These features have
increased the flexibility of the KH algorithm and produced better solutions.
Consequently, it has been incréasingly investigated and successfully employed in
various practical structural optimization problems, such as truss structures [35], pin-
jointed plane frames [36], and welded beams [37].

Nevertheless, the KH algorithm can cause a risk of stagnancy after the initial stage
when applied to multi-extreme discrete optimization problems. Therefore, several
approaches have been explored to increase the diversity of solutions, resulting in a
few KH variations with improved performance. A chaotic KH (CKH) algorithm was
presented to improve global optimization [38], wherein the three primary movements
of a krill swarm were adjusted during the optimization process using various chaotic
maps. An opposition KH (OKH) algorithm was proposed to increase the diversity of
the population [39]. Herein, three operators, namely, opposition-based learning,
position clamping, and Cauchy mutation were added to the normal KH algorithm to
improve the global convergence. A multi-stage KH (MSKH) algorithm was
introduced in [40] by adding a local mutation and crossover operator and an elite
scheme in the exploitation stage. This resulted in the complete utilization of the global
and local search capabilities of the krill swarm to solve the global numerical
optimization problem. Guo et al. [41] proposed an improved KH (IKH) algorithm,
wherein information could be exchanged between the top krill during movement. The
IKH algorithm employed a novel Lévy flight distribution to extend the search range
and added an elite scheme to update the krill-motion calculation, generate better
candidate solutions, and accelerate global convergence. Laith et al. [42] proposed a
modified KH algorithm (MKHA) to improve global exploration by modifying the

genetic operator of the basic KH. After analyzing the influence of a step-size scaling
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factor ¢t on KH, Li et al. [43] advanced KH with a linear decreasing step (KHLD),
wherein ¢t was linearly decreased over time to balance exploration and exploitation.
Another study [44] used stud KH (SKH) algorithm for 22 benchmark functions.
Furthermore, a levy-flight KH (LKH) algorithm [45] was proposed to improve the
optimization performance of the KH algorithm; its effectiveness was verified using
several benchmark functions.

Although several variants of KH algorithm enhance its optimization performance,
their accuracy when handling discrete truss optimization problems remains
unsatisfactory. The aforementioned algorithms ignore the effect of the “suboptimal
krill” and “center of food” on the aggregation of KH, resulting in an inadequate
balance between global exploration and local exploitation. Typically, the discrete truss
optimization easily falls into a local minimum. To prevent this, a novel target-oriented
KH (TOKH) algorithm is proposed in this study, which considers both the
“suboptimal krill” and “center of food”. Initially, the “suboptimal krill” and “best krill”
were crossed to generate a novel “cross krill” for better global exploration.
Subsequently, an improved local mutation and crossover (ILMC) operator was
applied to fine-tune the “center of food” and population to improve local exploitation
for effectively solving truss optimization. Four discrete truss design problems are
applied to verify the robustness of the developed TOKH algorithm. The optimization
efficiency of TOKH algorithm increased by 20.90, 17.37, 53.53 and 88.01% for the
four problems when compared to those of KH algorithm. The results verify that the
proposed method is highly competitive with other optimization approaches reported in

the literature and avoids falling into a local optimum.
2.1 The principle of TOKH

2.1.1 KH algorithm

This subsection briefly introduces the principles of KH [34] algorithm. KH
algorithm uses an optimization process to attain a global solution defined using an
objective function similar to the process by which a krill swarm obtains food and
gathers continuously. Over time, the location of an individual krill is determined by
three primary movements, namely,
i: Motion induced by other individuals,

ii: Foraging action, and
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iii: Physical diffusion.
These motion types can be expressed using a Lagrangian model in a n-dimensional
decision space as follows [34]:
aXx .
—L=N,+F + D, 2.1)
dt
dX, . o .
where -d—’ denotes the speed of each krill, and N,, F;, and D, indicate the motions
t
induced by other krill individuals, foraging action, and physical diffusion of the i-th
krill individuals, which can be obtained using Egs. (2.2), (2.4), and (2.6), respectively.

The approximate value of the direction of induced motion ( ;) can be calculated

using a target swarm density (target effect), local swarm density (local effect), and
repulsive swarm density (repulsive effect). For krill individual 7, this movement can

be formulated as [38]:
Ninew = Nma\'ai + a)"NiOId (22)

where

local target

@ =a +a 23)
Here, N" denotes the maximum induced speed, @, indicates the inertia weight of

the motion induced in the range of [0,1], N,."ld represents the last motion induced,

local
i

target
i

a and o

denote the local and target effects, respectively.

The foraging action involves two primary components, namely, the current “center
of food” location and previous experience with respect to the “center of food”

position. The foraging action for the i-th krill can be expressed as follows [38]:

-F;- — Vfﬁ, +a)f];vi0/d (24)
where

ﬂl e ﬁiﬁmd + lBibm (2 5)

Here, V, denotes the foraging speed, @, indicates the inertia weight within the range
[0,1], B/ represents the “center of food” attraction, 5’ denotes the effect of the

best fitness, and £ indicates the last foraging action.
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The third part of physical diffusion is primarily affected by the maximum diffusion

rate and random vector. The physical diffusion can be expressed as [38]:
D’ o Dmﬂ,\’é‘ (2.6)

where D"* denotes the diffusion speed, and ¢ indicates a random vector within the
range [—1,1].

Foraging actions and movements induced by other krill individuals involve two
global and two local optimization strategies. The simultaneous operation of these
optimization strategies renders the KH algorithm a powerful optimization method.
During a specific period, different effective movement parameters of the movement
can be used. The changes in the location of a krill individual from ¢ to #++Af can be
expressed as follows [34]:

X, (t+Ar)=X, (t)+>At% 2.7)
where At is an important parameter that completely depends on the search space. Here,
At can be increased appropriately when the search space is wide, and when the search
space is small, it can be appropriately reduced. Additionally, the crossover and

mutation mechanisms of GA [5] can be incorporated to improve the performance of
KH algorithm.

Fig. 2.1 Krill swarms in the ocean

2.1.2 Improvement operators

Local exploitation and global exploration are the two critical components of
modern metaheuristic algorithms. Exploitation reinforces the local search for
minimum or near-optimal solutions, whereas exploration involves a global search to

ensure the efficient and effective exploration of the search space [4]. Excessive
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diversification causes solutions to jump around from one potentially optimal solution
to another, increasing the convergence time required to reach optimum. However,
excessive reinforcement may trap the algorithm in local optimum, as only a portion of
the local space may be visited. Therefore, an effective algorithm requires an
appropriate balance between these two components to ensure efficient convergence,
avoid falling into a local optimum, and guarantee the solution accuracy.

KH algorithm has demonstrated its ability to identify near-global regions in
continuous-truss optimization problems [35]. However, the insufficient balance
between global exploration and local exploitation causes the algorithm to easily fall
into a local optimum when solving discrete truss optimization problems. The
proposed TOKH algorithm intends to balance the associated exploitation and
exploration components to solve the discrete truss optimization problem more
 efficiently.

This subsection describes the basic principle of TOKH algorithm. The learning
efficiency of the population oriented to the “suboptimal krill” and “best krill” should
be improved to enhance the global optimization of KH algorithm. In the exploration
phase, a crossover operator was established between the “suboptimal krill” and “best

krill” to generate a “cross krill”. The crossover Lagrangian model can be expressed as
Xc:‘Xvi+a).(Xbest_‘X'i)—/1'(‘)(i_Xsub) (28)

where X¢, Xi, Xvest, and X denote the “cross krill”, “current krill”, “best krill”, and
“suboptimal krill” respectively; and w and / indicate different random numbers in the
range of [0,1]. If the fitness value of X; was better than that of Xpest, Xc was replaced
by Xbest. Algorithm 1 presents the pseudocode used to achieve the aforementioned

crossover operator.

Algorithm 1 : Pseudocode of the crossover operator.

Begin
Xe = Xi + w* (Xvest -Xi)- I*(Xi- Xsub)
if  Xcis better than Xpest then
Xbest = Xc
end if
End

15



Through the above cooperative strategy, the “cooperative krill”” can further leverage
valid information on “best krill” and “food” to conduct better searches in unknown
areas, and to strike a balance between diversification and intensification. To
intuitively feel the powerful effect of adding the “cooperative krill”, the movement
trajectories of the “best krill”, “food”, and “cooperative krill” are recorded using the
unimodal Schwefel 2.22 function and the multimodal Rastrigin function. Fig. 2.2
manifests the three-dimensional graph of two functions. In the experiment on testing
the motion trajectories of three particles, there are a total of 10 krill, 3 dimensions,
and 50 iterations. The positions of the three particles iterations [1, 5, 15, 30, 50] are
reported. The motion trajectories of the three particles are displayed in Fig. 2.3. It can
be displayed clearly that during the iteration, the “best krill” has a larger range of
motion (global exploration), and “food” has a smaller range of motion (local
exploitation). The range of motion of the “cooperative krill” is between the “best krill”
and “food”, filling in the gap in the optimization space of two factors. The experiment

result evinces that the cooperative strategy better balances global exploration and

local exploitation.

Schwefel 2.22 function

10000

5000 -

100

== 0
100 -100
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Fig. 2.3 Three particle optimization trajectories

After global exploration, the LMC operator was improved [40] to enhance the local
exploitation. The LMC operator was inspired by the reproduction mechanism of GA,;
it prevented the premature fall into local optima by increasing the diversity of the
population. However, the LMC operator orily considered the “best krill” as the target
for random crossover and mutation, which was not conducive to global optimization
in the exploitation stage. The improved local mutation and crossover (ILMC) operator
was developed to improve the local exploitation of TOKH. In ILMC operator, the
optimum between the “center of food” and “best krill” served as the candidate
solution, and the population learned from the candidate solution to accelerate
aggregation to the optimum region in the exploitation stage. Algorithm 2 presents the
pseudocode of ILMC operator.

In the Algorithm 2, Xpest denotes the “best krill”, Xgod indicates the “center of food”.
d represents the decision variables. Xi(j) denotes the j-th variable of the solution X;. W;
indicates the offspring. j represents a random integer number between 1 and d
obtained from a uniform distribution, and rand denotes a random real number in the
interval (0, 1) obtained from a uniform distribution.

To make the ILMC mechanism easier to understand, an explanation is provided
through the optimization of the krill swarm on the Sphere function. As shown in Fig.

2.4, in the process of krill population convergence, the “competitive krill” is closer to

18



the global optimum than worst krill and can carry out local exploitation in a better

area to speed up the global convergence.

Algorithm 2 * Pseudocode of the ILMC operator.

Begin

if  Xbest is better than Xfood
Xeross = Xbest

else

Xeross = Xfood

end if

forj=1toddo

if rand < 0.5 then

Wi(7) = Xeross(7)

else Wi(j) = Xcross(f)

end if

end for j

Obtain the individual fitness value W;

if Wi is better than X; then

Xi=W;
end
End
100 ¢ e T —— .
;3' / \,\ K:/
f v A
[ ¢ 3
sol | |
1 15 'j |
s Kirill swarm /f
" Best krill ;S
-50 ; ) /
®  Worst knill 'y
*  Competitive krill S
100 O Contour e A
-100 -50 0 50 100

X1
Fig. 2.4 Location distribution of the krill herd
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Based on this analysis, the steps of the TOKH algorithm can be summarized as
follows.
Step 1: Initialization: The generation counter was set to /=1, and the population P of
NP krill individuals was randomly initialized. The foraging speed V7 maximum
diffusion speed Dmax, and maximum induced speed Nmax Were also set.
Step 2: Kurill population fitness evaluation: Each krill individual was evaluated
according to its position.
Step 3: Motion calculation: The motion induced by the presence of other individuals
was obtained using Eq. (2.2), the foraging motion was calculated using Eq. (2.4), and
the physical diffusion was determined based on Eq. (2.6).
Step 4: The genetic operators [34] were implemented.
Step 5: Crossover operator: The “best krill” and “suboptimal krill” were crossed
according to Algorithm 1.
Step 6: Population fine-tuning: The krill population was fine-tuned using ILMC
operator in Algorithm 2. Each krill was evaluated considering its new position. |
Step 7: Update the population position: The positions of krill individuals were
updated in the search space.
Step 8: Repeat: steps 2—7 was repeated until a stop criterion was satisfied or a
predefined number of iterations were corr;pleted.

Fig. 2.5 illustrates the flowchart of the TOKH algorithm.
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Fig. 2.5 TOKH algorithm flowchart

2.2 Time complexity analysis of TOKH

The time complexity of the algorithm was investigated to analyze the real-time
efficiency of the TOKH algorithm in a better manner. The worst-case running time
was expressed as a function of its input using a big Omicron (big-0) notation [48].
Typically, the big- O notation is used to denote an upper bound on the growth rate of a
function and can be primarily applied to describe asymptotic behavior [48]. Logically,
the big- O order is derived according to three rules:

1) All addition and subtraction constants during runtime are replaced by constant 1,
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2) Only the highest order items are retained, and
3) The highest term constant is removed.

Firstly, TOKH algorithm is started with parameters initialization which requires
constant time complexity O(1). Secondly, in steps 2-4, three different movements of
krill are implemented based on the rules of KH. The time complexity grows linearly
according to the number of krill #, consequently, it requires O(3n). Thirdly, referring
to crossover operator and ILMC operator, the time complexity in step 5 and step 6 are
equal to O(1) and O(n), respectively. Moreover, to implement the population update,
the time complexity in step 7 is equal to O(n). Finally in step 8, the population
evolves according to a specific number of iterations fmax. Therefore, the total time
complexity of TOKH is expressed by O(1+(3n+1+n+n)Xtma)€ O(n). In summary, it
is obvious that most of the time complexity of TOKH comes from the basic KH, and
the two operators introduced do not change the time complexity of TOKH.

The Rastrigin benchmark function [45] was selected for the verification. The
functional dimensions were 30 and 100, and the population size was 50. All
experiments were implemented and executed using MATLAB R2018a running on a
personal computer with a 7-th generation core 17 CPU and Windows 10 OS. Fig. 2.6
depicts the experimental results for the time complexity.

As indicated in Fig. 2.6, the ordinate denotes the total time required in seconds for
the algorithm to run 20 times on the Rastrigin benchmark function [45]. The abscissa
represents the number of iterations, ranging from 0 to 1000; the running time was
recorded once every 50 generations. The red and blue lines represent the fitting results
of TOKH and KH algorithms, respectively. The running time and iteration of TOKH
algorithm satisfied the linear relationship, and the time complexity of TOKH
algorithm was O(n). The experimental results validated that the two optimization

operators introduced do not change the time complexity.
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2.3 Benchmark functions test

Fifteen benchmark functions were used to compare the optimized performance of
TOKH algorithm with nine other versions of KH algorithm, including KH [34], CKH
[38], OKH [39], MSKH [40], IKH [41], MKH [42], KHLD [43], SKH [44], and LKH

[45]. Table 2.1 summarizes the specific parameter settings of each algorithm.
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Benchmark functions are widely used for evaluating algorithm performénce owing
to their ease of implementation and high reliability. In this study, 15 different
dimensional benchmark functions (Fig. 2.7) were selected to compare the
performances of the algorithms. The dimensions (72) of the benchmark functions were
set to 10, 30, and 50; the optimization performance of the 30-dimension was
particularly analyzed, which is a pretty representation of the average performance of
the algorithm. The expressions and properties of these benchmark functions have been
reported in a previous study [38].

Unimodal function

Multimodal function

Fig. 2.7 Benchmark functions
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The population size NP of all algorithms was 50. The maximum number of
iterations was 50, and 30 simulations were independently performed by each
benchmark function. Tables 2.2-2.5 summarize the simulation results of the algorithm
considering 30-dimension. Table 2.2 lists the best-optimized performances of these
algorithms, whereas Table 2.3 presents the general optimization performance, Table
2.4 indicates the worst optimization performance, and Table 2.5 describes the stability.
Tables 2.6 and 2.7 summarize the general optimization performance when the
dimensions of the benchmark functions were 10 and 50, respectively.

When the dimension of the benchmark function was 30, TOKH and MSKH
exhibited the best optimization performance for nine and seven benchmark functions,
respectively (Table 2.2). TOKH algorithm performed better than the other KH
algorithms on F1-F2, F6-F7, and F10-F14; MSKH algorithm performed best on F2—
F5, F8-F9, and F15. About the general optimization performance (Table 2.3), TOKH
algorithm performs best on ten benchmark functions (F1-F2, F4, F6-F7 and F10-F14)
and MSKH algorithm performs best on five benchmark functions (F3, F5, F8-F9 and
F15). Furthermore, TOKH algorithm performed best on twelve benchmark functions
(F1-F2. F4, F6-F8 and F10-F15) with respect to the worst optimization performance
(Table 2.4). In terms of stability (Table 2.5), TOKH algorithm exhibited the best
stability for twelve benchmark functions (F1-F2. F4, F6-F8 and F10-F15). As
indicated in Table 2.6, when the dimension of the benchmark function was 10, TOKH
algorithm performed best on ten benchmark functions (F1-F4, F6-F7, F10-F12, and
F14), MSKH algorithm performed best on F5 and F8—F9, and SKH exhibited the best
performance on F15. When the dimension of the benchmark function was 50, TOKH
algorithm performed best for all 15 benchmark functions (Table 2.7). Fig 2.8
illustrates the convergence process of several benchmark functions for 30-dimension.
As indicated in the figure, TOKH algorithm was significantly superior to all other
algorithms with respect to the optimization process.

Based on the data presented in Tables 2.2-2.7 and Fig 2.8, we concluded that the
developed metaheuristic TOKH algorithm was more robust and stable than other

metaheuristic search methods.
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2.4 Truss optimization

To further investigate the robustness of TOKH algorithm for truss optimization, we
solved the weight minimization problems of four truss structures under multiple
loading conditions using discrete variables. The algorithms were coded in MATLAB
and the structures were analyzed using the direct stiffness method. The optimization
results were compared to the results obtained from other optimization methods
(including TLBO [23], PO [28], MRFO [33], KH [34], CKH [38], OKH [39], IKH
[41], KHLD [43], and LKH [45].) in the literature to evaluate the robustness of
TOKH algorithm. Twenty independent runs were performed for each design problem
with the population size of each algorithm set to 30.

2.4.1 Computational model

Discrete sizing optimization of the truss attempts-to identify the optimal cross-
section of the system elements to minimize the structural weight. Moreover, the
minimum design must satisfy the inequality constraints that limit the design variable
sizes and structural responses [46]. |
The discrete structural optimization problem for a truss can be formulated as [28]:
S=[S,.S,,....5,1,

Find
S eD,D, =[d,.d nd, ]

hm

To minimize W(S) = Z }/i.Si 'L,. (29)
i=1
) oS0, <0, =12,..n
Subject to 5 < 51 <68, j=1,2,..,m

Here, S represents the set of design variables, D; denotes an allowable set of discrete
values for design variable S;, v indicates the number of design variables or member
groups, r(i) represents the number of available discrete values for the i-th design
variable, W(S) denotes the weight of the structure, »n indicates the number of
component members in the structure, m represents the number of nodes, y; denotes the
material density of member /, L; indicates the length of member i, J; represents the
nodal displacement/deflection at node j, o; denotes the stress developed in the i-th
element, and dmin and Jomax represent the lower and upper bounds, respectively.

The optimum design of truss structures must satisfy the optimization constraints

stated in Eq. (1). This procedure comprises the following three rules:
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Rule 1: Any feasible solution is better than any infeasible solution.
Rule 2: Between two feasible solutions, a solution with a better objective function
value is preferable.
Rule 3: Between two infeasible solutions, the solution with the smallest constraint
violation is preferred.

The first and third rules direct the search toward feasible regions, whereas the

second rule directs the search to a feasible region with suitable solutions [47].

2.4.2 Planar 10-bar truss

The planar 10-bar truss structure is one of the most popular test problems in
structural optimization, previously solved in [49]. Fig 2.9 depicts the geometry and
support conditions followed for this two-dimensional, cantilevered truss under loading
conditions. As indicated in the figure a static load of 100 kips was applied downward
to two nodes. To satisfy the stress and displacement constraints, the minimum weight
of the 10-bar truss was obtained by adjusting the cross-sectional area of each member.
A set of 41 discrete values were used for the possible cross-sectional areas for each
member, as follows: S ={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.88, 2.93, 3.09, 3.13, 3.38,
3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,4.80, 4.97, 5.12, 5.74, 7.22,
7.97,11.5,13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} |
(in%). The combined size of all feasible solutions was (41)!°. The Young’s modulus of
the material was 107 psi, and the weight density was 0.1 Ib/in®. The displacement
constraints in the X and Y directions at each node were limited to 2 in. The restraining

stress of each member was less than 25 ksi.

1

360 1n

360 1n - l 360 in l
100 kips 100 kips

Fig 2.9 10-bar truss
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Table 2.8 summarizes the optimal designs and their corresponding number of
structural analyses (NSA) using the TOKH with nine other methods. TOKH, TLBO,
and MRFO achieved the lightest designs. However, statistical results after 20 runs
also demonstrate that TLBO and MRFO exhibited less stability compared to TOKH.
Based on the average of 20 independent runs, the NSA is 3100 for TOKH and 1580
required for KH. Although TOKH has 1520 more structural analyses than KH, the
optimization efficiency of TOKH algorithm is 20.90% higher than that of KH
algorithm. Fig 2.10 shows the average convergence curves obtained for TOKH and
the nine different methods when the planar 10-bar truss is applied. This is a relatively
simple structural sizing optimization problem, and its optimal sizing is easy to find. It
is obvious that through efficient global exploration, TOKH quickly converges to the
minimum with fewer iterations. The TOKH algorithm has the highest global

convergence rate. For other algorithms, MRFO works very well, because it ranks 2

among ten methods.

8500 §
=== KH o OKH
—%—— TOKH - |KH
> — — —- KHLD MRFO
“y——CKH 49— PO
4——LKH —%— TLBO
§ 7500 |
E .
2 .
o &
2 7000
1))
1]
3
= 6500
6000
5500 ‘ : |
Q 10 20 20 " n

No.lterations

Fig 2.10 Algorithm optimization process of the 10-bar truss
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2.4.3 Spatial 25-bar truss

Fig 2.11 illustrates the 25-bar transmission tower spatial truss, which has been analyzed by
several researchers [49]. All structural elements were organized into eight groups, where the
members of each group shared the same material and cross-sectional properties. Table 2.9
presents each element group according to the member number; (each member is defined
based on its start and end node numbers). Table 2.10 lists the coordinates of the 25-bar truss
nodes. The Young’s modulus of the material was 107 psi, and the weight density was 0.1
Ib/in’. A single load case was applied to the structure in the design of the 25-bar truss (Table
11). The allowable stresses for each member were +40 ksi and the allowable displacements
for each node in the X, Y and Z directions were +0.35 in. Discrete values for each cross-
sectional area were obtained from the available set S = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
009,1.0,1.1,1.2, 1.3, 1.4, 1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,25, 2.6, 2.7,2.8,2.09,
3.0,3.1,3.2, 3.3, 3.4} (in?). The size of the design search space was (34)%.

Fig 2.11 25-bar truss

Table 2.12 compares the final optimum design and the corresponding results calculated by
the ten methods. Compared with the other nine methods, TOKH algorithm still has the
robustness. The average weight gained by TOKH algorithm is 488.34 Ib, 17.37% lighter than
that of KH aﬂgorithm. The standard deviation with the TOKH algorithm is 2.59, which is the
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lowest among all methods. Fig 2.12 depicts the average convergence curves for the 25-bar
truss. TOKH quickly converges to a better global region in the early iterations and continues
to search the minimum in about 10-20 iterations through local exploitation. MRFO algorithm

converges slowly in the early stage and gradually overtakes TLBO and PO in the late
iteration.

700 T T T ¥ T
e KH OKH
x\ —4—— TOKH -~ |KH
650 . ~ = = -KHLD MRFO
¥—CKH —4—PO
= 49— LKH —%—TLBO
= s?j??:}.:_
+= 600 = “\ij"'*“‘+-—-+—‘+—-+—’+—'—;~~—+_—-—4—'~+._+._:_
2
[}
5 550
l_
500
450 . L L . .

0 10 20 30 40 50
No.lterations

Fig 2.12 Algorithm optimization process of the 25-bar truss
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2.4.4 Spatial 72-bar truss

The optimization of the 72-bar, four-level tower (Fig 2.13) was reported in [49]. The
material density and modulus of elasticity of this 72-bar truss were identical to those of the
10- and 25-bar truss structures. The allowable stress of each member was +25 ksi, and the
permissible displacement of each point on the top layer in all directions was £0.25 in. The 72-
bar space truss was divided into 16 groups. Table 2.13 lists the two independent load cases
applied to the spatial 72-bar space truss. The range of the discrete cross-sectional areas was
0.1-3.0 in? with an increment of 0.1 in? for each of the 16 element groups, resulting in 30

discrete cross-sections. The size of the resulting search space was (30)'® designs.

17 18

60in

13 14
60in

9 10
60 n

-5 6

60 mn

1 2

120 in
Fig 2.13a Side view Fig 2.13b Typical story

Fig 2.13 72-bar truss

Table 2.14 compares the final optimum design and the corresponding results identified by
the ten methods. The lightest weight and average weight achieved by TOKH algorithm,
which are 387.94 1b and 402.30 Ib, respectively. Based on the average weight of 20
independent runs, although TOKH algorithm has 1520 more structural analyses than KH, the
optimization efficiency of TOKH is 53.53% higher than KH. These results indicate that
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TOKH algorithm has an apparent advantage in search ability compared with the other nine
methods. Fig 2.14 shows the optimization results for the spatial 72-bar truss, which is a
complex structural sizing optimization problem. From Fig 2.14, different from the planar 10-
bar truss as shown in Fig 2.10, the figure shows that TOKH quickly converges to a better
global region in the early iterations by global exploration and continues to find the minimum
in about 10-30 iterations through efficient local exploitation. MRFO algorithm still has the
disadvantage of slow convergence in the early stage, and as the iterations increase, the

convergence speed gradually surpasses that of TLBO and PO.
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Fig 2.14 Algorithm optimization process of the 72-bar truss
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2.4.5 A 942-bar truss tower

The final example considered in this study is that of a 26-storey space truss tower
consisting of 942 bars and 244 nodes schematically depicted in Fig 2.15. This problem aims
to identify the lightest design with the design variables defined as the member cross sectional
areas and divided into 59 group. A single load case is considered such that it consists of
lateral loads of 5.0 KN (1.12 kips) applied in both x- and y-directions and a vertical load of —
30 KN (-6.74 kips) applied in the z-direction at all nodes of the tower. The density and
elastic modulus of the material are 2767.99 kg/m3 (0.1 1b/in3) and 69 GPa (1.0x10* ksi),
respectively. The constraint conditions include allowable stresses and displacements for the
truss tower. The maximum allowable stress in each member under tension and compression
equals 172.37 MPa (25 ksi) while the maximum allowable displacement in x, y, z directions
for .the all the nodes is 38.1 cm (15.0 in). A discrete set 'of 137 economical standard steel
sections selected from W-shape profile list based on area and radii of gyration properties is
used to size the variables. The lower and upper bounds on size variables are taken as 6.16 in?
and 215.0 in?, respectively [50]. The size of the design search space is (137)*°. Further details

regarding member grouping and design constraints can be found in reference [51].
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Compared with the above examples, this truss tower includes more elements and load
cases. Table 2.15 lists the final optimum design and the corresponding results calculated by
the ten methods. Even though the lightest weight gained by TOKH algorithm is marginally
heavier than PO algorithm, TOKH algorithm has the smallest average weight and standard
deviation of the optimum weight among all the approaches. Regarding computational burden,
due to a more discrete and nonlinear search space, TOKH requires 12,330 structural analyses
and KH requires 6,230 structural analyses. Although TOKH requires a greater NSA iteration
compared to KH algorithm, the truss weight is 88.01% lighter than KH. While considering
both the search robustness and the optimize efficiency, the proposed achieves markedly better
performance. Fig 2.17 shows the optimization process for the 942-bar truss tower, which is a
complex structural sizing optimization problem with high dimensional design and nonlinear
buckling constraints. When attempting to solve this optimization problem, methods may
easily trap into a local optimum. Hence, a method capable of maintaining both efficient
global exploration and local exploitation is likely to produce better results. As can be seen in
Fig 2.17, in fhe early iterations, TOKH can quickly converge to a.better global region by
global exploration. Then, the minimum is further found in about 10-100 iterations through
effective local exploitation. We can draw the conclusion that, TOKH is superior to the other
algorithms during the process of optimization, while PO and MRFO performs the second and
the third best in this complex truss sizing optimization, respectively.

From above-analyses about the Fig 2.10, Fig 2.12, Fig 2.14, and Fig 2.16, the intrinsic
property of TOKH, which distinguishes it from the other methods in the literature, is that in
optimizing the sizing of complex trusses, TOKH quickly converges to a better global region
in the early iterations by global exploration, and then the local exploitation can be used to

further find the minimum.
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To examine the robustness and computational cost of TOKH, this section compares
the statistical results of the four trusses examples yielded by TOKH with those gained
by nine others widely used metaheuristic algorithms. Table 2.16 lists the statistical
results of the optimized designs for the four truss examples from 20 runs using TLBO,
PO, MRFO, KH, CKH, OKH, IKH, KHLD, LKH and TOKH. Among ten methods,
TOKH identifies the lightest designs in the 10-, 25- and 72-bar trusses. As the
structure becomes more complex, the performance of TOKH degrades, ranking it
second in the 942-bar truss. The average weight and standard deviation obtained by
TOKH ranks first among 10-, 25-, 72- and 942-bar trusses. These results indicate that
TOKH possesses robustness and stability compared to the methods mentioned in the
literature. Results also indicate that in the optimization of 10-, 25-, 72-, and 942-bar
trusses, the optimization efficiency of TOKH algorithm has improved_ by 20.90, 17.37,
53.53, and 88.01%, respectively, compared to KH algorithm. With the higher the
structural dimension and the stronger the discretization, the more prominent the
robustness of TOKH algorithm.

However, to improve the robustness of optimized truss sizing, TOKH requires
more computational cost than KH. In the 10-, 25- and 72-bar trusses, after 50
iterations, TOKH requires 3100 structural analyses while KH requires 1580 structural
analyses. But considering the computational time, TOKH takes only 0.47s, 1.18s, and
3s longer than KH respectively. In the 942-bar truss, due to the higher dimensional
design space, TOKH requires more structural analyses, and its computational time
takes 121.93s longer than that of KH. As the truss becomes more complex, the
computational cost of TOKH increases more significantly, which means that the
computational efficiency is sacrificed to improve the robustness. But the
computational time of TOKH increases within an acceptable range.

A novel variant of KH algorithm, referred to as TOKH algorithm, was developed
for the sizing optimization of discrete truss structures. First, a crossover operator was
established between the “best krill” and “suboptimal krill” to produce a robust “cross
krill”. Second, an ILMC operator was introduced to fine-tune the “center of food” and
candidate solutions. The objective of TOKH algorithm was to optimize the balance
between exploration and exploitation. Therefore, the crossover operator was used to
focus on the global exploration, whereas ILMC operator was used for the local

exploitation. It is found that:
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The time complexity experiment performed using the Rastrigin benchmark
function demonstrated that the running time of TOKH algorithm was linear based
on the number of iterations, which was consistent with the inference of big-O.
The two operators introduced do not change the time complexity of TOKH.
TOKH algorithm was compared with nine other algorithms using 15 benchmark
functions. The performance of TOKH algorithm for most functions and different
dimensions, particularly for different types of high-dimensional functions, was
statistically superior to those of the other metaheuristic algorithms.

TOKH algorithm was applied to four discrete truss optimization problems under
multiple loading conditions. We compared the numerical results for various
trusses obtained using TOKH algorithm with other methods in the literature to
verify the effectiveness, efficiency, and robustness. The results indicated that,
among the ten algorithms, TOKH algorithm is competitive in terms of optimal
weight, average weight, and stability. Furthermore, TOKH algorithm
demonstrated significantly faster convergence to the optimal solution compared
to other methods. Compared to KH algorithm, although TOKH required slightly
more computational cost, its optimization efficiency improved by 20.90, 17.37,
53.53, and 88.01%, respectively. As the complexity of the truss increased, the
advantage of TOKH became more evident. The proposed TOKH algorithm can
serve as an ideal method for handling discrete truss problems.

Although TOKH algorithm takes on better global optimization capability, it has a

high computational cost. Therefore, further research is needed on TOKH algorithm to

improve robustness while reducing the computational cost.
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CHAPTER 3. OPTIMIZED PLACEMENT OF DAMPERS

3.1 Computational model of damper placement

The computational model of the optimal placement of dampers in a structure includes a
structural model and an optimization model. The structural model is designed based on
structural dynamics, then the corresponding optimization model is designed, and finally the

optimization calculations are performed in MATLAB.

3.1.1 Structural model

Optimal damper placement requires analysis of the structural response under different
damper placements, the results of which are then fed back to the algorithm for iterative
optimization. The structural response can be obtained from analyzing the dynamic response
of the structural story model, with the design variable being the distribution state of the
dampers in each story.

In general, the output of a linear viscous damper (VD) [1-8] depends on its instantaneous
relative velocity [9], that is,

F(t)=—c, 1) NER)!
where C,q41s equivalent damping coefficient, u(?) is the relative speed of the two sections of
the damper. and the equation of motion for a common structural system with VDs installed
are usually expressed in matrix form as

[M{ii()} + ([C]+[C, D{u@®)} +
[K{u)} =-[M}{1}5,)

where {X,(r)} is the ground acceleration; [Cz] is the additional damping matrix of the

(3.2)

dampers; [M], [C], and [K] are the mass, damping, and stiffness matrices, respectively; {i(?)},
{i(®)}, and {u(r)} are the acceleration, velocity, and displacement vectors of the main
structure, respectively. Generally, the above equations are solved using classical time-history
analysis methods such as the Newmark-/ method and Wilson-6 method.

When the structure is subjected to external excitation, the viscous damper can effectively
dissipate the energy applied to the structure by the external load, thereby reducing damage to
the main body of the structure. It has many advantages, such as simple design, easy

construction, good performance, etc., so it is highly popular and widely used in the

construction field.
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Fig. 3.1 A viscous damper

3.1.2 Optimization model

Deciding on the optimal locations of dampers in order to mitigate the dynamic response of

a structural system subjected to external loadings (e.g., ground acceleration) is one of the
challenges structural designers encounters. This subsection considers an optimization
problem where the designer must install VDs in a structural system. The objective function
denoted by f'(.), generally depends on the dynamic response of the structural system and the
configuration and forces of the dampers, that is,

min f(X,?)

X =[x, Xy o0 X, 1"

st.: x, €{0, 1}, (=1,2, ..., n)

g(X,1)<0
where 7 is the number of structural stories, X is the damper placement scheme, ¢ is the time of

(3.3)

dynamic loading, and g (X, ) < 0 is a normalized constraint. In this study, the objective

function f of the optimization problem is taken as the maximum inter-story drift angle [10-14].

f = min(emax ) (3 '4)
where @ is the inter-story drift angle of the structure under seismic action.
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3.2 Examples

3.2.1 22-story shear structure

In this example [15] a structural designer intends to embed VDs within eight floors of a 22-
story shear structure as shown in Fig. 3.2. The system is governed by Eq. (3.3), and the
model’s properties are given in Table 3.1. The structural damping ratio ¢ is 0.05, The VD
stiffness is 2.32x107 N/m, and the damping coefficient is 1.08x10° N-s/m. VDs can be
installed between any two successive floors but not between the ground and the first floor.
The structure is subjected to the Northridge (EW) ground acceleration [16-20], and the time-

history analysis includes the first 29.9 s of the ground motion’s period.

< Ground Acceleration —-}

Fig. 3.2 22-story shear structure

Table 3.2 presents the optimal damper designs given by TOKH and the other metaheuristic
algorithms, and as can be seen, TOKH distributed the dampers on the 2nd, 3rd, 9th—13th, and
15th stories of the structure. These metaheuristic algorithms involve the selection of random
numbers, so for each optimization problem, the operation was performed ten times and then
the minimum, mean, and standard deviation were calculated, as given in Table 3.2. These
results clearly indicate that TOKH has considerable advantages over the other seven

approaches in terms of optimal damper placement; the maximum inter-story drift angle
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obtained by TOKH is 29.95x107, which is smaller than the outcomes of the other algorithms.
In term of stability, FA method has the most stable performance, followed by TOKH. It can
be seen that TOKH, which does not require any gradient information, is effective in finding

the optimal locations of the added VDs.

Table 3.1 Model parameters of 22-story shear structure

Floor Story height (m) Mass (kg) Stiffness (N/m)
1 4.5 3.02x10° 3.19x10%
2 4 3.02x10° 3.19x10%
3-8 4 2.92x10° 2.25%x108
9-14 4 2.55%10° 1.58x108
15-19 4 2.23x10° 1.35%108
Table 3.2 Optimization results
Algorithm Minimum Mean Standard Optimal placement
deviation
TOKH 29.95x10°  30.15x107 0.10 2,3,9~13,15.
KH [21] 31.24x10°  31.60x107 0.30 1~4,7,9~11.
ABC [22] 30.70x10°  30.97x107 0.17 1~5,9~11.
BA [23] 31.89x10°%  32.34x107 0.33 1~7,22.
FA [24] 30.70x10°  30.76x107 0.050 1~5,9~11.
GA [25] 30.70x10°  31.11x1073 0.29 1~5,9~11.
HS [26] 31.07x10°  32.52x107 0.71 1~4,8~10,21.
PSO [27] 30.41x10°  31.03x107 0.48 3,6,9~13,15.

Fig. 3.3 shows the iterative process of each algorithm. Compared to the other approaches,
TOKH converges rapidly to the optimal solution, avoiding getting trapped in local optima.
While PSO algorithm initially suffers from slow convergence, as the iterations proceed it

gradually surpasses FA and GA, ranking second in terms of convergence rate.
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Fig. 3.3 Tterative progress of each algorithm (example 1)

3.2.2 20-story frame structure

The model used in this example is a framework structure with five spans and 20 floors
taken from [28]. The intention is to install 15 VDs in spans as shown in Fig. 3.4, with only
one damper allowed to be installed in each span. The properties of the structural system are
summarized in Table 3.3 The damping coefficient of the VDs is 2.1x10” Ns/m, and the other
parameters are the same as that example 1. The framework structure is subjected to EL

Centro (NS) ground acceleration [29-37], with only bending and axial deformations

considered, and the time-history analysis includes the first 30s.

Ty, g T e S T S R

Fig. 3.4 20-story frame structure
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Table 3.3 Model parameters of 20-story frame structure

Floor Story height (m) Mass (kg) Stiffness (N/m)
1 3.6 3.03x10° 3.19x10°
2-5 3 2.92x10° 2.25%10°
6-10 3 2.55%108 1.58x10°
11-15 3 2.23x10° 1.35x10°
1620 3 2.00x10° 1.30x10°

Table 3.4 Optimization results under EL Centro (NS) seismic wave

Standard Optimal
Algorithm Minimum Mean
deviation placement
2(2), 3, 6(5),
TOKH 9.34x1073 9.36x1073 5.18x1073
- 7(5), 8(2)
1,2(2), 3, 6(5),
KH 9.81x107 9.88x107 3.22x102
7(2), 8(2), 10
2.3.5.0(5),
ABC 9.37x107 9.38x107 1.17%1073
7(5), 8,9
3,4(2),5,6(4),
BA 9.97x107 10.08x1073 6.16x102 7(2),9, 11, 13(2),
17
6(5), 7(5), 8(2),
FA 9.38%1073 9.39x1073 2.12x1073 ©) @
10, 11(2)
2, 6(5), 7(2), 8(2),
GA 9.77%1073 9.98x107 1.72x10°! (5 7(2), 82)
9(2), 10, 11
2(2),6(4),7,8,
HS 9.95%1073 10.16x1073 1.33%107! 10, 13, 14, 15,
19(2), 20
2(2), 4, 5, 6(5),
PSO 9.61x107 9.92x107 7.79%1072
7(4),9, 11
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This example is used to study the performance of TOKH statistically to see whether it
converges to an appropriate solution after a reasonable number of iterations. For this purpose,
both TOKH and the other methods are executed separately 10 times each, with each
execution comprising 100 iterations. The results are summarized in Table 3.4. As this table
displays the best solutions found by TOKH (during separate executions) generally have lower
mean value and standard deviation than those of original KH. More precisely, the distribution
of the best solution found after 100 iterations by TOKH has a mean of 9.36x107 and a
standard deviation of 5.18x107, while for KH the corresponding values are 9.88x107 and
3.22x102. This also indicates that TOKH is statistically more reliable since it has found
better solutions compared to other method. The best solution found by TOKH among all of
these 10 separate executions is as follows: two dampers in 2nd story, one in 3rd story, five in

6th story, five in 7th story and two in 8th story, with 9.34x1073 as the corresponding value of

the objective function.
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Fig. 3.5 Iterative progress of each algorithm (example 2)

Fig. 3.5 shows the convergence rates of TOKH and the other methods during 100 iterations,
showcasing TOKH algorithm’s persistently robust global search capability in tackling the
optimal locations of dampers in structural systems. Furthermore, FA and ABC exhibit closely

aligned convergence speeds and offer noteworthy performance in terms of global

convergence.
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3.2.3 26-story truss tower

The model used in this example is a 26-story truss tower structure [38-45]. The intention is
to install 30 VDs between stories in Fig. 3.6. The properties of the structural system are
summarized in Table 3.5. The damping coefficient of the VDs is 2.1x107 N-s/m, and the
other parameters are the same as that example 1. The framework structure is subjected to
Northridge (EW) ground acceleration, with only bending and axial deformations considered,

and the time-history analysis includes the first 29.9s of the ground motion’s period.
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Fig. 3.6 A 942-bar truss tower
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Table 3.5 Model parameters of 26-story truss tower

Floor Story height(m) Mass (kg) Stiffness (N/m)
1 4.29 12.18x10° 10.50x10%
2-12 3.60 8.12x10° 7.17%x10°
13 4.06 5.80x10° 5.30%10°
14-20 3.60 4.14x10° 3.93%10°
21 . 3.95 2.96x10° 2.90%10°
22 -26 3.60 2.28x103 2.33x10°

Table 3.6 presents the optimal damper designs given by TOKH and the other metaheuristic
algorithms. These metaheuristic algorithms involve the selection of random numbers, so for
~each optimization problem, the operation was performed ten times and then the minimum,
mean, and standard deviation were calculated, as given in Table 3.6. These results clearly
indicate that TOKH has considerable advantages over the other seven approaches in terms of
- optimal damper placement; the maximum inter-story drift angle obtained by TOKH is
21.93x10, which is smaller than the outcomes of the other algorithms. In term of stability,
FA method has the most stable performance, followed by PSO.

Table 3.6 Optimization results

Standard Optimal
Algorithm  Minimum Mean

deviation placement
1(2), 2(2), 3(1), 4(1), 5(2), 6(1),
8(2), 9(1), 10(3), 11(3), 12(3), 13(3),
14(2), 15(2), 16(1), 17(1), 19(1),
20(1)
1(2), 2(3), 3(2), 4(1), 5(1), 6(1),
7(2), 8(2), 9(2), 11(2), 12(1), 13(2),
14(2), 15(2), 16(1), 17(2), 18(1),

TOKH  21.93x10°% 22.45x107 0.32

KH 22.45x107%  23.15x107 0.67

19(1)
1(8), 2(1), 3(1), 5(1), 7(1), 8(2),
ABC  22.59x103 23.02x103 027 9(1), 11(2), 12(1), 13(1), 14(2),
15(2), 16(2), 17(2), 18(1), 22(2)
BA  23.12x103 24.62x10°  0.80 1(2), 2(2), 3(2), 4(1), 5(2), 6(1),
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FA

GA

HS

PSO

23.52x103  23.78x1073

24.19x10° 24.95x107

23.68x10° 24.57x1073

22.19x10°  22.65x1073

0.11

0.69

0.49

0.22

8(1, 9(1), 10(2), 11(2), 12(2), 13(1),
14(2), 15(1), 16(1), 17(1), 18(1),
19(1), 20(1), 21(1), 22(1), 23(1),

25(1)

2(1), 3(1), 4(1), 5(3), 6(1), 7(1),
8(3), 9(2), 10(1), 11(2), 12(3), 13(1),
142), 153), 16(2), 17(1), 18(1),
20(1)

1(6), 2(2), 3(1), 5(1), 6(2), 7(2),
8(3), 9(1), 10(1), 11(2), 12(1), 13(1),
14(2), 15(2), 16(2), 17(1), 18(1)
2(2),3(2), 8(2), 9(3), 10(3), 11(1),
13(1), 14(4), 15(1), 16(1), 17(2),
18(1), 20(1), 22(1), 24(1), 25(2),

| 26(2)
2(1), 4(1), 5(2), 6(1), 8(2), 9(2),
10(1), 11(2), 12(1), 13(2), 14(4),
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Fig. 3.7 shows the convergence rates of TOKH and the other methods during 100 iterations.
From Fig. 3.7, we can draw the conclusion that, TOKH is significantly superior to the other
algorithms during the process of optimization, while PSO and ABC performs the second and
the third best in this constrained optimization problem, respectively.

This study proposes the TOKH algorithm for finding the optimal locations of dampers in a
structural system and in particular for a high-rise structure. It is found that:

1. The two high-rise structural examples indicate that compared with other algorithms, the
VD locations found by TOKH algorithm give better seismic performance. Meanwhile, the
TOKH also has good global convergence.

2. The VD placements obtained by TOKH are mainly in the middle and lower stories of
the high-rise structure, which is consistent with practical experience.

3. TOKH offers a practical and powerful method for determining the optimal damper
placement in high-rise structures.

Looking to the future, the expectation is that TOKH will be extended to optimization

analysis of the elastic—plastic phase of structures, and subsequent research will be focused on

that aspect.
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CHAPTER 4. CONCLUSIONS

In this research, a target-oriented krill herd (TOKH) algorithm is proposed to solve
practical engineering optimization, especially the optimal placement of dampers in high-rise
structures.

In terms of truss structure size optimization:

1. The time complexity experiment performed using the Rastrigin benchmark function
demonstrated that the running time of TOKH algorithm was linear based on the number of
iterations, which was consistent with the inference of big-O. The two operators introduced do
not change the time complexity of TOKH.

2. TOKH algorithm was compared with nine other algorithms using 15 benchmark
functions. The performance of TOKH algorithm for most functions and different dimensions,
particularly for different types of high-dimensional functions, was statistically superior to
those of the other metaheuristic algorithms.

3. TOKH algorithm was applied to four discrete truss optimization problems under
multiple loading conditions. We compared the numerical results for various trusses obtained
using TOKH algorithm with other methods in the literature to verify the effectiveness,
efficiency, and robustness. The results indicated that, among the ten algorithms, TOKH
algorithm is competitive in terms of optimal weight, average weight, and stability.
Furthermore, TOKH algorithm demonstrated significantly faster convergence to the optimal
solution compared to other methods. Compared to KH algorithm, although TOKH required
slightly more computational cost, its optimization efficiency improved by 20.90, 17.37, 53.53,
and 88.01%, respectively. As the complexity of the truss increased, the advantage of TOKH
became more evident. The proposed TOKH algorithm ;:an serve as an ideal method for
handling discrete truss problems.

In terms of optimal damper placement in high-rise structures:

1: The high-rise structural example indicate that compared with other algorithms, the VD
locations found by TOKH algorithm give better seismic performance. Meanwhile, the TOKH
also has good global convergence.

2: The VD placements obtained by TOKH are mainly in the middle and lower stories of
the high-rise structure, which is consistent with practical experience.

3: TOKH offers a practical and powerful method for determining the optimal damper
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placement in high-rise structures.

In the future, in-depth research should be continued from the following aspects.

1: Although TOKH algorithm takes on better global optimization capability, it has a high
computational cost. Therefore, further research is needed on TOKH algorithm to improve
robustness while reducing the computational cost.

2: Future trends should focus on enhancing the structural optimization performance of the
TOKH algorithm, and further work into the continuation and applications of the proposed
technique, like, in combination with boundary update approach for optimization problems of
implicit constraints.

3: TOKH has a high computational cost in engineering optimization. Further research is
needed on TOKH to improve robustness while reducing the computational cost.

4: At present, the structure under earthquake is all elastic deformation, and the structural -

plastic deformation needs to be further considered.
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