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Arrhythmia Diagnosis System by the Engineering
Methods through the Generalized Function Theories

202070185 MD. MASUDUR RAHMAN

Abstract

Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. The
automated external defibrillator (AED) is the arrhythmia diagnosis system, and it re-
quires an accurate and quick decision algorithm to increase the survival rate. There-
fore, precision and quick decision by the AED has become essential in improving
the survival rate. ’

To increase the precision of the AED, it is important to extract accurate infor-
mation (scalogram) from the abnormal ECG signals. The Gabor wavelet transform
(GWT) is a powerful time-frequency method that gives a good distinction between
normal and abnormal signals. However, it does not achieve enough discrimination
between shockable and non-shockable arrhythmias in the abnormal class signals
due to generating the same level of coefficient values. The same level of coeffi-
cient values over time gives a barrier to getting the best distinction by the decision
algorithm. In addition, various decision methods are applied to distinguish the ar-
rhythmias in the decision stage. However, blindly use of such general methods is not
the best for considering our problems. For example, the decision becomes changed
for selecting the different number of neighbors of the test sample of the Euclidean
metric function-based method. Also, many methods require a substantial computa-
tion time to generate the decision is not practical for diagnosis purposes. Therefore,
an accurate and rapid decision method is the ultimate demand for the safety and
performance of an AED.

This dissertation addresses the above issues and proposes two methods to increase
the survival rate by enhancing the arrhythmias diagnosis system in the AED.

First, the GWT with pseudo-differential-like operators and non-linear transfor-
mation function-based method is proposed to generate an accurate scalogram for
shockable and non-shockable arrhythmias signals. Then, we performed qualitative
and quantitative evaluations to select the best pair of pseudo-differential-like oper-
ators with non-linear transformation function. A good discrimination performance
in the decision algorithm is guaranteed through the best pair chosen.

Second, we develop a simple decision method in the general topological space
(a new metric function is adopted) to guarantee high accuracy and quick decision
between shockable and non-shockable arrhythmias. Numerical experimental results
on datasets show the efficiency of the proposed methods for shockable and non-
shockable arrhythmias distinction in the abnormal classes.

Keywords: Electrocardiograms, Gabor wavelet transform, pseudo differential
operator, scalogram, normalized spectrum index, normalized time index, statistical
method, topological space.
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mation function-based method is proposed to generate an accurate scalogram for
shockable and non-shockable arrhythmias signals. Then, we performed qualitative
and quantitative evaluations to select the best pair of pseudo-differential-like oper-
ators with non-linear transformation function. A good discrimination performance

in the decision algorithm is guaranteed through the best pair chosen.



Second, we develop a simple decision method in the general topological space
(a new metric function is adopted) to guarantee high accuracy and quick decision
between shockable and non-shockable arrhythmias. Numerical experimental results
on datasets show the efficiency of the proposed methods for shockable and non-

shockable arrhythmias distinction in the abnormal classes.
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Introduction

Arrhythmia is a heart disease when the heart does not beat in the systematic way.
Any beat outside of normal or a lack of beat is considered an arrhythmia. Among
these arrhythmias, some are shockable, and some are non-shockable arrhythmias
with external defibrillation. The shockable arrhythmias lead to sudden death. These
rhythms are monitored by the Electrocardiogram (ECG). The ECG is an efficient
noninvasive investigative tool that provides useful information on the various states
of the heart, and this information is used for the discrimination of diseases and
treatment planning of the patients [1]. Over the past decades, many ECG signal
analysis algorithms have been developed for the arrhythmia distinction in the auto-

mated diagnosis system. The automated external defibrillator (AED) is used as the
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automated arrhythmia diagnosis system, and it requires an accurate and quick deci-
sion algorithm for the classification of different types of arrhythmias. Despite the
improvement of the algorithm, a large number of people die because of the delay or
errors in diagnosis by the AED. However, in order to improve the survival rate of the
patients presenting with heart attack symptos, it is important to develop accurate
and quick discrimination procedures of typical features of the ECG signals for each
of the symptoms.

The rest of this chapter is organized as follows: Section 1.1 presents the research
background regarding the necessity of arrhythmia diagnosis by the AED to increase
the survival rate of the patients. Section 1.2 shows the research scope and signifi-
cant issues in the arrhythmia diagnosis system of the AED, followed by section 1.3
briefly introduces the objectives of our entire research work. Section 1.4 highlights
the contributions and the list of publications, and conferences generated from our re-
search. Section 1.5 presents proposed structure of the arrhythmia diagnosis system.

Finally, the outline of the thesis is presented in section 1.6.

1.1 Motivation

1.1.1 Needs of arrhythmia diagnosis

Arrhythmia diagnosis is essential in the aspect of a healthy life. Arrhythmia can
lead to life-threatening complications. The lack of understanding about arrhythmias
prevents the doctor for an accurate diagnosis. Different arrhythmias need differ-
ent treatments, and diagnosing the precise type of arrhythmia is crucially impor-
tant. Sudden cardiac death is sometimes caused by fatal arrhythmias. With a very
high rate of the sudden death, the cardiovascular diseases are observed. Indeed, the
statistics reported by World Health Organization indicate clearly that the cardiac

arrhythmia is the main reason, with 32% of the sudden death, over the world [2].
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In particular, e\}ery year more than 50,000 people die due to sudden cardiac arrest
(SCA) in Japan [3]; At the same time, 0.65 million of the deaths in USA [4], and
1.8 million of the deaths in Europe are caused by the cardiovascular diseases [5].
Therefore, there is a possibility to increase the survival rate through arrhythmia di-
agnosis. The country-wise death statistics by cardiovascular diseases (CVDs) are

shown in Figure 1.1
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Figure 1.1: The country-wise death statistics by CVDs

1.1.2 The chain of survival

Many research have been conducted about how to improve the generally low sur-
vival rates from the sudden cardiac arrest. In early 1990, the American Heart As-
sociation established six links in the chain of survival metaphor to describe the
sequence of actions for a successful resuscitation in the event of an out-of-hospital
cardiac arrest [6]. Also, the International Liaison Committee on Resuscitation in-
troduced the chain of survival concept in early 2000 [7]. Originally it consists of
four steps in this order: early access to emergency medical care, early cardiopul-
monary resuscitation (CPR), early defibrillation, and early advanced cardiac life
support (ACLS). The four main interdependent sequences of the chain of survival

are depicted in Figure 1.2.
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Figure 1.2: The chain of survival, and its four interdependent links based on the
AHA guidelines

AED

1) Early access. The resuscitation chain starts with early access, which in-
cludes all steps between initiating the cardiac arrest and the arrival of emer-
gency medical services (EMS) personnel. First, the treatment of any emer-
gency is to be recognized by the person with symptoms or by a witness that
an emergency exists and then phoning the appropriate emergency response
number to activate the EMS. Finally, the responder reaches the scene and lo-

cates the patient to provide adequate care.

ii) Early CPR. The second link in the chain of survival is early CPR. At
the time of cardiac arrest, it is possible to start the flow of oxygen in the heart
using CPR. CPR consists of chest compressions and ventilations that maintain
a minimal blood flow to sustain sufficient perfusion before the arrival of the
EMS personnel. Early CPR increases the chances of survival, but it alone

cannot save an SCA victim.

iii) Early defibrillation. When sudden cardiac arrest occurs, the heart must
be restarted by an electrical shock called defibrillation. In an out of hospital
setting, the only way to restart the heart is by using an automated external
defibrillator (AED). The AED is a portable user-friendly device that analyzes
the victim’s ECG to determine whether a shockable rhythm is present. When
an AED is used and electrodes are placed on the victim’s chest, electricity

flows from the electrodes through the chest to the heart.

iv) Early ACLS. The last link in the sequence of chain of survival is early ad-
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vanced cardiac life support (ACLS). The ACLS treatment provided by quali-
fied health care personnel after defibrillation. ACLS includes intubation and

the administration of medication.

1.1.3 Importance of accurate and early defibrillation

In the chain of survival, defibrillation is most important for increasing the survival
rate. Because defibrillation (i.e., to give a shock) is the only way to restart a heart in
cardiac arrest. The automated external defibrillator (AED) is used to the arrhythmia
patients for first aid. Accurate and early diagnosis by the AED improves the survival
rate [8]. In the AED operation, the ECG signals are analyzed to judge whether the
defibrillation by the AED should be applied or not. The vital problem of the AED is
distinguishing shockable and non-shockable arrhythmias precisely in the abnormal
class of the ECG signals. The abnormal classes of ECG signals, ventricular fibril-
lation (VF) and ventricular tachycardia (VT) are the shockable arrhythmias which
require defibrillation to restart the heart for normal electrical function. In contrast,
defibrillation must not be applied for pulseless electrical activity (PEA), which is a
non-shockable arrhythmia. If AED applied the shock to the patient with the PEA
arrhythmia, then it would harm the patient’s heart [9]. Therefore, the accurate dis-
crimination of the shockable and non-shockable arrhythmias in the abnormal classes
is crucially important.

Timely treatment can be a matter of saving a life. The survival rates in SCA
are explained by two important variables: the time intervals from cardiac arrest
to CPR and from cardiac arrest to defibrillation. If CPR and defibrillation are not
administered, the survival rates in cardiac arrest decrease by 7% to 10% with ev-
ery minute [10]. On the contrary, when CPR and defibrillation are provided, the
decrease is smaller; it averages 3% to 4% for every minute [11, 12, 13]. When

immediate access to defibrillation is available, the survival rates are very high. For
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instance, survival rates greater than 90% have been reported for patients defibrillated
within the first minute of cardiac arrest [14]. The statistics shown in Figure 1.3 sum-
marize the importance of early defibrillation. After cardiac arrest, if the CPR starts
within 5 minutes and defibrillation occurs within 10 minutes, then there is a 37%
possibility of survival. The CPR begins within 5 minutes, and the survival rate is

decreased rapidly without defibrillation occurring within 10 minutes.

Starting CPR D?ﬁbl’illﬂt10}1 Deﬁbrillatioq
. - Within 10 min - - Beyond 10 min -
Within 5 min. Survival rate 37% Survival rate 7%
: Beyop_,clv_IOmin._ ‘ Survival rate 20% ||  Survival rate 0%

Figure 1.3: The importance of early defibrillation by AED

1.2 Research scope and issues

The scope of this study is to perform arrhythmia diagnosis by the AED in regards
to increasing the survival rate from sudden cardiac arrest. Two important aspects
related to the design of an arrhythmia diagnosis system of the AED have attracted
the attention of this study: how accurately does AED diagnose the shockable and
non-shockable arrhythmias in the abnormal classes? and how quickly can make a
decision?. Precisely, the most challenging scenario for the AED is the discrimina-
tion between non-shockable PEA and shockable VF, VT arrhythmias in the abnor-
mal classes signals, as both signals show an unorganized electrical activity and may
have similar visual characteristics. The rapid decision of AED for the application of
defibrillation to the arrhythmia patients increases the survival rate. The importance
of a rapid decision by the AED to increase the survival rate from SCD is discussed
in subsection 1.1.3. From these points of view, there is scope for deep analyses and
redesigning an arrhythmia diagnosis system of the AED for the distinction between

shockable and non-shockable arrhythmias.
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Therefore, this thesis work analyzes the ECG signal to find out the significant
gaps in the arrhythmia diagnosis system of the AED. The following research issues

are identified in the existing arrhythmia diagnosis system.

i) The Gabor wavelet transform (GWT) is a powerful method for time-frequency
representation (scalogram). However, there exists an issue with the abnormal
signals representation [15, 16]. During the generation of wavelet coefficient
values, the wavelet function is not closely correlated with all the sections of
abnormal signal. As a result, the same level of coefficient values is generated
for all the sections of the low-frequency signals. The same level of coefficient
values over time gives a barrier to getting better distinctions by the decision

algorithm.

Precisely, for non-shockable pulseless electrical activity (PEA), shockable
ventricular fibrillation (VF), and ventricular tachycardia (VT) arrhythmias,
there seem to be no differences in the scalo-graphic representation when ex-
tracting information using the Gabor wavelet transform (see Figures 1.4, 1.5,
and 1.6). In the scalograms, energy does not change in frequency over time,
and wavelet coefficient values for all scalograms are at the same level, which
leads to failure to get the best distinction in the decision algorithm. There-
fore, accurately extracting numeric information (scalogram) to improve the
discrimination performance in the decision stage for the abnormal signal is

an important issue.
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Figure 1.6: Scalogram of VF (Shockable arrhythmia)

ii) Different types of decision algorithms e.g., Mahalanobis distance, nearest
neighbor, etc., are used to distinguish the arrhythmias in the decision stage
[17, 18]. However, blindly use of such general methods are not the best for
considering our problems. For example, the classification through the Ma-
halanobis distance depends on the concept of an approximation by means of
the Gaussian distributions. Although the K-nearest neighbor is a simple, non-
parametric decision method, and evaluation is performed by the Euclidean

distance, but this Euclidean metric function-based decision method has an
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issue for selecting the number of neighbors of the test sample. For exam-
ple, in figure 1.7, if we consider the three nearest neighbors (K=3) of the test
sample, then the test sample is classified under the group of PEA, and if we
consider the seven nearest neighbors (K=7) of the test sample, the test sample
is classified under the group of VT. Also, overfitting and underfitting occur
for selecting the number of one nearest neighbor (K=1) and the total number
of data of nearest neighbors (K=N, where the N = total number of data) of
the test sample. Therefore, the decision is changing for selecting the different

number of nearest neighbors of the test sample.

In addition, researchers use machine learning classifier (A large number of
datasets is required) in the decision stage to separate features of shockable
and non-shockable arrhythmias [19, 20, 21, 22]. Their focus is put mainly on
increasing the precision while the classifier adjusts various parameter values,
but not on the quickness. Note that the survival rate decreases from 7% to
10% per minute according to the statistics of the American Heart Association
and resuscitation academy [10]. A substantial length of computation time
may be taken to generate the optimal feature model in the high dimensional
parameter space. Therefore, an accurate and rapid decision-making method
for the AED shock and non-shock advice algorithm is the ultimate demand to
use the scalogram information properly, and it is a crucial factor in the safety

and performance of an AED.
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Figure 1.7: Problem of the Euclidean metric function-based decision method

1.3 Research objectives

The main objective of this thesis work is to improvement of survival rate of the
patient by enhancing the arrhythmias diagnosis system in the AED. In order to ac-

complish this objective, a set of specific goals have been defined.

» Derivation of the scalogram. This objective targets at development of a method
to generate an exact scalogram for the abnormal classes (non-shockable (PEA),
and shockable (VF, and VT) arrhythmias cases). Therefore, it is necessary
to generate accurate wavelet coefficients by extracting accurate information
from the abnormal ECG signals. The accurate information helps the decision

algorithm to get a better distinction.

» Effective characterization of the scalogram in both time and frequency direc-
tion. We develop a method how to analyze the scalogram in the time and

frequency plane to calculate statistical features effective for the discrimina-
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tion.

» Design of the AED shock and non-shock advice algorithm. This objective
targets developing an algorithm that guarantees the high accuracy and quick
decision between shockable (VF, VT) and non-shockable (SR, PEA) arrhyth-

mias in regard to increasing the survival rate of the patients.

1.4 Research contributions

Following the research issues and objectives described in the foregoing sections,

here we summarise the list of our contribution.

» Derivation of the scalogram. A method is proposed to generate an accu-
rate scalogram for the abnormal classes (non-shockable (PEA) and shockable
(VF, and VT) arrhythmias case) by extracting accurate information from ECG
signals. In this context, we apply a new concept of the pseudo-differential
like operators to the Gabor wavelet transform (GWT) that solves the issue
(i) of section 1.2. We derive the scalogram by applying various settings of
pseudo-differential like operators with non-linear transformation function to
the GWT. Through the pseudo-differential like operators, we can get much
more enlarged fruitful information (fractional order of differentiation of the
signal) on the original signals. Moreover, by applying the non-linear transfor-
mation functions to the transformed signals, we can make balanced and big-
ger the part of the transformed signals which has small energy, and amplitude.
Through these, we are able to distinguish clearly the signals that have small
differences, PEA, VF, and VT and different energies over time lead to get
the best discrimination in the decision stage (see Figures 1.8, 1.9, and 1.10).
Then, we performed the qualitative and quantitative evaluation to check the

intrinsic effect of the pseudo-differential like operators and non-linear trans-
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formation function, from which we select the best pair of pseudo-differential
like operators with non-linear transformation function.

The main novelty of the proposed method is that the application of pseudo-
differential like operators with non-linear transformation function to the GWT
does work efficiently and effectively, and generates distinguishable scalo-
grams between shockable and non-shockable arrhythmias in the abnormal
class signals, which satisfy visual comparison through scalo-graphic repre-
sentation (see Figures 1.8, 1.9, and 1.10), and scatter plot observation (see

Figores 3.21, 3.22,5.23,3.24, 3.25, 326, 3,27, and 3.28).
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Figure 1.10: Scalogram of VF (Shockable arrhythmia)
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» Effective characterization of the scalogram in both time and frequency
direction. We perform characteristics analysis of the scalogram in the time
and frequency plane to calculate statistical features effective for the discrimi-
nation. To the best of our knowledge, the scalogram analysis has been mainly
considered only along the frequency plane [23, 24, 25, 26]. However, we
can draw out more information from the scalogram, which is useful for better
discrimination by characterizing the scalogram in the time-frequency plane.
In this context, we apply two quality parameters, normalized spectrum index
(NSI) and normalized time index (NTI) in the scalogram. The NSI possesses
the information in the frequency direction, which has been considered in Rah-
man et al. [24]. On the other hand, the NTI possesses the information in the
time direction, which is a new addition in our study [27, 28] (see Figures 3.29,

3.30,3.31, 3.32,341, 3.42, 3.43, and 3.44).

» Design of the AED shock and non-shock advice algorithm. We propose a
simple decision method to mitigate the issue (ii) of section 1.2 in the gen-
eral topological space to guarantee high accuracy and quick decision between
shockable and non-shockable arrhythmias. In this method, we adopt a new
metric function, which is defined through adequately chosen topology for the
space of scatter plots. We can give the different scales of the metric function
to the space of scatter plot through which we can select the open neighbor-
hood of the test sample (see Figure 1.11).

The main novelty of the proposed decision method is that it effectively dis-
criminates between shockable and non-shockable arrhythmias with low com-
putational time which will help to increase the survival rate of the patients,
and the application of the proposed metric function in the decision method
achieves the highest accuracy than the application of the Euclidean metric

function in the decision method (see Table 4.13 in chapter 4).
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Figure 1.11: Decision strategy based on open neighbourhood topology

Note that the increase in survival rate depends on four interdependent sequences
as shown in Figure 1.2. Among these sequences, the arrhythmia diagnosis system
in the AED plays the most important role in increasing the survival rate. There-
fore, how accurately and early an arrhythmia diagnosis system can diagnose the
arrthythmia? Diagnosis accuracy should be 100%, while false diagnosis decisions
harm the patients. So, accuracy is a crucial factor, and how much the survival rate
could be improved led by accuracy. In addition, I have measured the detailed execu-
tion time performance of the proposed method presented in chapter 4. The proposed
method takes 3.35 % 10™*s second in average to test each sample which is a very short
time. I did not perform the time comparison with other methods. This is because
it is unfair to directly compare the proposed method’s time performance with other
methods since the device configurations and the sample duration are different. It is
worth mentioning that the proposed distance-based decision method takes the deci-
sion in a short time by calculating just a simple distance between the test sample and

training samples, while other methods take a substantial length of computation time
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to generate the model of the training dataset, and then perform testing. The con-
ventional diagnosis system [29] achieves 86.03% accuracy for the shockable (VF,
VT) and non-shockable (PEA) arrhythmias in abnormal class signals, while the pro-
posed arrhythmia diagnosis system increases the accuracy to 97.78% with 11.75%
gain. Therefore, the proposed method contributes an additional 11.75% possibility
for increasing the survival rate.

The contributions of the research work throughout the thesis have been pub-

lished as the following list:

Journal

1. Rahman M.M., Kagawa T., Kawasaki S., Nagai S., Okai T., Oya H., Yahagi
Y., and Yoshida M.W. : “Various scalographic representation of electrocardio-
grams through wavelet transform with pseudo-differential operator like oper-

ators®, Journal of Advanced Simulation in Science and Engineering, vol. 9,

issue 1, pp. 96-112, 2022 ([24] in the reference).

2. Rahman M.M., Albeverio S., Kagawa T., Kawasaki S., Okai T., Oya H., Ya-
hagi Y., and Yoshida M.W. : “High accuracy distinction of shockable and
non-shockable arrhythmias in abnormal classes through wavelet transform
with pseudo differential like operators®, Scientific Reports Journal, Springer

Nature, Passed revision, January 03 2023 ([28] in the reference).

Conferences and Presentations

1. Rahman M.M., and Yoshida M.W. : “On a detection algorithm for electro-
cardiogram through the wavelet transforms with pseudo differential operator

like operators*, QBIC conference, Tokyo University of Science, October 14-

16, 2020.
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2. Rahman M.M., Kagawa T, and Yoshida M.W. : “Shockable and non-shockable
arrthythmias detection using wavelet analysis with pseudo differential operator
like operators®, Dynamic Decision Models and its Applications of Operations

Research Society of Japan, January 23, 2021.

3. Rahman M.M., Kagawa T., Kawasaki S., Nagai S., Okai T., Oya H., Ya-
hagi Y., and Yoshida M.W. : “An analysis of electrocardiograms through the
wavelet transform with pseudo-differential operator like operators®, Numer-
ical harmonic analysis and signal processing, of the 40th JSST Annual In-
ternational Conference on Simulation Technology, September 1-3, pp.63-66,

2021 ([23] in the reference).

4. Rahman M.M., Kagawa T., and Yoshida M.W. : “An application of the pseudo
differential operators to distinctions of ECG signals*, The 3rd Physical Ther-

apy Discussion of Operations Research Society of Japan, October 06, 2021.

5. Rahman M.M., Albeverio S., Kagawa T., Kawasaki S., Okai T., Oya H., Ya-
hagi Y., and Yoshida M.W. : “Improvement of arrhythmias distinction accu-
racy using suitable combination of features of the Electrocardiograms®, Nu-
merical harmonic analysis and signal processing, of the 41st JSST Annual
International Conference on Simulation Technology, August 31 — September

2, pp.40-43, 2022 ([27] in the reference).

1.5 The structure of the arrhythmia diagnosis system

The proposed arrhythmia diagnosis system consists of several steps shown in Fig-
ure 1.12. This figure describes the overall summary of the distinction process be-
tween shockable and non-shockable arrhythmias. In the proposed arrhythmia di-
agnosis system, the core idea is to derive exact information (scalogram) from the

abnormal classes of ECG signals which leads to the decision algorithm for accurate
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discrimination between shockable and non-shockable arrhythmias. Following the
information, the new quality parameter is adopted to get more information by quan-
tizing the statistical features. Also, a method is proposed in the decision stage to get
high accuracy and rapid discrimination which increases the chance of survival. In
Figure 1.12, first the pre-processing is performed of the ECG signals for segment-
ing and detrending. The original ECG signals is separated into pieces of five second
signal segments. Then, linear trend is removed from each of the segmented signals
to obtain the signals f.

Second, the wavelet transform with pseudo-differential like operators and non-linear
transformation is used to accurately generate wavelet coefficients H(L(a)(W f)(a,b))
from f and these coefficients are represented as a scalogram. The definition of the
notation H(L(a)(W f)(a,b)) has been defined in chapter 3.

Third, as a basic statistic to quantize the different features over the abnormal class
ECG signals of scalogram, we take the normalized spectrum index (NSI) and nor-
malized time index (NTI) which is new addition for more analysis in this study.
Fourth, in order to find out the effective features, we watch at each of the gener-
ated features independently and test their discriminatory capabilities by using the
class separability technique such as scatter matrices. Also, we examine the individ-
ual features with the help of univariate histogram and investigate the best feature
combination through the multivariate scatter plot matrix. The procedures help us to
select the best feature from the set of features.

The last stage is shockable and non-shockable arrhythmia discrimination which is
performed using the proposed decision method. In the method, a test sample is
classified based on an open neighbor with the minimum distance by adopting a new

metric function.



18 Chapter 1. Introduction

Added new quality

! Issue # i resolved by ] parameter NTI

Generate wavelet coefficients Characterization of wavelet
ECG signals (scalogram) by wavelet coetficients in both frequency
i transform with pseudo .y and time direction by
(SR, VF, differential like operators NSI(f, L, W)(b) and
PEA, VT) [H(L(@)W[)(a, b))] NTI(f,L.W)(a)

l Issue # 1i resolved by I

/

Non- Decision method Find effectiveness Statistics
shockable (AdOpth new g OFAIS[([?) and (#NS[' SNS]’ ‘e ey MNSI)
arrhythmia metric function) NTl(a) features (UnTrs SnTis - - oo Myrr)

Figure 1.12: The whole scheme of shockable and non-shockable arrhythmia dis-
crimination

1.6 Thesis outlines

The thesis comprises five chapters and it is organized as follows.

Chapter 1 presents the introduction that consists of the motivation, research
scope, issues, objectives, proposed methodology of the arrhythmia diagnosis sys-
temn, and thesis contributions. The importance and necessity of an accurate arrhyth-
mia diagnosis by the AED are explained in this chapter. The main objective of the
first chapter is to describe the current issues in the arrhythmia diagnosis system and
to define the specific aims of this thesis. Following the research issues and objec-
tives, the proposed methodology in the arrhythmia diagnosis system is outlined, and
the research contributions are stated.

Chapter 2 discussed the background and the literature review of the ECG princi-
ples, arrthythmia, and as well as arrhythmia diagnosis system. Firstly, the structure
of the heart and the activities with the corresponding ECG waves are presented.

Secondly, the introduction of four types of arrhythmias is reviewed. Finally, the
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literature review of the ECG signal analysis methods and the decision methods are
performed, which are related to the arrhythmia diagnosis system.

Chapter 3 presents the method in detail for the derivation of the scalogram.
The method is based on the Gabor wavelet transform with pseudo-differential like
operators and non-linear transformation. In addition, an analysis of the scalogram in
the time and frequency plane to observe the insights of the scalogram is explained in
this chapter. The effectiveness of the method for the distinction between shockable
and non-shockable arrhythmias is also presented in this chapter.

Chapter 4 presents a new shock and non-shock advice algorithm for the AED.
The current issue in the decision method and the importance of an accurate, rapid
decision by the AED are explained in this chapter. The proposed design of the algo-
rithm is based on a set of effective features and adopts a new metric function, which
is defined through an adequately chosen topology for the space of scatter plots. Nu-
merical experimental results on different updated datasets show the efficiency of
shock and non-shock advice algorithm. We also conducted a comparative perfor-
mance analysis of our proposed algorithm with other state-of-the-art approaches.

Chapter 5 summarises the findings and contributions discussed in this thesis.

Future work is also stated in this chapter.
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2.1 The ECG principles

The human heart is a muscular pump organ in the body that serves two main func-
tions: 1) To pump blood collected from the lungs to the tissues in the body, ii) To
pump blood back to the lungs from tissues in the body. The heart is comprised of
four chambers: the two upper chambers, the right and left atria functions, while
the two lower chambers, the right and left ventricles functions. Figure 2.1 shows
an anterior view of the heart. The right atrium collects used blood from the body
and forwards it into the right ventricle, which pumps it into the lung. Similarly,

the left atrium receives blood from the lung and pumps it into the left ventricle,

20
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which consequently supplies the body with oxygen-rich blood [30]. This process
can be tracked by providing electrical impulses known as action potentials. In gen-
eral, electrical signal propagation through the heart follows a specific path which
is referred to as the electrical conduction system. Therefore, the heart activity can
be considered as the propagation of electrical impulses, and any abnormality in
heart function is reflected in these electrical impulse propagation characteristics.
This could be measured by attaching electrodes to the surface of the body skin and
recording the electrical activity by a device. Such recording is generally referred to
as ECG and it plays a significant role in day-to-day clinical practice for detecting
arrhythmias since the cardiologists can obtain critical signs of malfunction of the

heart from ECG signal.
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Figure 2.1: Structure of the heart. Downloaded from: https://commons.wikimed-
ia.org/wiki/File:Heart_diagram-de.svg

Figure 2.2 shows a schematic diagram of the normal ECG beat consists of the
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P-QRS-T and U waves and the relevant ECG features, such as PR interval, QT
interval, QRS complex as well as ST segment, and PR segment. Also, as shown in
figure, the straight line between two waves is called the isoelectric line. These lines
are the segment that connects two waves together without including either of them.
In the following, a separate description of each of the components will be given to

summarize their characteristics.

* P wave: It is a positive and slow wave which is the first electrical event that
occurs during a heartbeat. Also, this wave has a lower amplitude compared

with the R wave which always lies on the left side of QRS complex.

* QRS complex: It is the central and most visually obvious part of the ECG
signal, which represents the main voltage variations on the ECG signal. The
peak with the largest voltage is usually seen as the R wave. The Q wave is the
left saddle point near the R peak, and the S wave is the right saddle point near

the R peak. The combination of these waves consists of QRS complex.

PR interval: It is a duration measured between the starting point of P wave

and the beginning of Q wave.

PR segment: It is an isoelectric line and starts at the end of the P wave and

finishes at the start of the Q wave.

» T wave: It represents the other low amplitude wave that always lies on the

right side of the QRS complex.

QT interval: It starts at the beginning of the QRS complex and finishes at the

end of the T wave.

ST segment: It is an isoelectric line and starts at the end of the S wave and

finishes at the start of the T wave.
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» U wave: It is a positive and small wave that follows the T wave. This wave is

not always visible in the record and its absence is not a sign of abnormality.
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Figure 2.2: Electrocardiogram (ECG) signal and its components

2.2 Arrhythmia

It is well known that a healthy heart supplies the human body with the right amount
of blood at the rate needed to work normally. In general, a heartbeat should be 60
to 100 times per minute [31]. However, if disease or injury weakens the human
heart or during the cardiac arrest, the rhythm of the heart will be abnormal, which
is known as arrhythmia. It is worth mentioning that all generated abnormal signals
are not considered fetal arrhythmia for sudden death. Therefore, among these ar-
rhythmias, some are considered shockable arrhythmias, and some are considered
non-shockable arrhythmias with an external defibrillators. In the following subsec-
tion, we present a discussion about different types of shockable and non-shockable

arrhythmias.
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2.2.1 Non-shockable arrhythmias
2.2.1.1 Sinus rhythm (SR)

Sinus rhythm is the normal waveform of the heart and results from proper activa-
tion of the entire heart in proper sequence that means the electrical conduction along
with beating of heart muscle with regards to other variables like timing and voltage
is fine. Figure 2.3 shows an example of non-shockable normal sinus ECG. In the fig-
ure, the amplitude of the ECG waveform represents the strength of the myocardial
movement and the horizontal axis represents the time for the corresponding ampli-
tude. In the normal sinus rhythm, the characteristics waveforms called P wave, QRS
complex, and T wave must be appeared [32]. The P wave appears when an electrical
impulse is sent from a site called the sinus node, which is a pacemaker of the heart.
Since the sinus node should pace the heart, therefore P waves must be round, all
of the same shape, and present before every QRS complex. The QRS complex is
generated by the propagation of electrical impulse to the ventricles of the heart and

this QRS complex should be always a positive wave for the normal sinus rhythm.
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Figure 2.3: An example of non-shockable ECG (SR signal)
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2.2.1.2 Pulseless electrical activity (PEA)

Pulseless electrical activity (PEA) is a type of severe arrhythmia, in which the
pulse and blood flow are absent despite the presence of an electrocardiogram wave-
form [33]. In general, in PEA, there is electrical activity but insufficient cardiac
output to generate a pulse and supply blood to the organs, whether the heart itself is
failing to contract or sometimes leads to sudden death. Figure 2.4 shows an example
of a non-shockable pulseless electrical activity ECG. The PEA is a non-shockable

heart rhythm, therefore defibrillation should not be applied.
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Figure 2.4: An example of non-shockable ECG (PEA signal)

2.2.2 Shockable arrhythmias
2.2.2.1 Ventricular fibrillation (VF)

Ventricular fibrillation (VF) is a life-threatening arrhythmia and it is defined as a
chaotic and rapid heart rate with variable speeds up to 300 beats per minute [34].
VF can also be considered as a disorganized electrical signal originating from the
ventricle. It causes the ventricle quiver and hence the ventricle cannot pump blood
to the body. This situation turns out into sudden cardiac arrest or death within a

few minutes. Figure 2.5 shows an example of a shockable ventricular fibrillation
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ECG. During ventricular fibrillation, the ECG has no distinctive QRS complex, and
also P wave cannot be discerned. The VF is a shockable heart rhythm, therefore

defibrillation should be applied as soon as possible after cardiac arrest.
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Figure 2.5: An example of shockable ECG (VF signal)

2.2,2.2 Ventricular tachaycardia (VT)

Ventricular tachycardia (VT) is also another type of life-threatening arrhythmia and
it is characterized by the wide, bizarre QRS complex, chaotic and rapid heart rate.
Figure 2.6 shows an example of a shockable ventricular tachycardia ECG. In gen-
eral, VT is represented when three or more consecutive heart beats occur in the
ventricle with a cycle length larger than 100 beats per minute [34]. In VT, many
stimulations are generated in the ventricle. Therefore, there is no constant relation-
ship between the P wave and the QRS complex, and the PQ interval is completely
indeterminate. The VT is a shockable heart rhythm, therefore defibrillation should

be applied as soon as possible after cardiac arrest.



2.3. ECG dataset 27

1r e

| VT signal|

Voltage[mV]

15! : : : :
0 1 2 3 4 5
Time [sec]

Figure 2.6: An example of shockable ECG (VT signal)

2.3 ECG dataset

In our study, a combination of three accredited databases from Physionet.org [35]
has been used. This database provides shockable and non-shockable arrhythmia
types. The databases are MIT-BIH arrhythmia database (MITDB) [36], MIT-BIH
malignant ventricular ectopy database (VFDB) [37] and Creighton university ven-
tricular tachyarrhythmia database (CUDB) [38]. The MITDB and VFDB databases
which are published by Boston’s Beth Israel Hospital (now the Beth Israel Dea-
coness Medical Center) and the Massachusetts institute of technology (MIT). The
MITDB database contains 48 ECG waveforms and the VFDB database includes 22
ECG waveforms with their annotations where annotations were made independently
by two or more cardiologists. Each ECG waveform is recorded for 30 minutes and
the sampling frequency is 360 [Hz]. On the other hand, the CUDB database is
collected by Floyd M. Nolle at the Creighton University Cardiac Center and con-
tains 35 ECG waveforms where each ECG waveform is recorded for 8 minutes and
the sampling frequency is 250 [Hz]. A total of 1079 ECG samples are collected

from these databases, and the data length for each sample is five second. These
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ECG samples are grouped into four classes name as Sinus Rhythm (SR), Pulseless
Electrical Activity (PEA), Ventricular Fibrillation (VF) and Ventricular Tachycardia
(VT). The number of samples for SR signal 491, PEA signal 134. VF signal 299
and VT signal 155. Here SR and PEA signals are non-shockable arrhythmias and
VF and VT signals are shockable arrhythmias.

2.4 Detrending ECG data

ECG signals might contain linear and non-linear trends that could be barrier to get
the better approximation during signal analysis [39]. Here, the trends of the sig-
nals can be roughly understood through the following example: As a mathematical

model, suppose that the input signal f(¢), t > 0, is given by
f(t) =a+ bt +sint, t>0,

for some given real numbers a and b. Since, the analysis of the input signal f(¢)
in the domain of the frequency, therefore, a + bt is the linear term of the signal
f(t) which acts worse for the frequency analysis. In this example the term a + bt
is understood as the trend of the signal, and it should be removed from the original
signal. To eliminate the trend in a signal we apply detrending technique and the

detrend signal, fjesreng is defined by

Saetrenda(t) = f(t) — (a+bt) = sint, t>0.

Generally, for a given signal f(z), for a pre-assumed order of the power n ( a natural
number), we can find the polynomial p(¢) = @, +ajt! + - - - +a,t" by which the mean
square error (mathematically, the L? distance) between f(¢) and p(z) is minimized.

Then, the polynomial p(¢) is understood as the trend (with the n-th order) of the
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signal f(¢), and the detrended signal, fjesrena is defined by

Saetrena(t) = f(2) — p(t), t>0.

In our study, the input signal (function) is the ECG signal, which is denoted by
the same notation ECG, and we adopt the detrend signal, ECG j¢rend, as the one

composed by removing the 6-th order trend,

ECG jetrend — (the 6-th order trend).

Figures 2.7 and 2.8 are showing before detrending and after detrending operations

respectively. After detrending, we can easily identify the baseline.
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Figure 2.7: ECG signal with trend
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Figure 2.8: ECG signal after removing trend

2.5 Literature review

In this section, the survey begins by reviewing some of the previous studies in ECG
signal analysis and discrimination techniques. The survey is divided into two stages,
which are the ECG signal analysis stage and the discrimination techniques stage.
Section 2.5.1 represent the ECG signal analysis in different approaches, and sec-

tion 2.5.2 represent different types of discrimination methods.

2.5.1 Literature review of ECG signal analysis

Many researchers have analyzed the ECG signals through different types of ap-
proaches. Three types of approaches are commonly used for ECG signal analy-
sis [40, 41]. Section 2.5.1.1 discusses the time-domain based approaches to the
analysis of ECG signals, section 2.5.1.2 discusses the frequency-domain based ap-
proaches to the analysis of ECG signals, and section 2.5.1.3 discusses the time-
frequency domain based approaches to the analysis of ECG signals. Table 2.1,
2.2, and 2.3 presents a summary of the review works in different domain based

approaches.
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2.5.1.1 Time domain analysis

The ECG signal analysis in the time domain is a simple method for arrhythmia
discrimination. The heart rate variability (HRV) analysis such as variation in the
mean of RR intervals, QRS widths, and so on, is carried out in the time domain
method. The main advantages of this approach is the low complex computations
and that analysis is performed directly on the signal. In the time domain method,
one can see the signal amplitude over time, but the main disadvantage is that can not
take the information of frequency for the corresponding time. Figure 2.9 shows the
time domain based ECG analysis approach. First, the raw ECG signals (represented
in the time domain) which are collected from the ECG machine. Then, time domain
based features (Adjacent RR intervals that differ by more than 50ms (PNN50%),
Root mean square difference between RR intervals of neighboring beats (RMSSD),
and so on) are directly extracted from the raw ECG signal [42, 43]. Finally, these

features are analyzed in the decision stage to distinguish arrhythmia.

Raw ECG signal [:> Time domain :> Analysis and
(Time domain) features Diagnosis

Figure 2.9: Time domain based ECG analysis approach

Researchers have proposed various methods in the time domain for the analysis
of ECG signals, selected studies are described as follows.
Murugappan et al. [44] described time domain feature-based arrhythmia prediction.
The methodology of this work composes of four stages namely, database descrip-
tion, preprocessing of HRV (Heart rate variability) signals, time domain features
extraction, and classification. First, the preprocessing task is performed to remove
the noises and other interferences from the ECG signals in MIT/BIT database ef-
fectively. Then, a set of time domain features are extracted from HRV signals and
classified using two simple machine learning algorithms (KNN and Fuzzy). Muru-

gappan et al. emphasize investigating the time domain features of HRV signals to
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predict the SCA (sudden cardiac arrest) before 5 min onset in SCD patients. Among
the different types of time domain features, the MeanHR feature is not significant
in distinguishing SCA and NC (normal control). The limitation of this work is a
smaller number of ECG samples are used to test the methodology.

Arafat et al. [45] proposed time domain method for the detection of ventricular
fibrillation in electrocardiogram. The method investigates the ECG signal in the
time domain and is basically an improved version of the threshold crossing interval
(TCI) algorithm. The ECG signal is preprocessed using the filtering process. Then,
each ECG segment is multiplied by a cosine window. The windowed ECG signal
is normalized by the absolute maximum value in the segment, and converted into a
binary string. Finally, decision is made by counting and comparison of the binary
string. The author suggested that this method is very simple and computational cost
is very low.

Zhou et al. [46] presents time domain algorithm architecture and define a clas-
sification rule for the VF, and VT arrhythmias. Two methods are comprised in the
proposed architecture. In the first phase, the QRS detection algorithm suggested
by Pan-Tompkins is used, and the beat classification method, the heart beats are de-
tected and classified as normal beats and premature ventricular contractions (PVCs).
Subsequently, a computationally efficient method (Lempel and Ziv complexity anal-
ysis combined with K-means algorithm for the coarse-graining process) is presented
to separate ventricular tachycardia (VT) and ventricular fibrillation (VF). The algo-
rithm architecture, tested on a smart-phone, obtained a good performance level for
detection of ECG signal.

Mazomenos et al. [47] proposed an algorithm in the time domain for the ex-
traction of all the fiducial time instances from the ECG waveform. This algorithm
extracted the 11 parameters of interest from a single PQRSTcomplex. The first
step of the algorithm is to denoising of the ECG signal, and then, the proposed

algorithm initially detects the boundaries of the QRS complex by employing an ex-



2.5. Literature review 33

tended version of the Pan Tompkins detection method. The algorithm is evaluated
using QTDB, and PTBDB databases.

Seong et al. [48] proposed a time domain analysis method to detect arrhythmia
in real time and implement AED by porting it to programmable gate array and dig-
ital signal processor. The analysis of the phase domain improves the detection rate
of R-peak using the differentiated electrocardiogram (ECG) waveform rather than
the existing ECG waveform and makes it easy to distinguish the normal ECG from
the arrhythmia signal in the phase domain. As a consequence, the false alarm is
minimized. The algorithm was verified by simulation using Labview and Model-
Sim, and it was verified that the algorithm works effectively by performing animal
experiments using the implemented AED.

The work in [49] aim to contribute to the diagnosis of arrhythmia by introduc-
ing a new feature called amplitude difference to heartbeat classification based on
two processes. The first process is heartbeat detection and feature extraction, and
then, random forest classifier is used to classify heartbeats by their feature. In the
heartbeats detection and segmentation from the extracted QRS-complex, the Pan-
Tompkins method is used, and a new feature is investigated using the random for-
est classifier. Finally, evaluations is performed against the MIT-BIH arrhythmia
database before and after adding the amplitude difference features through the clas-
sification accuracies.

Many time-domain-based analysis methods have been used in the arrhythmia
distinction. Tian et al. [50] described arrhythmia detection based on the methods of
percent of time above or below thresholds (PTABT), variability of threshold cross-
ing intervals (TCI), and peak similarity in autocorrelation function (ACF). The al-
gorithm offers a way to identify the ventricular fibrillation (VFib), and nonVFib
rhythms with several features of ECG signal.

Tsipouras et al. [51] developed a system for the arrhythmias distinction. The

distinction is based on heart rate features. The analysis is performed on both time
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and time-frequency domains. First, the RR interval duration signal is extracted from
the ECG signal and transformed through Short time Fourier transform and several
time-frequency distributions (TFD) to extract features. Several combinations of
those features are used for training a set of neural networks. The decision is finally
obtained using decision rules.

The work in [52] is also an early successful work in the area of arrhythmia
diagnosis by the automatic implantable cardioverter-defibrillator (AICD). Their ap-
proach is to discriminate probability distributions of interbeat intervals (IBI) in elec-
trogram signals recorded from ventricular leads. The algorithm is comprised of
three stages such as, differentiates the signal, averages the sample values within a
moving window, and compares the moving window average to an adaptive threshold
to detect each beat. In addition, a sequential hypothesis-testing method is proposed
to construct the probability distributions of IBI values for several cases of NSR,

SVT, VT, and VE.
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Table 2.1: Summary of ECG signal analysis in the time domain method.
References Method / Process Target / Detected Note
Variability analysis
by CWA, BAM,
NDOA and DAM, SR, VF, reduced
Schuckers et al. [33] calculate mean of mean, and VT sensitivity of VE.
standard deviation (STD),
and interquartile range (IQR)
Complexity measure
Small dataset
Zhang et al. [54] by Lempel, and SR, VE, (34 SR, 85 VT,
Ziv method, select and VT and 85 VF)
different window length
Four features,
Anuradha et al. [55] Adaptive neuro fuzzy ;?i}f)’t;; 1:s Noise sensitive
interface system (ANFIS)
Linear and non-linear
Sivanantham et al. [S6] feature, Support vector Normal, RBEB, Low accuracy
. and others
machine (SVM)
Monte et al. [57] Morphological filtering, VF Only VE
linear interpolation detection
Correlation waveform Detection
Dicarlo et al. [58] analysis (CWA), Bin SR, and VT restricted to
area method (BAM) SR and VT
feature extraction using
Hilbert transforms and
Lee etal. [59] phase space reconstruction, NSR, and VF Low accuracy
neural network with weighted
fuzzy membership functions
Preprocessing, phase space
Roberts et al. [60] reconstruction for feature SR, MVT, PVT, Low accuracy
. . . and VF
identification, neural network
Counting number of
boxes on a grid N
Amann et al. [61] filled by ECG and SR, and VF No validation
its delay signals
Calculation of mean
absolute value of the
signal, and calculation of Requirement of
Anas et al. [62] differences between ECG VF, and VT two algorithms
and first 2 intrinsic
mode function
Feature extraction using NSR. VE
Othman et al. [63] semantic mining method, an d’VT ’ No validation
threshold based method
The ECG signal transform
. into a phase space, extract SR, MVT, PVT, Low accuracy
Povinelli et al. [64] statistical features, artificial and VF regards to VF

neural networks
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2.5.1.2 Frequency domain analysis

Analyzing ECG signals in the frequency domain is an alternative method for ar-
rhythmia discrimination. The frequency properties of the signal are analyzed in the
frequency domain method, and the frequency composition of the heart rate can be
presented in a graph with power distribution versus frequency. In this method, one
can find the distribution of the signal power on different frequencies, but the disad-
vantage is that not get the time information for the corresponding frequency. The
frequency domain based analysis process of the ECG signal is shown in Figure 2.10.
First, the raw ECG signals are collected from the ECG machine. Then, transform
the input signal from the time domain to the frequency domain. The transformation
is performed using Fourier transformation and others. The frequency domain-based
features are extracted from the transformed signal in the third phase [65]. Finally,

diagnosis is performed in the decision stage by analyzing these features.

Transform ECG
signal into -,

frequency domain

Raw ECG signal
(Time domain)

Frequency N Analysis and
domain features | ¥'| Diagnosis

Figure 2.10: Frequency domain based ECG analysis approach

Some frequency domain based analysis methods of arrhythmia discrimination
are described as follows.
Temelkov et al. [66] proposed an algorithm for automatic detection of ventricular
fibrillation in electrocardiogram records customized for wearable single channel
sensors. The algorithm used a sliding window approach and applied the Fast Fourier
Transform to convert the data from the time domain to the frequency domain. Then,
the decision comes using determination of frequency peaks, calculation of energy
around the peak, and its ratio to the overall spectra.

Jekova et al. [67] introduced a real-time detection method of ventricular fibrilla-
tion and tachycardia by applying rules to the calculated parameter of the frequency

domain. The prepossessing signal filtration with high-pass, low-pass, and notch fil-
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ters, is used in this method. The main limitation of this method is the retrospective
choice of thresholds.

In [68, 69], the diagnostic procedure consists of two stages: first, the frequency
domain based feature was investigated, and then, the grey relational analysis-based
classifier was used to discriminate the normal and abnormal signal. The First Fourier
Transform (FFT) is used to compute the features. The variations of power spectrum
are observed in the range of 0-20 Hz in the frequency domain. This method is
tested using MIT-BIH arrhythmia database and compared with the artificial intelli-
gence (AI) methods.

Minami et al. [70] developed a new algorithm to detect VF and VT from ECG
signals. This algorithm extracts individual QRS complexes from ECG signals and
converts each QRS complex to a spectrum using the Fourier transform. The neural
network is used to classify the spectrum into three arrthythmias: SVT, VF, and VT.
The key point of the algorithm is to observe only a portion of the QRS complex
to improve discrimination accuracy, achieve real-time processing with a compact
configuration, and remove heart rate influences.

Chen et al. [71] described some issues in the time domain-based analysis and
proposed a method that analyzes the ECG signal in the frequency domain. The
raw ECG signal may contain many noises, affecting the diagnosis’s accuracy. It
usually goes through a series of preprocessing to filter out the noise to get a clean
signal. To remove the signal noise, it must transform the input signal from the time
domain to the frequency domain and remove the noise. Afterward, the signal will
be transformed back to the time domain. The signal transforming process is time-
consuming and unsuitable for the real-time ECG analysis system. To reduce the
complexity of ECG analysis, The authors extract features directly in the frequency
domain, where no need to transform back to the time domain. After transforming
the ECG signal to the frequency domain, the signal mostly focuses on the low-

frequency region because the frequency of heartbeats is relatively lower than the
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noise in the spectrum, which makes it much easier to remove the noise and extract
features. Therefore, the preprocessing stage can be simplified. Finally, the neural
network is applied to distinguish the arrhythmias using these features.

Gothwal et al. [72] presents a method to analyze electrocardiogram (ECG) sig-
nals for the classification of heartbeats according to different arrhythmias. Ini-
tially, ECG signals are pre-processed for the removal of power line noise and high-
frequency interference. Then, the Fast Fourier transform is used to identify the
peaks Q, R, S, and the deflections QRS complex in the ECG signal. These features
are very important to identify arrhythmias. Finally, the neural network is trained
with 20 datasets containing features of QRS complex which are maximum QRS
width, minimum QRS complex width, average QRS width and the heart rate. Once
trained, the network is tested on 20 more datasets to identify the arrhythmias. The
proposed method is evaluated using accuracy.

The work in [73] is an early work in the frequency domain analysis for arrhyth-
mia detection. The author developed and evaluated a method for use by the CREI-
GARD computerized arrhythmia monitoring system to detect VF and VT on the
surface ECG. The ECG signals sampled at 250 samples per second are filtered with
a finite impulse response lowpass filter. Then, performed the FFT in the frequency
domain and calculated power amplitude for each frequency component. Also, find
the peak component for the maximum power amplitude. Finally, the threshold value
is used for the detection of VF and VT.

Ming et al. [74] constructed a robust shockable rhythm detection algorithm
based on machine learning, which can distinguish accurately different types of ECG
signals even under the condition of severe CPR artifacts interference. In the algo-
rithm, a total of 21 metrics were extracted from the ECG signals by a large number
of retrospective studies of the existing shockable detection algorithms. After feature
selection, 13 metrics were selected to participate in BP neural network construction.

The performance of this network is evaluated through sensitivity and specificity.
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Table 2.2: Summary of ECG signal analysis in the frequency domain method.

References Method / Process

Target / Detected

Note

Apply adaptive filtering to
remove artifacts, calculate
power spectral density
to measure variability

Aramendi et al. [75]

First fourier transform (FFT),
measure power spectra of
surface ECG

Widman et al. [76]

Preprocessing to remove
artifact, Frequency domain
features, spectral, bispectrum,
and Fourier bessel analysis,
support vector machine

Parsi et al. [77]

Preprocessing, digital fast
fourier transform (DFFT),
spectral analysis

Aubert et al. [78]

Remove artifact, frequency
spectrum analysis by
fast fourier transform,
extracted four parameters

Clayton et al. [79]

Fast Fourier transform,
filtering, R-peaks,
QRS complex, and

heart rate extraction.
neural network classifier

Mironovova et al. [80]

Filtering to remove noise,
power spectral densities
autoregressive model,

Huikuri et al. [81]

Preprocessing, magnitude
squared coherence, ventricular
rate, and irregularity
analysis

Ropella et al. [82]

extracted individual QRS
complexes, Fourier analysis of
individual QRS, classification
by neural network

Minami et al. [83]

Features extraction using
Fourier transform (FFT),
autoregressive modeling (AR),
and principal component
analysis (PCA). artificial
neural networks (ANN).

Hadhoud et al. [84]

Shift invariance
transformation, principal
component analysis
(PCA) and independent
component analysis
(ICA) based features,
nearest neighbor classifier

Owis et al. [85]

VF

SVT, VT,
and VT

VE, VT

SR,VF,
and VT

SR,VF

Normal
and others

VT

MVT, PVT,
and VF

SVT, and VF

NSR, VF,
and VT

NR, VC, VB,
VF and VT

Small dataset

Noise sensitive

Comparative
study

Small dataset

Sensitive to
artifact

No validation

Sustained and
non-sustained

VT measurement

Low accuracy

No validation

small dataset
(192 samples)

PCA, and ICA
is sensitive
to signal shift,
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2.5.1.3 Time-frequency domain analysis

The ECG signal analysis methods in the time-frequency domain are used for the
distinction of arrhythmias. The benefit of time-frequency representation is to catch
the different frequency components present in the signal as well as their evolution in
time. There are several methods to represent the ECG signal in the time-frequency
domain [86, 87, 88, 89]. The Gabor wavelet transform (GWT) is one of the most im-
portant and powerful tools of ECG signal representation [90, 91]. The main advan-
tage of GWT is to observe behaviors of the ECG signals in the time and frequency
domain simultaneously, through the scalogram, the time-frequency spectrum. Fig-
ure 2.11 represent the time-frequency domain analysis process of the ECG signal.
In the process, the raw ECG signals with different amplitudes appearing at differ-
ent times are transformed into time-frequency distribution using different types of
methods. Different types of linear and non-linear features are extracted from the
time-frequency distribution. These features are used for the discrimination of nor-

mal and abnormal pattern in the ECG signal.

Transform ECG
signal into time-
frequency domain

Raw ECG signal ——__l-!>

:> Time-frequency N Analysis and
(Time domain)

domain features | Y| Diagnosis

Figure 2.11: Time-frequency domain based ECG analysis approach

Many researchers analyze the ECG signals both in the time-frequency domain
that is based on wavelet transform. Selected studies are described as follows.
Okai et al. [15] emphasize to increase the detection performance quickly and ac-
curately for the shockable arrhythmia comparatively as in his previous detection
algorithm. In the proposed technique, The Gabor wavelet transform (GWT) is used
to extract effective spectrum features from the ECG signal. The proposed recogni-
tion algorithm based on spectrum features can achieve good performance compared
with the existing results. In this context, a new feature parameter is introduced. On

the basis of parameters calculate the Mahalanobis distance and compare them to
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find whether the signal is SR or not and the signal is shockable or not. The detec-
tion performance of the proposed algorithm can be evaluated by using the receiver
operating characteristic (ROC) curve.

In paper [92], the author proposed a continuous wavelet transform-based detec-
tion algorithm for ECG such as SR, VF, and so on. Here introduce a new parameter
such as variance normalized spectrum index and adopt a threshold crossing sam-
ple count to increase the performance of the detection algorithm. After applying
threshold crossing sample count to the signal get two binary strings and these bi-
nary strings are compared with the threshold value. The author mentioned some
indices that are used to make relations among them. From those relations author
performed a characteristics analysis and reached a decision.

Balasundaram et al. [93] described wavelet based methodology to discriminate
the ventricular arrhythmias especially the VI-VF type signals which are in the over-
lap zone of VT and VF. The author capture the subtle morphological changes be-
tween the three groups of signals using wavelet analysis which lead objectively
asses the VI-VF type arrhythmias and compute their affinity towards VT or VE.
In the methodology, performed pre-processig, and filtering technique of the ECG
signal. Then, analyzed the scalograms for the three groups of signals (VT, VF, and
VT-VF) and observed that the energy distribution between VF and VT-VF having
distinct patterns in terms of their energy spread over time and scale. The linear
discriminant analysis (LDA) based classifier is used to perform the classification.

Meng et al. [94] proposed a method for detection of ventricular fibrillation
(VF) and ventricular tachycardia (VT), based upon the Lempel-Ziv complexity and
Wavelet transform. Using the wavelet transform, decomposes ECG time series into
five scales. The sum of all these scales is equal to the original time series. The
components are further subjected to calculate the LZ complexity. After that the got
results are as the feature to be sent to SVM classifiers. The method is evaluated

using sensitivity and specificity.



42 Chapter 2. Background and Literature review

Zhou et al. [95] present a detection algorithm of VF, and VT. The algorithm con-
tains 5 steps. In the first step, use the Haar wavelet transform (HWT) to filter ECG
signals. Second, the filtered signals are processed with the time-delay transform
(TDT) to make the signal more obvious. Third, we extract the initial features from
the processed signal. Then, the best six features are selected using bounded sum
of weighted fuzzy membership functions (BSWEM), based on NEWFM . Finally,
NEWTFM trains the six-feature database and outputs the best performance result.

In paper [16] the author emphasizes to increase the detection performance quickly
and accurately comparatively as in his previous detection algorithm. In proposed
technique, added some feature parameters which is responsible to increase the recog-
nition performance. This algorithm is divided into two part. Firstly, check the signal
which is SR or not. Another part is to check shockable ECG for VF and VT. Here-
with added newly parameter such as SDW (Scale Distribution width). All statistical
parameters value is calculated by using the NSI and SDW but some of parameters
are selected for getting the efficient result. To select these parameter check the con-
tribution by using the Mahalanobis distance and chosen two parameters for the two
stages. On the basis of two parameters calculate Mahalanobis distance for the two
stages and compare them to find the signal is SR or not and signal is shockable or
not.

Abdi et al. [96] described cardiac disease classification using total variation de-
noising and the morlet continuous wavelet transformation of ECG Signals. In the
methodology, total variation denoising (TVD) is used to filter ECG signals without
smoothing sharp edges, and then, the morlet continuous wavelet coefficient matri-
ces are calculated. Five features were calculated from each row in the coefficient
matrix, based on statistical parameters. The classification of cardiac disease ver-
sus normal is based on binary logistic regression, and the classification of specific
diseases is by multinomial logistic regression.

In the work [97] firstly, applied Gabor wavelet transform to analyze the ECG
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signal. Based on characteristics analysis derived some quality parameters and these
quality parameters lead to discriminate ECG signal. Finally, on the basis of quality
parameters build a discrimination algorithm by using Mahalanobis distance to find
the ECG signal is shockable or not. This proposed algorithm is compared with
existing algorithm by using the performance parameter.

Kheder et al. [98] present an arrhythmia classification structure using wavelet
package transform (WPT) and least square support vector Machine. In the struc-
ture, The author is interested in the feature extraction of HRV which includes ven-
tricular fibrillation (VF) and ventricular tachycardia (VT), and find out the efficacy
of the signals analysis HRV by WPT compared to the analysis by discrete wavelet
transform (DWT). The author presents a new solution using WPT to decompose
the HRV signal into HF (high frequency) and LF (low frequency) frequency ranges.
The obtained frequency bands are too close to LF and HF bands. The root mean
square (RMS) measures the signal power contained in the specified frequency bands
LF and HF. The index of sympathovagal balance (LF/HF) is examined by RMS of
wavelet coefficients. Finally, LS-SVM is used to classify the extracted features. The
performances of the LS-SVM classifier are calculated by ROC (Receiver Operator
Characteristic) method.

The work in [99] presents a feature extraction technique based on wavelet de-
composition from the ECG to differentiate between VT and VE. A set of Discrete
Wavelet Transform (DWT) coefficients, which contain maximum information about
the arrhythmias, is selected from the wavelet decomposition. Daubechies 6 wavelet
has been used in the decomposition process. The SVM (Support Vector Machine)
and the K-nearest neighbor (KNN) classifiers have been deployed to classify the two
rhythms and compare the result of the classifiers. The ECG signals for training the
classifier and testing purposes are taken from MIT malignant ventricular arrhythmia
database. The sensitivity of the SVM and KNN classifier is found to be 91.82% and

92.38% respectively.
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Dagrougq et al. [100] proposed a method of arrhythmia classification based on
using the continuous wavelet transform (CWT) for analyzing the ECG signal and
extracting the desired parameters related to arrthythmia (Heart Rate Variability). In
the method, the author introduces two models (piecewise linear (PL) ECG model
and analytic (AM) ECG model) to design an artificial ECG signal that is important
in signal processing methods testing and evaluation, when the ECG device cannot
be available. The PL- model, which is defined in time and amplitude scales, by
two vectors of characteristic points, and the AM-model, where the ECG signal is
achieved analytically. The models can help in ECG signal processing methods test-
ing without the danger of using people to record different arrhythmias.

In [101], the arrhythmia episodes are investigated to identify recurring signal
patterns and develop a methodology to automate the identification process. In the
method, the filtering technique, and the energy normalization is applied to the ECG
segments for the preparation of the dataset prior to the pattern identification stage.
Three types of patterns are calculated from the signal and these patterns are grouped
into either local or global pattern. Following the identified patterns, the wavelet
analysis is used to detect the occurrence of signal patterns during an arrhythmia
segment.

Sun et al. [102] proposed a method for Life-threatening ventricular arrhythmia
recognition by the nonlinear descriptor. The multiscale-based non-linear descriptor,
the Hurst index “H*, is proposed to characterize the ECG episode so that VT and
VF can be recognized as different from normal sinus rhythm (NSR) in the descriptor
domain. In the method, firstly, perform the wavelet decomposition and computation
of its detail coefficients at different scales. Then, compute the Hurst index H, and

detect the life-threatening ventricular arrhythmia in the feature space of H.
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Table 2.3: Summary of ECG signal analysis in the time-frequency domain method.
References Method / Process Target / Detected Note
Continuous wavelet VT. OVE small dataset
Balasundaram et al. [103] transform (CWT), two anc,l DVF, (21 VT, 20 OVF
level binary classification and 22 DVF)
Wavelet-singular value
Namarvar et al. [104] decomposition (SVD) VFand VT Low accuracy
analysis, SVM
Wavelet transform, NSR. VE Time consuming
Lai et al. [105] investigation of eight ’ and ,VT ’ for selection of
2D CNN structure 2D CNN structure
Discrete wavelet transform .
Shilla et al. [106] (DWT), Continuous wavelet ~ or VI~ Requirement of
transform (CWT), CNN and VT two algorithms
Wavelet transforms, phase
space reconstruction , neural Distinction only
Jang et al. [107] network with weighted NSR, and VF NSR versus VF
fuzzy memberships
Raised cosine wavelet
Khadra et al. [108] transform (RCWT), \;\Iisfr;cf\f;l‘ small dataset
Threshold based decision ’
Wavelet transform,
Sumathi et al. [109] Adaptive neuro-fuzzy NSE’;X%QJF’ No validation
inference system (ANFIS) ’
Hilbert transform,
the pseudo rigner-ville, .
. and the time-frequency SR, vE, VT, Complexity
Mjahad et al. [110] L. increases for
representation image and others multiple classifier
(TFRI), multiple classifier, P
votting method.
Remove artifact by
adaptive filtering, .
Werther et al. [111] time frequency VE q;easltl Z:tzqi ¢
representation by Gabor ’ "
wavelet transform (GWT)
Perform pre-detection
process by statistical NSR. VE Two structures
Zhang et al. [112] analysis, extract features an d’VT, corresponding
using haar wavelet transform, to VFEand VT

neural fuzzy network

18 features, filter
Karthika et al, [113] type feature selection, NSR, VF,

small dataset
ANN, and SVM are used

and VT (15 samples)
for the classification
Discrete wavelet transform, .
used four types of wavelet Requirement
. . VE, VT, SVT, of inverse
Jung et al. [114] functions, the relative and VEL discrete wavelet
energy levels are compared

‘ ; transform
for classification
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2.5.2 Literature review of decision methods

There are various decision methods that have been utilized for the arrhythmias dis-
crimination in the decision stage. The decision methods can be clustered into several
categories based on the classification strategy. Figure 2.12 represents the classifi-
cation of the test sample by the classifier in the decision stage. In the figure, the
classifier learns from the training data and then, this trained classifier model is used

for classifying samples from the unknown test set.

Training set

Trained model

Decision stage
(classifier)

Test set

Figure 2.12: The testing process of the classifier in the decision stage

Many researchers have used various decision methods for arrhythmias discrim-
ination in the decision stage. Table 2.4 and 2.5 present summary of some decision
methods (Grouped according to decision variant) for arrhythmias discrimination in
the decision stage. Here, the application of some decision variants in the context of

arthythmias discrimination are described as follows.

2.5.2.1 Neural network variants

Neural networks are one of the widely employed machine learning techniques and
computationally complex due to require large number of dataset for accurate the
training model. The neural network is made up of layers of neurons. A basic neural
network comprises at least three kinds of layers. The first layer, the input layer picks

up the input signals and transfers them to the next layer. The next layers are hidden
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layers that take their inputs from the previous nodes to classify a certain input into
one of a few predefined categories. The final layer, the output layer, is responsible
for producing values based on the input collected from the hidden layers. Those out-
puts are sent back through the network and may be processed again by other nodes
in later layers until they reach their final destination. There are different variants of
neural networks such as artificial neural network (ANN), probabilistic neural net-
work (PNN), block-based neural network (BbNN) and so on. The ANN is the most
widely used technique to distinguish arrhythmias. One of the works on arrhythmia
discrimination by [115], in which ANN is used to detect VT from the ECG signal.
On the other hand, the BbNN is a two-dimensional array of neural network blocks
with flexible configurations and structures (varying the number of input and outputs
and so on) and integer weights. This can be implemented with less complexity on
digital hardware. The work in [116] implemented a multi-threaded training mecha-

nism for a 4 x 4 BbNN to classify the different types of heart arrhythmias.

2.5.2.2 Support Vector Machine (SVM) variants

Support Vector Machine (SVM) is a supervised machine learning algorithm which
can be used for both classification or regression challenges. Specially it is design
for solving binary classification problems because of its outstanding generalization
performance. The main idea of the SVM is to find a maximum margin between the
training data and the decision boundary [117]. Support vectors, which are the train-
ing samples that are closest to the decision boundary, are used for margin maximiza-
tion. The SVM can be regarded as either a linear or nonlinear classifier according
to the type (variants) of its kernel function. While a linear kernel function makes
the SVM a linear classifier, other kernel functions, such as Gaussian radial basis,
polynomial, and sigmoid, make it a non-linear classifier. Various approaches with
SVM variation have been proposed in the application of arrhythmia classification.

The work in [118] proposed a method for multiclass classification of arrhythmia
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using ECG records with three different SVM based approaches.

2.5.2.3 Bayesian variants

The Bayesian classifier is a branch of machine-learning techniques that is effective
to perform data classification. It is the systems that are based on Bayes decision
theory. This theory is a fundamental statistical approach. The idea behind these
classifiers is that if the class is known, the values of the other features can be pre-
dicted. If the class is not known, then Bayes rule can be used to predict the class
label according to the given feature values. In Bayesian classifiers, probabilistic
models of the features are built to predict the class label of a new sample. There
are different variants of the Bayesian classifiers utilized for arrhythmia classifica-
tion such as Bayesian network, naive Bayes, Bayes maximum likelihood classifier,
and so on. In [119], a naive Bayes based classifier is proposed for ECG arrhyth-
mia detection and classification. However, the performance of Bayesian classifiers
for arrhythmia detection is not as effective as neural networks or SVM-based meth-
ods. Furthermore, the hardware implementation also incurs higher overheads due

to involved computational complexity.

2.5.2.4 Clustering and neighboring variants

Clustering and nearest-neighbor based techniques are relatively low complex tech-
niques which use in the decision stage. Clustering is the process of grouping the
data and to detect the outliers as well employed for arrhythmia detection. Similarly,
one more low-complex technique to perform classification is to use the distance
metrics. The distance based method involves different variants distance metrics
such as Euclidean distance, Manhattan distance, Mahalanobis distance, etc. Various
approaches with different variation of the distance metrics have been proposed in
the application of arrhythmia classification. One of the works [120], in which K-

nearest neighbor based method is applied for the classification of arrhythmia. This
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method involves calculation of Euclidean distances. For an unknown test sample,
the distances from this sample to all samples in the training set are calculated using
the Euclidean distance. Then, an unknown test sample is assigned to the class in
which the closest k samples mostly belong to. Thus, a kind of majority voting ap-
proach is applied. The value of k is a positive integer and is known to be a strongly

influencing factor for the accuracy of the classification.

2.5.2.5 Fuzzy logic variants

Fuzzy logic makes use of many-valued logic for true or false, whereas binary logic
uses one or zero for true and false. This use of many-valued logic helps in determin-
ing confidence levels of true or false in addition to determining accuracy. The major
drawback with fuzzy logic is that it is not always possible to have multi-valued logic
for true and false values. Fuzzy logic is used in ECG signal analysis as well for ar-
rhythmia detection. Fuzzy logic can be operated together with methods like SVM,
neural networks and so on to achieve good accuracy in arrhythmia detection. Var-
ious approaches with different variation (e.g., Fuzzy inference model, neuro fuzzy
approach, and so on) of the Fuzzy logic have been proposed in the application of
arrhythmia classification. The work in [121], where a three step procedure using the

fuzzy inference model is proposed for the arrhythmia classification.

2.5.2.6 Deep learning variants

Deep learning is applied in the recent years for the purpose of arrhythmia detection
and ECG signal analysis. Various deep learning techniques such as convolutional
neural networks (CNN), belief propagation deep neural networks (DNN), long-short
term memory (LSTM) networks, etc, are used. The primary advantage with deep
learning compared to the traditional machine-learning techniques are the robust-
ness to the noise and other artifacts arising during the signal acquisition. Deep

learning is required to be fed with a large amount of samples compared to the tradi-
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tional technique for better performance. In addition, deep learning is more suitable
for high-end or CPU/GPU-based systems rather than only hardware-based com-
puting systems. In deep learning, large numbers of hidden layers are used. The
work in [122], where DNN with 11 hidden layers is used for the myocardial infarc-
tion detection using ECG signals. In the method, the computational complexity is
much more higher than other traditional methods due to requiring a large number of
datasets and the use of large numbers of hidden layers.

In addition to the above-mentioned popular approaches like neural networks,
SVM, Bayesian, clustering, Fuzzy logic, and deep learning, there exist other ap-
proaches for arrhythmia detection and classification. We refer to these approaches
as other decision variants such as statistical discriminant analysis, space search, and
so on. These approaches are less complex but have less efficiency in the application

of the health care system.

2.6 Summary

In this chapter, we have explained the basic structure of the heart, the ECG with
their components as well as four different types of arrhythmia. The collection and
preparation of the ECG dataset have also been explained. We have broadly reviewed
some of the previous arrhythmia diagnosis system studies, where our review is di-
vided into ECG signal analysis stage and decision technique stage. In the next chap-
ter, we will describe our proposed method for the accurate scalogram generation of

the abnormal class ECG signals.
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Derivation of the Scalogram

3.1 Introduction

Sudden cardiac death is sometimes caused by fatal arrhythmias. The AED iden-
tifies these arrhythmias through analysis of ECG signals and plays the most im-
portant role in increasing the survival rate from sudden cardiac death. Hence, the
most important point of the AED equipment is a reliable judgment of its applica-
bility. In view of the increasing precision of the judgment by the AED equipment,
it is necessary to clearly distinguish between shockable arrhythmia (VF and VT),
and non-shockable arrhythmia (PEA) in the abnormal classes. A number of re-

searchers [15, 16, 29, 105, 113, 145, 146] analyze the ECG signals both in the
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time-frequency domain that is based on wavelet transform, and proposed methods
for the AED to discriminate between shockable and non-shockable arrhythmias.
The successful works [15, 16, 29] of them applies just a standard Gabor wavelet
transform (GWT) to generate a scalogram from the ECG signal, which gives a good
distinction between normal and abnormal signals. However, it does not achieve
enough discrimination performance between the shockable and non-shockable ar-
rhythmias in the class of abnormal signals (i.e., PEA, VF, and VT). This is because
the standard GWT generates the same level of coefficient values for the shockable
and non-shockable arrhythmias in the abnormal classes. The same level of coeffi-
cient values over time gives a barrier to distinguishing by the decision algorithm.
Precisely, for non-shockable arrthythmias such as PEA, and shockable arrhythmias
such as VF, and VT, there seem no differences in the scalo-graphic representation
when extracting rhythm information using the Gabor wavelet transform (see Fig-
ures 3.3, 3.4). In the scalograms, energies do not change in frequency over time,
and wavelet coefficient values for all scalograms are at the same level, which leads
to failure to get the best distinction in the decision algorithm. It is clear that if we ac-
curately extract numeric information (scalogram) for the abnormal class signals, the
discrimination performance could be increased. Therefore, we apply a new concept
of the pseudo-differential like operators to the Gabor wavelet transform (GWT) and
perform non-linear transformation functions of the transformed signals to generate
an accurate scalogram for the abnormal class signals. Through the new concept of
pseudo-differential like operators with non-linear transformation functions, we are
able to distinguish clearly abnormal class signals which have small differences (see
Figures 3.13, 3.14).

After derivation of the scalogram, we look at the generated scalogram to ob-
serve the behavior in both time and frequency directions independently. To the best
of our knowledge, the scalogram analysis has been mainly considered only along

the frequency plane [24, 25, 26]. However, we can draw out more information
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from the scalogram, which is useful for better discrimination, by characterizing the
scalogram in the time-frequency plane (see section 3.3). This makes it possible to
quantify the different statistical features of the abnormal class signals.

The rest of this chapter is organized as follows: in section 3.2, we discuss our
proposed algorithm for the derivation of scalogram with the performance results.
After that, in section 3.3, we perform characteristics analysis of the scalogram in the
time and frequency plane and show the evaluation strategy with their performance

results. Finally, the summary of this chapter is drawn in section 3.4

3.2 Methodology

The flow chart of our proposed method generates scalogram using the Gabor wavelet
transform (GWT) with pseudo-differential like operators shown in figure 3.1. In the
methodology, we refine a conventional procedure of analysis the ECG signals by
using the Gabor wavelet transform with the pseudo differential like operators L(a)
and applying the non-linear functions H(-) (see equation (3.6) and (3.7)) to the
transformed signals, which is a new development in our study. First, the mother
wavelet function y(¢) is convoluted with the signal f. During the generation of
wavelet coefficients, we multiply the pseudo-differential like operators L(a) to the
GWT defined by equation (3.5) (similar to the case of the pseudo differential op-
erators for the Fourier transform (see equation (3.2), (3.3))), on f to emphasize the
low-frequency components of f. As a consequence, we are able to get much more
enlarged fruitful information about the (fractional order of) differentiations of the
input signals f(z), t > 0. Since the two operations are equivalent to taking a mul-
tiplier L(a) on the wavelet transform W f(a,b), we just substitute this operation by
L(a)(W f)(a,b). Then, we take its non-linear functions H(L(a)(W f)(a, b)) to make
balanced and bigger the part of the transformed signals which has a small energy.

Finally, these coefficients are represented as a scalogram (see Figures 3.5-3.20).
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Apply pseudo differential
like operators, L(a)
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Figure 3.1: Process to generate scalogram using the GWT with pseudo differential
like operators and non-linear transformation function

The algorithm 1 shows the implementation for derivation of the scalogram using

the Gabor wavelet transform with pseudo differential like operators and non-linear

transformation function.

Algorithm 1 Derivation of the scalogram

Require: ECG signal f(z).
Ensure: Scalogram (W f)(a,b)

10:
11:

Yoo W

: Signal=load f(7)
Target_time=Signal(: , 1)
Target_data=Signal(: , 2)
Initialize variables related to Eq. (3.4)
Calculate Fs = 1/(Target_time(2) — Target_time(1))
Calculate dr = 1/F's related to Eq. (3.5)
for each point in the f(#) along time axis do

Calculate y(t) according to Eq. (3.4)

Computes coefficients of wavelet function y(z), pseudo differential opera-
tor L(a), and the signal f(z) related to Eq. (3.4), (3.5), and (3.7)

L(a)(W f)(a,b) = abs(conv(Target_dataf(t),y(t),L(a)) * dt)

end for
Perform non-linear transformation related to Eq. (3.7)

(Wf)(a,b) = H[L(a)(W f)(a,b)]




3.2. Methodology 57

3.2.1 The Gabor wavelet transform (GWT) with pseudo differ-

ential like operator

In this subsection, we briefly explain the framework of the wavelet transform with
the pseudo differential like operators. The usual pseudo differential operators are
defined in the framework of the Fourier analysis. We extend the notion of the pseudo
differential operators to the wavelet analysis framework, and call them the pseudo
differential like operators, which are defined as follows. We are considering the
real-valued functions defined on R = (—e0, ), denoted by f(z) € R, as the observ-
able signals. To investigate f(z), t € R, the Fourier transform of f(z), denoted by

(FF)(E) or F(£) defined below is a fundamental mathematical tool:

HO=ENE == [ ra  for feS@-R)

where i = +/—1, and the space 8'(R — R) is the space of real Schwartz distributions.
Then
F:8(R—-R)> f— fE8R—=R),

[147], and f(&) corresponds a decomposition of f(¢) in the space of the frequency.

Correspondingly, let F~! be the Fourier inverse transform such that
1 iy
Flo)(s E—/ dSig(EVdE,  for g€ S (R—R).
FTe)) == | e~8ls)ds ges( )
We denote (7! g)(¢) = #(¢). It then holds that
FENO=EFH)=£@), for feSR—R).

One of an important formula in the framework of the Fourier transform is the fol-
lowing:

(FfE)=iEf(&), for feS(R—R), (3.1)
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d
where f'(t) = 7 f(t) (in the distribution sense).
Equation (3.1) can be generalized to the analysis of the pseudo-differential oper-
ators [148]. It is possible to consider, e.g. formally for each o € R, the pseudo

differential operator such that

d? a
(—ﬁ+1) f(@), teR, (3.2
of which Fourier transform is
E*+DYf(E), EE€ER, (3.3)

(precisely, equation (3.2) is defined through (3.3)).

In our study, to investigate the ECG signals f(¢), ¢ € R, we use the Gabor
wavelet transform with the modifications as follows: Let L2 = L2 (R — C) be
the space of the C-valued, complex number valued, square integrable functions on
the real line R. For some given ¢ > 0 and @y € R, take the mother wavelet function

w(t) in L? as follows:

1

12 .
> 2e“%”f(z""o’, t €R, with i=+/—1. (3.4)
no

w(t) =

Then, for f € L?, define the Gabor wavelet transform (W f)(a,b) as follows:

(Wf)(a,b)E%/:of(t)w(t_b)dt, a>0, beR, (3.5)

a

where, the variable 211— > 0 corresponds to the frequency of the function f, and b
corresponds to the time (shift). Next, we prepare two measurable functions L and H

such that

L:R:3a— L(a) €C, H:C>y~—H(y)eC. (3.6)
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For f € L?, we then define our wavelet transform with pseudo differential like opera-
tor L, and its (non-linear) transform by means of H, which are C-valued measurable

functions with the variables a > 0 and b € R, as follows:
L(@)- (Wf)(a,b), H(L(a)-(Wf><a,b>). 3.7

3.2.2 A suitable choice of the pair L(a) with H(-)

In this subsection, we find how the application of the pseudo differential like oper-
ators and its non-linear transformation function, is powerful to the delicate distinc-
tions of shockable and non-shockable arrhythmia in abnormal classes. As the first
step of the analysis, we derive the various scalograms corresponding to the ECG
signals of SR, PEA, VF, and VT by various settings of pseudo differential like op-
erator L(a) with non-linear transformation function H(-) (see Figure 3.2). Then, we
perform the qualitative and quantitative evaluation, from which we select the best

pair of pseudo-differential like operators with non linear transformation function.

Pseudo differential
like operators, L(a)

La) =a ; :
Nonlinear transformation

l

| L@=a \ function, H(-)
[L@=@" \

!

L(a) = 4a

H()=|-|3

1
L({l) = H

N
L(a) = (->
a

1/

eyl ok
@-(3)

L(a) = -
u’_4(1

Figure 3.2: The various setting of L(a) with H(-)

Here, we presents generated scalograms by the conventional method [15, 16]
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and by the proposed method with their qualitative observation.

i) (Figures3.3,3.4) Inthese figures the scalograms with L(a) =1 and H(-) =
|- |2, which is the conventional setting adopted by [15, 16], where the pseudo
differential like operators are not applied. They show a good distinction be-
tween the normal and the abnormal signals, but there seem no differences
in the scalo-graphic representation between abnormal signals, i.e., PEA, VF,
and VT. In the scalograms, energy does not change in frequency over time
and wavelet coefficient values for all scalograms are at the same level which

leads to failing to get the best distinction in the decision algorithm.

ii) (Figures 3.5, 3.6) In these figures the scalograms with L(a) = a and H(-) =
|- ]%, which is the setting of pseudo differential like operators and non-linear
transformation. By this setting, no significant difference graphically between
the abnormal classes signals, i.e., PEA, VF, and VT. The energies correspond-

ing to PEA, VF, and VT are concentrated on the same level.

iii) (Figures3.7,3.8) In these figures the scalograms with L(a) = a® and H(-) =
|- ]211‘, which is the setting of pseudo differential like operators and non-linear
transformation. By this setting, no significant difference graphically between

the abnormal classes signals, i.e., PEA, VF, and VT.

iv) (Figures 3.9, 3.10) In these figures the scalograms with L(a) = (a)% and
H()=]| ]5, which is the setting of pseudo differential like operators and non-
linear transformation. By this setting, energy has been enlarged slightly, but
no significant difference graphically between the abnormal classes signals,

i.e., PEA, VE, and VT.

v) (Figures 3.11, 3.12) In these figures the scalograms with L(a) = 4a and

H(-) = |- |4, which is the setting of pseudo differential like operators and
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non-linear transformation. By this setting, the distinction between abnormal

classes exists same as in case ii).

vi) (Figures 3.13, 3.14) In these figures the scalograms with L(a) = ‘1—1 and
H(:) =] lzlf, which is the setting of pseudo differential like operators and
non-linear transformation. By this setting, we are able to distinguish clearly
between the abnormal class signals, i.e., PEA, VF, and VT. In the scalograms,
energy has been changed in frequency over time. In particular, the difference
between the maximum frequencies corresponding to PEA and VT is 7.2 (Hz)

(randomly selected samples). The different energies over time lead to getting

the best discrimination in the decision stage.

vii) (Figures 3.15, 3.16) In these figures the scalograms with L(a) = (—;—)2 and
H()=]- [%, which is the setting of pseudo differential like operators and
non-linear transformation. By this setting, energy has been enlarged, but no

significant difference graphically between the abnormal classes signals, i.e.,

PEA, VE and VT.

viii) (Figures 3.17, 3.18) In these figures the scalograms with L(a) = (%)% and
H()=| I%, which is the setting of pseudo differential like operators and non-
linear transformation. By this setting, we see the small differences between

PEA and VT.

ix) (Figures 3.19, 3.20) In these figures the scalograms with L(a) = zla and
H()=]|- t%, which is the setting of pseudo differential like operators and
non-linear transformation. By this setting, the distinction between abnormal
classes exists same as in case vi). Therefore, we do not have a better distinc-

tion than the one of the case vi).

From the experimental results (also cf. subsection 3.2.3, and 3.2.4), for the sub-

sequent considerations we henceforth adopt the pseudo differential like operators
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3.2.3 General observations

We demonstrate an intrinsic effect of L(a) with H(-) using qualitative evaluation
before the numerical decision. We thus select the qualitatively best two-variable
scatter plot with histogram for the 1079 samples from all the setting of L(a) with
H(.), as in Figures 3.21, 3.22, 3.23, 3.24, 3.25, 3.26, 3.27 and 3.28, respectively.
In the figures, we observe that the distribution of abnormal signals (PEA, VF, and
VT) are quite different from that of normal signal (SR), where the distribution of
abnormal signals is at close distances for all settings of L(a) with H(-). Among the
different setting, L(a) = % with H(-) = |- lzlf shows better distribution with respect
to mean of NSI and the combination of mean of NSI with variance of NSI. In the
scatter plot with histogram for this setting, the distribution of the abnormal class
signals (PEA, VF, and VT) is quite far from that of normal class signal (SR), where
the distribution of the abnormal class signals (PEA, VF, and VT) is isolated from
each other. For example, the distribution of VF is isolated from the VT and far from
the PEA, where little regions of VT and PEA overlap with each other. Also, the his-
togram of the abnormal class is slightly interdependent with each other. Therefore,

the highest separation exists for this setting in the abnormal class signals.
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3.2.4 Quantitative observation

We perform the numerical experiments for various setting of pseudo differential
like operators L(a) with non-linear transformation function H(-) and compared the
proposed method with the conventional method. In the experiments, we follow
the cross validation process (see subsection 3.3.1.4.2), and use macro-and micro-
average precision, recall, F1-score (F-measure) and accuracy, as performance in-
dices which are commonly used in multi-class classification measurement (see sub-
section 3.3.1.4.1), and adopt the histogram as a classifier of the groups to make
the decision (see subsection 3.3.1.3). Tables (3.1-3.4) show fold-wise and group-
wise individual precision, recall, Fl-score (F-measure) and accuracy and macro-
and micro-average precision, recall, Fl-score for the various settings of pseudo-
differential like operators L(a) with nonlinear transformation function H(-). On
the other hand, Table 3.5 shows the experimental discrimination accuracy for the
various setting of pseudo-differential like operators with nonlinear transformation
function and the proposed method keeps the better performance of the discrimina-
tion than the conventional method which is conducted by Okai et al [16, 29]. As
shown in the Tables 3.5, the ratio of the successful discrimination between normal
signals (SR) and abnormal signals (PEA, VF, and VT) is 100% for all setting of
pseudo-differential like operators and nonlinear transformation functions and for
the conventional approaches. How about the discrimination performance between
shockable (VF, and VT) and non-shockable (PEA) arrhythmias for the different set-
ting of pseudo-differential like operators with nonlinear transformation functions
and for the conventional approaches? The setting L{a) = a with H(-) = |- I% is able
to achieves 85.37% accuracy, while 84.52% accuracy is obtained for the setting
L(a) = a* with H(:) = |- |%. Similarly, the setting L(a) = (a)% with H(-) = |- [%'
is able to achieves 87.41% accuracy, while 85.37% accuracy is obtained for the

setting L(a) = 4a with H(-) = |- [% On the other hand, the setting L(a) = 1 with

a
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H(:)=] ]211’ is able to achieves 91.58% accuracy, while 86.73% accuracy is obtained
for the setting L(a) = (%)2 with H(-) = |- I% Similarly, the setting L(a) = (le)% with
H()=]| I% is able to achieves 90.62% accuracy, while 91.58% accuracy is obtained
for the setting L(a) = ;}& with H(-) = - [21»‘. Therefore, among the various setting,
Lia)=1withH()=| I% shows (91.58% accuracy) the better distinction perfor-
mance. On the other hand, from the precise numerical results given of section 4.2
in [16] and in part A, section III of [29], we can derive 84.86% and 86.03% ac-
curacy for the shockable (VE, VT) versus non-shockable (PEA) arrhythmia cases,
while present proposed method increases the accuracy to 91.58%, with 6.72% and
5.55% gain.

The performance is improved of the proposed method because, the proposed
method effectively (generate distinguishable scalogram for the shockable and non-
shockable arrhythmia cases in abnormal class signals) enlarge energies over time
which lead in decision algorithm to get the best distinction (see Figures 3.13, 3.14).
This is the main advantage of the proposed method. On the other hand the per-
formance is low of the conventional method for shockable vs non-shockable cases
because, the conventional method generates same level of energy over time which

gives a barrier to distinguish in the decision algorithm (see Figures 3.3, 3.4).
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Table 3.1: Fold-wise and group-wise performances for the various settings of
pseudo-differential like operators L(a) with nonlinear transformation function H(-)

Setting Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8710 0.8438 0.8571 96.34
SR 1.0 1.0 1.0 100.0
Fold-1 VF 09710 09155 0.9420 96.74
VT 0.7568  0.8750 0.8116 94.71

Macro avg.  0.8995  0.9086  0.9027
Micro avg.  0.9390  0.9390 0.9390

PEA 0.7813  0.8065 0.7937 95.23
SR 1.0 1.0 1.0 100.0
Fold-2 VF 0.9467 0.9221 0.9342 96.33
VT 0.7692 0.7895 0.7792 93.71
Macro avg. 0.8743  0.8795 0.8768
. 1 Micro avg. 09267 0.9267 0.9267
L{a) =awith H(:) = |-[¥ PEA 07429 08125 07761 5471
SR 1.0 1.0 1.0 100.0
Fold-3 VF 09714 0.8718 0.9189 95.77
vT 07174 0.8049 0.7586 92.60
Macro avg. 0.8579  0.8723 0.8634
Microavg. 09155 09155 009155
PEA 0.8049 0.8462 0.8250 94.92
SR 1.0 1.0 1.0 100.0
Fold-4 VF 09130 0.8630 0.8873 94.20
VT 0.7174  0.7500 0.7333 91.30
Macro avg. 0.8588 0.8684 0.8614
Microavg. 09022 09022 0.9022
PEA 0.8485 0.8000 0.8235 95.50
SR 1.0 1.0 1.0 100.0
Fold-1 VF 0.9375 0.8824 0.9091 94.38
VT 0.6957 0.8205 0.7529 92.13
Macro avg. 0.8704  0.8757 0.8714
Micro avg. 09101 09101 0.9101
PEA 0.7568  0.8235 0.7887 94.20
SR 1.0 1.0 1.0 100.0
Fold-2 VF 0.8947 0.8947 0.8947 95.36
VT 0.7907 0.7391 0.7640 91.89
Macro avg. 0.8605  0.8643  0.8619
0 . 1 Microavg.  0.9073 0.9073 0.9073
L{a) =a* with H()=|-3 PEA 08000 07742 07869 55.03
SR 1.0 1.0 1.0 100.0
Fold-3 VF 0.9697 0.8889 0.9275 96.18
VT 0.6286  0.7857 0.6984 92.74
Macro avg.  0.8496  0.8622  0.8532
Microavg. 09198 09198 0.9198
PEA 0.8529 0.8529 0.8529 96.56
SR 1.0 1.0 1.0 100.0
Fold-4 VF 09167 0.9059 0.9112 94.84
VT 0.7674 0.7857 0.7765 93.47

Macro avg. 0.8843  0.8861  0.8852
Micro avg.  0.9244 09244 0.9244
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Table 3.2: Fold-wise and group-wise performances for the various settings of
pseudo-differential like operators L(a) with nonlinear transformation function H(-)
(continue)

Setting Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8125 0.8966 0.8525 96.59
SR 1.0 1.0 1.0 100.0
Fold-1 VE 0.9733 09241 09481 96.96
VT 0.8372  0.8571 0.8471 95.07

Macroavg. 09058 09194 009119
Microavg. 09432 0.9432 0.9432

PEA 0.9333  0.8485 0.8889 97.35
SR 1.0 1.0 1.0 100.0
Fold-2 VF 0.9275 0.8889 0.9078 95.09
VT 0.7381 0.8611 0.7949 93.96
Macroavg. 0.8997 0.8996 0.8979
L 1 Microavg. 09321 0.9321 0.9321
L(a) = (a)? with H(:) = -2 PEA 07941 08710 08308 96.1
SR 1.0 1.0 1.0 100.0
Fold-3 VF 0.9452  0.9079 0.9262 96.11
vT 0.8085 0.8085 0.8085 93.63
Macroavg. 0.8870 0.8968 0.8914
Microavg. 09293 09293 0.9293
PEA 0.8684  0.80490 0.8354 95.13
SR 1.0 1.0 1.0 100.0
Fold4 VF 0.9559 0.9028 0.9286 96.25
VT 0.6486 0.8000 0.7164 92.88
Macroavg. 0.8682 0.8769 0.8701
Micro avg. 09213 09213 0.9213
PEA 0.9000 0.8710 0.8852 97.29
SR 1.0 1.0 1.0 100.0
Fold-1 VF 0.9552  0.9275 0.9412 96.91
VT 0.7692  0.8333 0.8000 94.20
Macro avg.  0.9061  0.9080 0.9066
Microavg. 09421 0.9421 0.9421
PEA 0.7750  0.7949  0.7848 93.68
SR 1.0 1.0 1.0 100.0
Fold-2 VF 0.9420 09155 0.9286 96.28
VT 0.7381 0.7561 0.7470 92.19
Macroavg. 0.8638 0.8666 (.8651
. i Microavg. 09108 0.9108 0.9108
L{a)=4awith H()=|-[* PEA 07714 07714 07714 94.13
SR 1.0 1.0 1.0 100.0
Fold-3 VF 0.9437 0.8590 0.8993 94.50
VT 0.6667 0.8000 0.7273 92.30
Macroavg. 0.8454 0.8576 0.8495
Microavg. 0.9048 0.9048 0.9048
PEA 0.7647  0.8966 0.8254 96.04
SR 1.0 1.0 1.0 100.0
Fold-4 VF 0.9595 0.8765 0.9161 95.32
VT 0.7778 0.8140 0.7955 93.52

Macroavg. 0.8755 0.8968 0.8842
Microavg. 09245 09245 0.9245
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Table 3.3: Fold-wise and group-wise performances for the various settings of
pseudo-differential like operators L(a) with nonlinear transformation function H(-)
(continue)

Setting Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.9048 0.9048 0.9048 97.19
SR 1.0 1.0 1.0 100.0
Fold-1 VE 0.9610 0.9250 0.9427 96.84
VT 0.8095 0.8718 0.8395 95.43

Macro avg. 0.9188  0.9254 0.9217
Micro avg. 0.9474 09474 0.9474

PEA 09714 09444 0.9577 98.86
SR 1.0 1.0 1.0 100.0
Fold-2 VF 0.9692 0.9545 0.9618 98.10
VT 0.8485 09032 0.8750 96.96
Macro avg. 0.9473  0.9506 0.9486
. 1 Microavg. 0.9697  0.9697  0.9697
L(a)= g with H() = |- |3 PEA 08421 00143 08767 96585
SR 1.0 1.0 1.0 100.0
Fold-3 VE 0.9730 0.8780 0.9231 95.80
VT 0.7959 0.8864 0.8387 94.75
Macro avg. 0.9027 0.9197 0.9096
Micro avg. 0.9371 09371 0.9371
PEA 0.8750 1.0 0.9333 98.77
SR 1.0 1.0 1.0 100.0
Fold-4 VF 0.9851 0.9296 0.9565 97.54
VT 0.8810 0.9024 0.8916 96.31
Macro avg. 09353 09580 0.9454
Microavg. 09631 0.9631 0.9631
PEA 0.8919 0.8462 0.8684 96.21
SR 1.0 1.0 1.0 100.0
Fold-1 VF 09324 0.8961 0.9139 95.07
VT 0.7500 0.8571 0.8000 94.31
Macro avg. 0.8936 0.8999  0.8956
Micro avg.  0.9280 0.9280 0.9280
PEA 0.8571 09231 0.8889 97.73
SR 1.0 1.0 1.0 100.0
Fold-2 VF 09701 0.8667 0.9155 95.47
VT 0.7556  0.8718 0.8095 93.96
Macro avg. 0.8957 09154  0.9035
; 1 Micro avg.  0.9358  0.9358 0.9358
L(a) = (3)* with H() =|-|7 PEA 8530 05715 0.3608 96.08
SR 1.0 1.0 1.0 100.0
Fold-3 VF 0.8873 0.8873 0.8873 94.30
VT 0.7561 0.7381 0.7470 92.52
Macro avg. 0.8734  0.8743  0.8738
Microavg. 09146 09146 0.9146
PEA 0.8387 0.8667 0.8525 96.65
SR 1.0 1.0 1.0 100.0
Fold-4 VF 0.9306 0.8816 0.9054 94.79
VT 0.8095 0.8718 0.8395 95.16

Macro avg. 0.8947  0.9050 0.8993
Micro avg. 09331 09331 0.9331
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Table 3.4: Fold-wise and group-wise performances for the various settings of
pseudo-differential like operators L(a) with nonlinear transformation function H ()
(continue)

Setting Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8750 0.8750 0.8750 96.53
SR 1.0 1.0 1.0 100.0
Fold-1 VF 0.9610 09136 0.9367 96.53
vT 0.7959 0.8667 0.8298 94.46

Macroavg. 0.9080 0.9138 0.9104
Microavg. 09377 0.9377 0.9377

PEA 08621 09259 0.3020 5753
SR 10 10 10 100.0
Folda VE 00844 0.9545 09692 5835
VT 08824 08804 08824 3670
Macro avg.  0.9322 09407 0.9361
- l Micro avg.  0.9630 09630 0.9630
L(a) = (3)? with H(:) = |¥ FEA 0861109118 0.8857 5733
R 10 10 10 100.0
Fold3 VE 00872 0.9059 09448 96.88
VT 07907 0.8947 08395 95.50
Macro avg. 0.0007 09281 09175
Micro avg.  0.0481 00481  0.9481
PEA 00355 0.8788  0.9063 57,67
5 10 10 10 100.0
Folda VE 00403 0.9403  0.9403 96.80
VT 0.8250 0.8684 0.8462 9534
Macro avg,  0.9252 09219 090232
Micro avg.  0.0496 00496 0.9496
PEA 0.8333  0.9677 0.8955 9741
SR 10 10 10 100.0
Fold1 VE 09861 0.8987 0.9404 96.67
VT 0.8333 08750 08537 9557
Macroavg. 0.9132 0.9354 0.9224
Micro avg.  0.0483 00483 0.9483
PEA 0.8880  0.9600 0.9231 98.50
SR 10 0 10 100.0
Folde VE 09722 08974 09333 6.5
VT 07955 08750 0.8333 9475
Macro avg. 09141  0.9331 0.9224
L. 1 Microavg. 09476 0.9476 0.9476
L(a) = ¢ with H(:) = |- [ PEA 00524 09091 0.9302 57.34
SR 10 0 ) 100.0
Fold3 VE 00697 09552 0.9624 58,20
VT 08460 09167 0.3800 9677
Macro avg.  0.9421  0.9452 0.9432
Microave,  0.9642 09642 09642
PEA 00118 09118 00118 5770
SR 10 10 70 100.0
Folda VE 00580 0.9333 09459 36.94
VT 08537 0.8974 0.8750 96.18

Macroavg. 09311 0.9356 0.9332
Microavg.  0.9542  0.9542 0.9542
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Table 3.5: Overall quantitative evaluation for the various settings of pseudo-
differential like operators L(a) with nonlinear transformation function H(-), and
comparison with the conventional approaches.

Method Setting Distinction scheme Accuracy{%)
L) = b H () =11} Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
(@) =awith H() =¥ |55 hle (VE, VT) vs non-shockable (PEA) 8537
Lia) = @ with H(-) = |- 1 Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
(a) =a* with H() = || Shockable (VE, VT) vs non-shockable (PEA) 3452
1) = ()% with H() = |- 1+ Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
The GWT with pscudo- || (@) = (@)% with H(") =¥ | =550 e (VE VT) vs non-shockable (PEA) 8741
e oo U Lt — 4awith H() = [ (& | ormal SR) vs Abnormal (PEA, VF and VT 100.0
mation function (@) =4awith H()=|"I* |\ ~5pceiable (VE, VT) vs non-shockable (PEA) 85.37
(Proposed) 1 il Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
L@)=gwih H()=|"I* | ~Spockable (VE, VT) vs non-shockable (PEA) 31,58
—(1V2 o ol Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
L(a) = (5)* with H() = |- |* |—Shcciable (VE, VT) vs non-shockable (PEA) 36.73
N 1 ;4 || Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
L{a) = (3)? with H() = |- |* |=g55chie (VE, VT) vs non-shockable (PEA) 50.62
Lia) = L with () = | |4 Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
(a) = zz with H(:) = || Shockable (VE, VT) vs non-shockable (PEA) 91.58
. . Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
— N 1.2
Conventional {16] Lla)=1with H()=]| Shockable (VE, VT) vs non-shockable (PEA) 84.86
. . Normal (SR) vs Abnormal (PEA, VF and VT) 100.0
_ N2
Conventional {29] L{a)=1with H() =] Shockable (VF, VT) vs non-shockable (PEA) 86.03

* The accuracy has been calculated according their predicted result given of section 4.2 in {[16], and see part A of section III in [29]).

3.3 Effective characterization of the scalogram

In this section, we explore the insights of scalogram in the time and frequency di-

rection and calculate the statistical features using the quality parameters.

3.3.1 Characterization of scalogram along with the frequency

For the analysis of scalogram along the frequency, we adopt quality parameter
“normalized spectrum index (NSI)* [24] and take the center of gravity of ener-
gies over frequencies of the scalogram. For given H and L, let H(L(a)(W f)(a, b))
be the function defined in section 3.2.1. To derive the characteristics, we take
NSI(f,L,W)(b) with respect to frequency. The definition of the NSI is given by
(the continuous variable case)

_ Jya-H(L(a)- (W[)(a,b))da
NI EWE) = Ofo”H(L(a> -(Wf)(a,b))da

(3.8)
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In the numerical treatments by means of MATLAB for the discretized wavelet trans-
forms, we have to modify the formula (3.8) as follows. For simplicity, for given H
and L, let us denote, E(a,b) = H(L(a)(Wf)(a,b)) and NSI(b) = NSI(f,L,W)(D).

Then, for the present discrete case the NSI(b) reads as

YoE(a,b)F(a)

NSI(b) = T EaD)

(3.9)

where E(a,b) and F(a) represents scalogram energy and scalogram frequency, re-
spectively. Note that the energy E(a, b) in the scalogram obtained by H(L(a)(W f)
(a,b)) which has been explained in subsection 3.2.1 and the scalogram frequency
F(a) is for the corresponding energy E(a,b). Algorithm 2 shows the characteriza-

tion method in detail of the scalogram over the frequency.

Algorithm 2 Normalized spectrum index (NSI)

Require: Time-frequency scalogram: (W f)(a,b),
a : scale corresponding to the frequency, b : time
Ensure: NSI(b)
1: Load (Wf)(a,b)
2: for each b do
3: Find energy E(a,b)
4 for each a do
5 Find E(a,b)F (a) for the corresponding E(a, b)
6: end for
7: end for
8: Calculate NSI(b) according to Eq.(3.9)

Now we show the graphical representation of NSI for scalogram of SR, PEA,
VE, and VT signals (see Figures 3.29, 3.30, 3.31, and 3.32,). Here, the NSI is ob-
tained as a “time series* waveform from scalograms for each signal. In addition, the
NSI waveform tends to change periodically and regularly for the scalogram of SR
signal, while the changes are irregular for scalograms of PEA, VF, and VT signals.
As our objective, we mainly concentrate on the discrimination of the shockable (VF
and VT) and non-shockable (PEA) arrhythmias in the abnormal class through the

NSI. Hence, the NSI value over time is the primary key here. From the visualiza-
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tion, we see that the maximum NSI value of the PEA signal is at the time near five
second. On the other hand, the maximum NSI value appears at the time near one
second for the VT signal. Inspecting the maximum over time, we get different NSI

values for PEA, VF, and VT signals.
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Figure 3.30: NSI(b) for scalogram of PEA signal
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Figure 3.32: NSI(b) for scalogram of VT signal

3.3.1.1 Statistical features extracted from the scalogram through NSI

We deduce statistics of the scalogram by extracting statistical features through NSI.
For vector NSI(b) (b=1,---,N) (where, N is the total number of element), eight

statistical features (mean, variance, slope, kurtosis, skewness, entropy, power, and
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mode of NSI) are extracted as the feature quantities as follows [149].

B Mean of NSI

B Variance of NSI

1 N
Vivs = Y (NSI(b) — pwsr)?
b=1

B Slope of NSI
N~1

1
Snsi = —— [NSI(b-{-l)-“NS[(b)[
N-—-1 =
B Kurtosis of NSI
Ly L
Knsi = = NSI(b) — unsi)®
(Vwst)* N 1=
B Skewness of NSI
N 4
SKnsr = N Z (NSI(b) — unsr)
( wnst)” NV p=

B Entropy-based index of NSI

N
EBIysy = — Y NSI(b)log,NSI(b)

B Power of NSI
N

Pysi =Y |NSI(b)]?
b=1
B Mode of NSI
The most frequently occurring value in the NSI of the scalogram is calculated
by
Mpys; = mode[NSI(b)]



84 Chapter 3. Derivation of the Scalogram

3.3.1.2 A suitable combination of the NSI features

There are eight statistical features are extracted from the scalogram through NSI,
and it is not clear which features and combination of feature are effective for the
discrimination of shockable and non-shockable arrhythmias. To find out the ef-
fectiveness and suitable combination of the NSI features, we first check the effec-
tiveness of individual features with the help of a univariate histogram and look at
the effect of all possible feature pairs using eight individual features on the multi-
variable scatter plot matrix. Therefore, we create a matrix (84 1079) of scatter
plots with univariate histograms for each combination of variables (Visualization
of the multivariate ECG classes in the different feature spaces), where 1079 sam-
ples are grouped into four classes by the grouping variable (see Figure 3.33). The
multi-variable plot matrix provides the graphical overview of the relations between
all pairs of variables. The Figure shows the pairwise scatter plot in the lower and
upper triangular and represents the histogram diagonally from top left to right for
all features. From the figure, we see that the univariate histogram for “Mean of
NSI* and “Variance of NSI“ show the highest separable class and the distribution in
the scatter plot for the combination of “Mean of NSI*“ with all features show good
separate class. Precisely, the distribution in the scatter plot for the combination of

“Mean of NSI* with “Variance of NSI“ shows a better separated class.
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Figure 3.33: Multi-variable scatter plot matrix with univariate histogram for NSI
features

3.3.1.3 Discrimination by histogram

We use the histogram as a classifier of the groups to make the decision. The strat-
egy of the histogram method in order to discriminate between the shockable and
non-shockable arrhythmia is shown in Figure 3.34, and the detail explanation is as
follows.

(i) Let K be the number of groups to be discriminated. Each of the groups corre-
sponds to patients of SR, patients of VF, and so on.

(i)  Suppose that we characterize the groups by using r types of the features.

l

(i) Letx(m = (x(m)> be the data of m-th group for some n,, € N, for
=Lty

m=1,---,K. Here the i-th data x,(m) is of the form

xl(m) = (xg,’;l) e ,xl(’":) :
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(iv) Now, let x,(n”;lc pand £

min,p D& Maximum and minimum value in the p-th feature
)

(cf. (i1)), respectively, for p =1,...,r. That is,

(m) _ {m)
Xmax,p = MaX §X;
1<i<n, UHP

and
(m) _ . (m)
Sminp = | HI \Fip |

(v)  Then, for each of the group, we take the bin width d ,S'") of the histogram,

dgn) E%[xm,p—x%)l)p], m=1,--- K.
Now, label the frequency between the intervals and compute the histogram H, ,E’") for
the p-th feature of the m-th group.

(vi)  Finally, suppose that we are given a test data, denoted by x = (x1,...,%,), and
composed with the r number of features. Note that, it is unknown which group the
patient test data belongs to. For the given test data x, we determine the successive
intervals for each of the group, take the weight values for the corresponding interval
and divide the weight value by the size n,, (SR, PEA, VF, and VT) of corresponding
group of data, the result of which denoted by W[Sm) (x).

(vii)  As the decision by means of the histogram, the test data x is judged to belong

to the m,-th group if W,ﬁ'") (x),m=1,...,K, takes the largest value at m = my,,.
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Wor, Wpp a4, Wy and Wy represent
weight of SR and similarly

Check test input in both axes
’ ’ A and take corresponding weights
of corresponding group of data (Wep» Woga» Wy, W) from
training histogram

Divide weights value by the size

Wppa > Weg
and
Wpea > Wyr
and
Wppa > Wyr

Y
The signal is The signal is
shockable (VF) shockable (VT)

Figure 3.34: Discrimination of shockable and non-shockable arrhythmia by his-
togram

The signal is non-

shockable (SR)

The signal is non-
shockable (PEA)

3.3.1.4 Performance evaluation and discussion

In this section, we explain the evaluation strategy and step-by-step performance

result of the proposed method.

3.3.1.4.1 Evaluation matrices

Many evaluation metrics are based on the confusion matrix [150]. The confusion
matrix is a cross table that records the number of occurrences between two raters, the
true classification, and the predicted classification. Figure 3.35 shows the confusion
matrix for the multiclass classification, where TP is a true positive, TN is a true
negative, FP is a false positive and FN is a false negative, respectively. If the sample
is positive and it is classified as positive, i.e., correctly classified positive sample,
it is considered as a TP, if it is classified as negative, i.e., misclassified sample, it
is considered as a FN. If the sample is negative and it is classified as negative, i.e.,

correctly classified negative sample, it is considered as a TN, if it is classified as
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positive, i.e., misclassified sample, it is considered as false FP.

True group
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=
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Figure 3.35: The confusion matrices for multiclass classification

We use macro-and micro-average precision, recall, F1-score (F-measure) and
accuracy, as performance indices which are commonly used in multi-class classifi-
cation measurement [151, 152]. The F-measure is the harmonic mean of precision
and recall. In order to obtain macro-average F1 score, we compute F-measure (F;)

for each class and then take their average of F-measure over all classes as:

B *R;
P+R;’

1 c
Fi=2, Macro—avg.Flz—ZE-,
€i=1

where c is total number of classes and the precision (P;) and recall (R;) for class i

are defined as follows:

TP, TP,
P=—o'e, Ri=o—tr.
TP, +FP, TP +FN;

Here TP, FP, and FN; are true positive, false positive, and false negative in the ith
class, respectively.

The macro average precision (Pugcro) and the macro average recall (Ry40r0) are the
averages of individual precision and recall respectively:

L TP, 1 & TP
Dy, |1 NN - WO ~ O [ Ny
macro C,’:ZlTPi‘FFPi, macro CZTI:’i—I—FM

i=1
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On the other hand the micro-average F1 score is given as follows:

Buicro * Ruicro

Micro—avg . F1 =2 ,
& P, micro + Rmicro

where micro average precision (Ppicro) and micro average recall (Rpuicro) are com-

puted by summing individual precision and recall as follows

iz1 TF

micro ?:1(TPL' +FP,> s

(TP +FN;)

Rmicro =
The group-wise accuracy is the ratio of correctly predicted observation to the total
observation, that is:

TP, +TN; ;
TP, +FP.+FN;+TN;

Accuracy; =

When the value of precision, recall, and F-measure is close to 1.0, then the classifi-
cation performance is considered high. when they are almost 0.0, then it is consid-

ered very low performance.

3.3.1.4.2 Evaluation process

Cross-validation is a statistical approach used to get an accurate assessment of
the accuracy of a model [153]. It is a technique to evaluate predictive models by
partitioning the original sample into a training set to train the model, and a test
set to evaluate it. There are several types of methods for cross validation. Among
the methods, the K-fold cross-validation method is the most popular and widely
used method for the accurate assessment of a model [154, 155]. The K-fold cross-
validation procedure has a single parameter called K which refers to the number of
groups that a given dataset is to be split into K number of groups. Therefore, the
procedure is often called K-fold cross-validation. For using the K-fold method there

are no strict rules to set the value of K; that means there is no fixed value of K. The
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value of K is set by the user.

In our study, we have performed k-fold cross validation for stabilizing the per-
formance of our proposed method. We have performed 4-fold cross validation
that means four times iteration totally. The discrimination results of each iteration
for the 1079 samples are in Figures 3.37, 3.38, 3.39, and 3.40, and Tables (3.6-
3.9), respectively. We have Z;y, = 1079 samples where (SR (Non-shockable)
238 = 491), (PEA (Non-shockable) ZPZ4 = 134), (VF (Shockable) ZVF = 299)

total — total —
and (VT (Shockable) Zx)fal = 155). Since, we performed 4-fold cross-validation,
so the total of (Z,,,,; = 1079) samples are randomly partitioned into 4 sub-samples
of equal size. A single sub-sample, denoted by T, is used as the validation data for
testing the model, and the remaining (Z,,,,; — 7) sub-samples are used as training
data. Here, the T samples are also selected randomly for each type of ECG sig-

nals. The cross-validation process is repeated 4 times and the process is shown in

Figure 3.36.

1079 samélesl

Training and validation set splitting

! l (K-1) splits on training | l
V
D T e I -
(> S s R ] [
o [ e e ] >
(o I T I [

Figure 3.36: Schematic illustration of four-fold cross validation approach

4-times iteration
ind 4-fold

3.3.1.4.3 Performance results

The performance results of the proposed method are evaluated for four class cat-
egories using four fold cross validation approach (see subsection 3.3.1.4.2) based
on the evaluation matrices (see subsection 3.3.1.4.1). The confusion matrix plots

with the performance results for shockable (VF, VT) and non-shockable (SR, PEA)



3.3. Effective characterization of the scalogram 91

arrhythmias are shown in Figures 3.37, 3.38, 3.39, and 3.40 respectively. The con-
fusion matrix is generated through the proposed setting L(a) = £ with H(-) = |- [?11
by using the combination of the “Mean of NSI* with “Variance of NSI features.

In Figures 3.37, 3.38, 3.39, and 3.40, the rows correspond to the predicted class
and the columns correspond to the true class. The diagonal cells correspond to ob-
servations that are correctly classified. The off-diagonal cells correspond to incor-
rectly classified observations. Both the number of observations and the percentage
of the total numbers of observations are shown in each cell. The values on the far
right column (green, and red color), and the row at the bottom (green, and red color)
of each figure show the percentages of the correct predictions and the incorrect pre-
dictions, respectively. The cell in the bottom right of the plot shows the overall
correct and incorrect accuracy.

For example, on the Figure 3.37, 285 data, which is composed by 42 of PEA,
124 of SR, 80 of VF and 39 of VT, are tested. The first column shows that the 38
PEA data within the actual 42 test data are correctly identified and the rest of the
data are incorrectly identified where 1 data is miss judged as VF, and 3 data are miss
judged as VT. Similarly, the second column shows that the actual 124 SR test data
are correctly identified, and none of them is miss judged as others, i.e., PEA, VF,
or VT. Similarly, the fourth column explains that, within the actual 30 number of
VT data, 34 are correctly identified but 2 data are miss judged as VF, and 3 data
are miss judged as PEA. 12.8% incorrect result given in the bottom of the fourth
column, indicated as the red color, is calculated from (3+2)/(3+2+34) =5/39.

On the other hand, the row concern, the first row of the same figure shows that 38
numbers of PEA data are exactly identified as PEA, but in addition 1 of VF, and 3 of
VT are miss judged as PEA. The far-right component 90.5% corrected result of the
first row, indicated as the green color, is calculated from 38/(38 + 1+ 3). Similarly,
the fourth row shows that 34 VT data are identified correctly, but in addition 5 of

VF and 3 of PEA are miss judged as VT. Therefore, 81.0% correct (green color)
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and 19.0% (red color) incorrect results are calculated from 34/(34 + 5 + 3) and
(5+43)/(344 5+ 3) which are shown in the far-right of the fourth row. The cell in

the bottom right of the plot of the same figure shows the overall 94.7% correct and

5.3% incorrect accuracy.

Confusion Matrix on fold-1
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_ < HB 124 0 o | 100%
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T e 0 74 2 |96.1%
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©
o
£ [ 0 5 34 |s1.0%
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95% | 00% | 7.5% | 12.8% | 5.3%
QQ,?‘ %Q‘ QQ Q'\
True label

Figure 3.37: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-1, (uys; and Viyg; case)

Confusion Matrix on fold-2
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SR 0 131 0 0 100%
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B VE 0 0 63 2 96.9%
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0.8% | 0.0% | 1.1% | 10.6% | 15.2%
94.4% | 100% | 95.5% | 90.3% | 97.0%
56% | 0.0% | 45% | 97% | 3.0%
Q(OV‘ %Q‘ \\<< Q&
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Figure 3.38: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-2, (uys; and Vyg; case)
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Confusion Matrix on fold-3
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Figure 3.39: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-3, (tysy and Vygy case)

Confusion Matrix on fold-4
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Figure 3.40: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-4, (tysr and Viysr case)

The detailed performance analysis (fold-wise and group-wise) presented in the

Tables (3.6-3.9), which corresponding to Figures 3.37, 3.38, 3.39, and 3.40. The

table shows individual precision, recall, F1-score, and accuracy for each group,

and shows overall macro and micro average precision, recall, and Fl-score. For
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example, Table 3.6 presents 0.9048 precision, 0.9048 recall, 0.9048 F1-score, and
97.19% accuracy for PEA test data. Similarly, for SR test data 1.0 precision, 1.0
recall, 1.0 Fl-score, and 100% accuracy are obtained, respectively. On the other
hand, 0.9610 precision, 0.9250 recall, 0.9427 F1-score, and 96.84% accuracy for VF
test data and 0.8095 precision, 0.8718 recall, 0.8395 F1-score, and 95.43% accuracy
for VT test data are obtained, respectively on fold-1. The overall macro and micro
average precision, recall, F1-score of 0.9188, 0.9254, 0.9217, and 0.9474 on fold-1,
0.9473, 0.9506, 0.9486, and 0.9697 on fold-2, 0.9027, 0.9197, 0.9096, and 0.9371
on fold-3, 0.9353, 0.9580, 0.9454, and 0.9631 on fold-4, respectively are shown in
Tables (3.6-3.9).

From the experimental results, we observe that the classification accuracy of the
PEA, VF, and VT is relatively low. Because the PEA, VF, and VT signals belong
to the abnormal class, and the distribution of the abnormal class signals is closed
distance for the combination of the Mean of NSI with all features and showing high
inter-dependence in the univariate histogram for the Mean of NSI feature as shown

in Figure 3.33.

Table 3.6: Performance of the proposed method on fold-1, (tys; and Vs case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.9048 0.9048 0.9048 97.19
SR 1.0 1.0 1.0 100.0
Fold.1 VF 09610 0.9250 0.9427 96.84
vT 0.8095 0.8718 0.8395 95.43

Macroavg. 09188 0.9254 0.9217
Microavg. 09474 0.9474 0.9474

Table 3.7: Performance of the proposed method on fold-2, (uys; and Vys; case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 09714 0.9444 0.9577 98.86
SR 1.0 1.0 1.0 100.0
Foldo VF 09692 0.9545 0.9618 98.10
VT 0.8485 0.9032 0.8750 96.96

Macroavg. 09473 0.9506 0.9486
Micro avg.  0.9697  0.9697 0.9697
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Table 3.8: Performance of the proposed method on fold-3, (tysr and Vygr case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8421 09143 0.8767 96.85
SR 1.0 1.0 1.0 100.0
Fold3 VF 0.9730 0.8780 0.9231 95.80
VT 0.7959 0.8864 0.8387 94.75

Macro avg.  0.9027 0.9197  0.9096
Micro avg.  0.9371 09371 0.9371

Table 3.9: Performance of the proposed method on fold-4, (tysr and Vygr case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8750 1.0 0.9333 98.77
SR 1.0 1.0 1.0 100.0
Fold4 VE 09851 0.9296 0.9565 97.54
VT 0.8810 09024 0.8916 96.31

Macro avg.  0.9353  0.9580 0.9454
Micro avg.  0.9631 0.9631 0.9631

3.3.2 Characterization of scalogram along with the time

We also adopt new quality parameter normalized time index (NTT) for an additional
analysis of scalogram along the time direction. The NTI gives the center of gravity
of energies over time of the scalogram. The NTI for SR, PEA, VF, and VT signals
are shown in Figure 3.41, 3.42, 3.43, and 3.44. Here, the NTI is obtained as a
waveform over frequencies from scalogram. In the figures, we observe that, the NTI
value is different for all classes inspecting over frequency. The different NTI value
for the different signals lead to a good discrimination in the decision algorithm. The
definition of the N'TI is given by

vriw =L B

(3.10)

where E(a,b) and T(b) represent scalogram energy and scalogram time, respec-
tively. Note that the energy E (a, b) in the scalogram obtained by H (L(a)(W f)(a, b))
which has been explained in subsection 3.2.1 and the time T'(b) is for the corre-

sponding energy E(a,b). The algorithm 3 shows the procedure to characterize the
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scalogram along the time direction.

Algorithm 3 Normalized time index (NTI)
Require: Time-frequency scalogram: (W f)(a,b),
a : scale corresponding to the frequency, b : time
Ensure: NTI(a)
1: Load (Wf)(a,b)
2: for each a do
% Find energy E(a,b)

4: for each b do

5: Find E(a,b)T (b) for the corresponding E (a,b)
6: end for

7. end for

8: Calculate NT'I(a) according to Eq.(3.10)

SR signal
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Figure 3.41: NTI(a) for scalogram of SR signal
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Figure 3.42: NTI(a) for scalogram of PEA signal
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Figure 3.43: NTI(a) for scalogram of VF signal



98 Chapter 3. Derivation of the Scalogram

VT signal
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Figure 3.44: NTI(a) for scalogram of VT signal

3.3.2.1 Statistical features extracted from the scalogram through NTI

We deduce statistics of the scalogram by extracting statistical features through NSI.
For vector NTI(a) (a=1,---,N) (where, N is the total number of element), eight
statistical features (mean, variance, slope, kurtosis, skewness, entropy, power, and

mode of NSI) are extracted as the feature quantities as follows [149].
B Mean of NTI

i N
MNTI = — ZNTI(a)
Na:l

B Variance of NTI

1 N
Vari = Y (NTI(a) - pnri)?
a=1
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B Slope of NTI

1 M-l
Snrr=———Y_ |NTI(a+1)—NTI(a)|
N— a=1
B Kurtosis of NTI
K L EN: (NTI(a) — unti)*
NTI = = — UNT]I
(Vwrr)* N =
B Skewness of NTI
SK L $ T1(a) — )
NTI = = — UNTI
(Vnrr)“ N ;=

B Entropy-based index of NTI

N
EBIyr; = — Y NTI(a)log,NTI(a)

a=1

B Power of NTI
N

Pyt = Z [NTI(a)‘z

a=1
H Mode of NTI
The most frequently occurring value in the NTI of the scalogram is calculated
by
My71 = mode[NTI(a)]

3.3.2.2 A suitable combination of the NSI and NTI features

The sixteen statistical features are derived from the scalograms through the NSI
and NTI, and a matrix (16 x4 % 1079) of scatter plots with univariate histograms is
created (see Figure 3.45), where 1079 samples are grouped into four classes by the

grouping variable. The Figure shows the pairwise scatter plot in the lower and upper
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triangular and represents the histogram diagonally from top left to right. From the
figure, we see that the univariate histogram for “Mean of NSI* shows the highest
separable class. Also, the univariate histogram for “Mean of NTI“, and “Variance
of NSI*“ show almost the same level separable class. In addition, The scatter plots
of the combination of “Mean of NSI* with all features show good distribution for
the four types of arrhythmias. Among them, the scatter plots of the combination of
“Mean of NSI* with “Variance of NSI“ and the “Mean of NSI“ with “Mean of NTI*
show better separated class and the distribution is very much scattered among the

different groups of arrhythmias.

2 4 64 0 14590 5 2 4

10° 10°
Fnsi Vasi Susi Kisi SKysi EBlys Pugi Mgt tn Vam NTI NTI

Figure 3.45: Multi-variable scatter plot matrix with univariate histogram for NSI
and NTI features

3.3.2.3 Performance evaluation and discussion

In this section, we explain step-by-step performance results and compare the results

with existing “Mean of NSI* and “Variance of NSI“ results.

3.3.2.3.1 Performance results
We evaluate our proposed method for four class categories using four fold cross

validation approach (see subsection 3.3.1.4.2) based on the evaluation matrices (see
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subsection 3.3.1.4.1). The confusion matrix plots with the performance results for
shockable (VF, VT) and non-shockable (SR, PEA) arrhythmias for the “Mean of
NSI“ and “Mean of NTI* are shown in Figures 3.46, 3.47, 3.48, and 3.49 respec-
tively. The confusion matrix is generated through the proposed setting L(a) = %
with H(-) = |- l‘i‘ by using the combination of the “Mean of NSI** with “Mean of
NTI* features.

In Figures 3.46, 3.47, 3.48, and 3.49, the rows correspond to the predicted class
and the columns correspond to the true class. The diagonal cells correspond to ob-
servations that are correctly classified. The off-diagonal cells correspond to incor-
rectly classified observations. Both the number of observations and the percentage
of the total numbers of observations are shown in each cell. The values on the far
right column (green, and red color), and the row at the bottom (green, and red color)
of each figure show the percentages of the correct predictions and the incorrect pre-
dictions, respectively. The cell in the bottom right of the plot shows the overall
correct and incorrect accuracy.

For example, on the Figure 3.46, 283 data, which is composed by 35 of PEA,
138 of SR, 70 of VF and 40 of VT, are tested. The first column shows that the
34 PEA data within the actual 35 test data are correctly identified and the rest of
the data are incorrectly identified where 1 data is miss judged as VT. Similarly, the
second column shows that the actual 138 SR test data are correctly identified, and
none of them is miss judged as others, i.e., PEA, VF, or VT. Similarly, the fourth
column explains that, within the actual 40 number of VT data, 36 are correctly
identified but 1 data is miss judged as VF, and 3 data are miss judged as PEA.
10.0% incorrect result given in the bottom of the fourth column, indicated as the red
color, is calculated from (1+43)/(1+3+36) =4/40.

On the other hand, the row concern, the first row of the same figure shows that
34 numbers of PEA data are exactly identified as PEA, but in addition 3 of VT are

miss judged as PEA. The far-right component 91.9% corrected result of the first row,
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indicated as the green color, is calculated from 34/(34 + 3). Similarly, the fourth
row shows that 36 VT data are identified correctly, but in addition 3 of VF and 1 of
PEA is miss judged as VT. Therefore, 90.0% corrected (green color) and 10.0% (red
color) incorrect results are calculated from 36/(36+3+1) and (3+1)/(36+3+1)
which are shown in the far-right of the fourth row. The cell in the bottom right of the

plot of the same figure shows the overall 97.2% correct and 2.8% incorrect accuracy.

Confusion Matrix on fold-1
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PEAL 12.0% | 0.0% | 00% | 1.1% | 8.1%

_ o [WEE 138 0 o | 100%
E 0.0% | 48.8% | 0.0% | 00% | 0.0%

3]

T - 0 67 1 |985%
% 0.0% | 0.0% |23.7% | 04% | 1.5%

f

& 1 0 3 36 | 90.0%

<
—

0.4% | 0.0% 1.14% | 12.7% | 10.0%

97.1% | 100% | 95.7% | 90.0% | 97.2%
2.9% 0.0% 43% | 10.0% |} 2.8%

Q(O?‘ O_)Q‘ A(( A,\
True label

Figure 3.46: Confusion matrix with performance for shockable and non-shockable
arrhythmias on fold-1, (tys7 and pyrs case)
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Confusion Matrix on fold-2
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Figure 3.47: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-2, (uysy and Uyt case)

Confusion Matrix on fold-3
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Figure 3.48: Confusion matrix with performance for shockable and non-shockable
arrhythmias on fold-3, (uysy and Lyt case)
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Confusion Matrix on fold-4
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Figure 3.49: Confusion matrix with performance for shockable and non-shockable
arrhythmias on fold-4, (tysy and uyrs case)

The detailed performance analysis (fold-wise and group-wise) presented in the
Tables (3.10-3.13), which corresponding to Figures 3.46, 3.47, 3.48, and 3.49. The
table shows individual precision, recall, Fl-score, and accuracy for each group,
and shows overall macro and micro average precision, recall, and F1-score. For
example, Table 3.10 presents 0.9189 precision, 0.9714 recall, 0.9444 F1-score, and
98.58% accuracy for PEA test data. Similarly, for SR test data 1.0 precision, 1.0
recall, 1.0 F1-score, and 100% accuracy are obtained, respectively. On the other
hand, 0.9853 precision, 0.9571 recall, 0.9710 Fl-score, and 98.58% accuracy for
VF test data and 0.900 precision, 0.900 recall, 0.900 F1-score, and 97.17% accuracy
for VT test data are obtained, respectively on fold-1. The overall macro and micro
average precision, recall, F1-score of 0.9511, 0.9571, 0.9539, and 0.9717 on fold-1,
0.9359, 0.9649, 0.9484, and 0.9685 on fold-2, 0.9192, 0.9272, 0.9223, and 0.9446
on fold-3, 0.9256, 0.9333, 0.9292, and 0.9483 on fold-4, respectively are shown in
Tables (3.10-3.13).

From the experimental results, we observe that the classification accuracy of the

PEA, VF, and VT is relatively low. Because the PEA, VF, and VT signals belong



3.3. Effective characterization of the scalogram 105

to the abnormal class, and the distribution of the abnormal class signals is closed
distance for the combination of the Mean of NSI with all features and showing high
inter-dependence in the univariate histogram for the Mean of NSI feature as shown

in Figure 3.45.

Table 3.10: Performance of the proposed method on fold-1, (tys; and yyry case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.9189 09714 0.9444 98.58
SR 1.0 1.0 1.0 100.0
Fold-1 VF 0.9853 09571 0.9710 08.58
vT 0.900 0.900  0.900 97.17
Macroavg. 09511 09571 0.9539
Microavg. 09717 09717 0.9717

Table 3.11: Performance of the proposed method on fold-2, (tiys; and Uyt case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.9375 1.0 0.9677 99.21
SR 1.0 1.0 1.0 100.0
Fold-2 VF 09846 09014 0.9412 96.85
VT 0.8214  0.9583 0.8846 97.63

Macroavg. 09359 0.9649 0.9484
Micro avg.  0.9685  0.9685 0.9685

Table 3.12: Performance of the proposed method on fold-3, (tysy and UyTr case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 09189  0.8947 0.9067 97.41
SR 1.0 1.0 1.0 100.0
Fold.3 VF 0.9625 09167 0.9390 96.31
VT 0.7955 0.8974 0.8434 95.20

Macroavg. 09192 09272 0.9223
Micro avg. 09446 0.9446 0.9446

Table 3.13: Performance of the proposed method on fold-4, (uysr and pyT case)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 0.8788  0.9355 0.9063 97.78
SR 1.0 1.0 1.0 100.0
Fold4 VF 09583 09324 0.9452 97.04
VT 0.8654 0.8654 0.8654 94.83

Macro avg. 0.9256 09333 0.9292
Micro avg.  0.9483  0.9483 0.9483
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3.3.2.3.2 Discussion
A goal of this experiment is to check the effectiveness of our proposed method
(Mean of NSI with Mean of NTI) and to compare the existing results (Mean of NSI
with Variance of NSI) for different group of arrhythmias discrimination, i.e., VF,
VT, PEA, and SR. Table 3.14 shows that the present NSI and NTI based features
method keeps the better performance of the discrimination than the only NSI based
features method. For example, in the table, one can see that the precision, recall,
F1-score, and accuracy of the PEA case for the “Mean of NSI* with “Variance of
NSI“ is 0.8993, 0.9328, 0.9158, and 97.86% while the present “Mean of NSI* with
“Mean of NTI" feature based method increase the precision, recall, F1-score, and
accuracy to 0.9137, with 1.44% gain, 0.9478, with 1.5% gain, 0.9304, with 1.46%
gain and 98.23% with 0.37% gain. Similarly, the precision, recall, F1-score, and
accuracy are increased for all group arrhythmia. On the other hand, the overall
macro and micro average precision, recall, and Fl-score are increased to 0.77%,
0.70%, 0.75% and 0.46% for the “Mean of NSI* with “Mean of NTI“ feature case.
The performance is improved of the proposed method for the combination of
NSI and NTI-based features than for the combination of only NSI-based features.
This is because the combination of “Mean of NSI* with “Mean of NTI* presents
good separation corresponding to the abnormal class signals, and class-wise distri-
bution is more isolated than the combination of “Mean of NSI* with “Variance of
NSI“. Also, the histogram of the abnormal class is less interdependent with each
other for the combination of “Mean of NSI“ with “Mean of NTI*, while more inter-
dependent with each other for the combination of “Mean of NSI* with “Variance of

NSI* (see Figure 3.45).
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Table 3.14: Overall group-wise performance comparison between (Uysy with Unrr)
and (Wysr with Vysr)

Features Group Precision Recall Fl-score Accuracy (%)
PEA 09137 0.9478 0.9304 98.23
SR 1.0 1.0 1.0 100.0
. VE 09719 0.9264 0.9486 97.21
Havst With vt~ 0.8476  0.8968 0.8715 96.20

Macro avg.  0.9333  0.9427 0.9376
Microavg. 0.9583  0.9583  0.9583

PEA 0.8993 09328 09158 97.86

SR 1.0 1.0 1.0 100.0

. VE 09717 00197 0.9450 97.03

Haist with Vst VT 0.8313  0.8903  0.8598 95.82

Macro avg.  0.9256  0.9357 0.9301
Micro avg.  0.9537 0.9537 0.9537

3.4 Summary

In this chapter, we have proposed a method based on the Gabor wavelet transform
with pseudo-differential like operators and non-linear transformation for the extrac-
tion of accurate information (derivation of the scalogram) from the ECG signals.
Note that, the major challenge for AED is to extract accurate information from the
abnormal class signals for the application of reliable shock therapy. Therefore, we
have derived many scalograms using the setting of various pseudo-differential like
operators with non-linear transformation function to show the delicate distinction
between shockable and non-shockable arrhythmia in the abnormal classes (see Fig-
ures 3.3-3.20). After that, we demonstrate an intrinsic effect of different settings
of pseudo-differential operators and non-linear transformation function. The qual-
itative and quantitative evaluation is performed to select the best pair of pseudo-
differential operator with non-linear transformation function (see Figures 3.21-3.28
and Table 3.5). From the scalographic representation and numerical experiments,
it is shown that the application of pseudo-differential like operators and non-linear

transformation function to the GWT is effective for the distinction of shockable and



108 Chapter 3. Derivation of the Scalogram

non-shockable arrhythmias.

In addition, we have added a new approach to analyze the scalogram where we
can observe the insights of the scalogram and deduce the statistical features of the
scalogram effective for the discrimination (see section 3.3). After that, we have
shown the graphical representation of the different combinations of features to se-
lect the best combination of the features (see Figure 3.45). Our algorithm followed
the cross-validation method and has been validated on the well-known Physio-bank
arrhythmia database. Also, we have compared the experimental results of the pro-
posed method with the Gabor wavelet transform-based method, and the proposed
method keeps the better performance for the distinction between shockable (VF and

VT) and non-shockable (PEA) arrhythmia in the abnormal class signals.



Design of the AED shock and

non-shock advice algorithm

4.1 Introduction

The automated external defibrillator (AED) is used for the sudden cardiac arrest
patients for first aid, and it plays a vital role in saving the life. The rapid and ac-
curate decision by the AED is important to improve the survival rate. It is worth
mentioning that the correct information from the ECG signal helps to get an accu-
rate decision by the AED. On the other hand, as for the quickness the survival rate

decreases from 7% to 10% per minute according to the statistics of the American

109
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heart association and resuscitation academy [10, 11]. In the first stage of the AED
operation, extracting accurate information from the abnormal class ECG signals is
crucially important. This issue is addressed by the novel method briefly explained in
chapter 3, where the wavelet transform with pseudo-differential like operators was
applied to observe statistics on the scalogram of the ECG signals. Second, an ac-
curate and rapid decision-making method for the AED shock and non-shock advice
algorithm is the ultimate demand to use the scalogram information properly. The
decision algorithm determines if the patient has a life-threatening arrhythmia and
makes a shock or no-shock decision. Therefore the decision algorithm is a crucial
factor in the safety and performance of an AED.

Many researchers apply the different types of decision algorithms (e.g., Maha-
lanobis distance, nearest neighbor, etc.) to distinguish the arrhythmias in the de-
cision stage [17, 18]. However, blindly use of such general methods are not the
best for considering our problems. For example, the classification through the Ma-
halanobis distance depends on the concept of an approximation by means of the
Gaussian distributions. Although the nearest neighbor is a non-parametric method,
works in a small dataset, and evaluation is performed by the Euclidean distance,
but this Euclidean metric function-based decision method has an issue for selecting
the number of neighbors of the test sample. For example, in figure 4.4, if we con-
sider the three nearest neighbors of the test sample, then the test sample is classified
under the group of PEA, and if we consider the seven nearest neighbors, then the
test sample is classified under the group of VT. Therefore, the decision becomes
changed for selecting the number of the nearest neighbors of the test sample. Also,
overfitting and underfitting occur for selecting the number of one nearest neighbor
or the total number of data of nearest neighbors of the test sample. We can mitigate
this issue by adopting adequate topology (a new metric function) to the space of the
scatter plot (see Figure 4.4). In addition, researchers use machine learning classifier

in the discrimination stage (A large number of the dataset is required) to separate
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features of shockable and non-shockable arrhythmias [19, 20, 21, 22]. Their focus
is put mainly on increasing the precision while the classifier adjusts various param-
eter values, but not on the quickness. A substantial length of computation time may
be taken to generate the optimal feature model from the high dimensional parame-
ter space. For a viable solution to the above issues, we develop a simple decision
method (Design of the AED shock and non-shock advice algorithm) that guarantees
high distinction with a low computational amount.

The rest of this chapter is organized as follows: in section 4.2, we discuss our
proposed AED shock and non-shock advice algorithm. After that, the performance
results and the discussion is presented in section 4.3. Finally, the summary of this

chapter is drawn in section 4.4

4.2 Methodology

The flow chart of the proposed method for shockable and non-shockable arrhyth-
mia distinction is shown in Figure 4.1. In the figure, step 1, we consider four types
of data: SR, PEA, VF, and VT and we characterize the group of data by using the
# number of features, X = {X}VS]’? XIE]‘,/ ?X](VPE;)XIEXT}} where N,N',N' . N" =
number of samples of each group and f = number of different statistical features.
In this case, such features correspond to statistical features that are derived from
the scalogram through NST and NTI Note that the scalogram is generated by using
the Gabor wavelet transform with pseudo-differential like operators and non-linear

transformation function which has been explained in chapter 3. In order to under-

stand the general notations (sub-scripts) for the different types of data with their
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different types of features, we give the description as a concise way.

r SR) s 3
/ X(R Xz( R) ( XN1 \
(SR) (SR) (SR)
X X he
T I e P i T )
(SR) (SR) (SR)
L\ X1 Xy s Xnsg ) )
( VF VF (VF) \ )
Xl(,l ) \ (XQ(.,I ) XN )1 \
(VF) (VF) (VF)
X X x
XIE/V? TR N I B N2 ;z{Xl(YF),,..,XISI‘/’f‘)},
(VF) (VF) (VF)
\ KXl,f Xo.f KX Vi)

(PEA (PEA)  (PEA) vT)
Similarly for PEA and VT case, X\-7) = {x{7*,. XL, and X o =
[xD,... x4DY.

7

In step 2, we check the discrimination capabilities of individual features for the
different groups of data. The detailed description to find the effectiveness of the
features which are derived through the NSI and NTI is presented in section 4.2.1.
Following the strategy of the features selection, we define the effective features set
for the four groups of data,
_ [ v(SR) (VF) (PEA) (VT)

X = {XN,r ’XN',r ’XN N X '”,r ’ @1

where r = number of effective features. Again we give the description of effective

features set in order to avoid the confusion about the notations.

( xS0 x5 ( X(SR
(SR) (SR) (SR)
XIE/SR) = XI,Z ) XZ,Z T XN’Z = {XI(SR)7 o 1XISISR)} )
SR SR SR)
A\ x5 )\ x50 \ X( )
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( VF VF (VF) \ )
X( : XZ(,l ) XN’,1 \
(VF) (VF) (VF)
X X X,
XU R e | b >},
(VF) (VF) (VF)
\ \X]ar / Xz)r / XN/,r / J

Similarly for PEA and VT case, X (PEA) _ {XI(I_)EA), e X (PEA)}, and X T —

( ) ( /If N”,- ,”f
VT vT)
{Xl,. y ’XN”',~ }

In step 3, the resulting effective features dataset is divided into the testing dataset,
X1 = {Xr}r ),X}VrF) X}PrEA) X (VT)} where X7, € X, and X is defined by equa-
tion 4.1, and the training dataset, XL - {XIE . ),X (VF) X7 (PEA) X7 (VT) } , where Xgr €
X, and X is defined by equation 4.1. It is worth mentioning that the training dataset
carries four types of data while the testing dataset contain mixture of the group
data, and we have followed the K-fold cross-validation procedure which has been

explained in subsection 3.3.1.4.2 in chapter 3. The training dataset where we give

the concise description,

( SR) SR (SR) \ )
Xl(’l al \ XI(J.Zvl) XLIlyl
(SR) (SR) (SR)
X X X
X[Eff*) = < L.l 2 , L.Z’z S Lthz \ = { IEiR), X[Ef’R)} ,
SR SR SR
\ l(‘lxr) X[(J.br) Xl(‘nvr) 7
( (VF) (VF) vF) '\ )
XL;,I / XLz,l XLn/,l
(VF) (VF) (VF)
WF) _ Xi,2 X102 X1, 2 (VF < (VF)
XL,,r_< . 3 . )T n ¢ = y " L,’. )
(VF) (VF) VF
\ \ XL] N / XL21r Xl(znl,r) )

similarly for PEA and VT training dataset case, XLIZE‘? { (PEA) , XL y A)}

and X,E » )r = {XIEZT), e ,XL(Y”T) }, where n,n ,n ,n = number of training samples

of each group.
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On the other hand, for the testing dataset where,

( /X’."],l \ XT2,1 /XTm,l \\ )
X X X
XTm,r = < 7:172 7 7:2,2 S, Ttn,z \ {XT1,'7 )XTm,'},
. \XTI,)‘ / XTz,r XTm,r ) )

where, m is the number of testing samples.

In step 4, we adopt a new metric function, which is defined through adequately
chosen topology for the space of the scatter plots (see equation 4.8). The topol-
ogy of the scatter plot on D dimensional euclidean space about metric function is
shown in Figure 4.4, and the detailed description of the topology of the scatter plot
on D dimensional euclidean space (about new metric function) is presented in sec-
tion 4.2.2. Suppose that we are given a scatter plot of training dataset XL(f and
test dataset, Xr. = {Xr,.,--- ,X7,..}. Then, we calculate the group wise minimum
distance using the proposed metric function, p(sg),(pza),(vF),(vF) = min{ll | X711 —
X,Eg)lpl +---+AD|XT,,—X£§)IPD} where Aj, j=1,...,Dand p;, j=1,...,D are
given positive numbers. In our experiment, we put » = 3, D = 3 and through the ex-
periment, we choose A;, j =1,2,3 and p;, j =1,2,3 as follows: A; =6, =
1,A3 = 1,and p1 = 1,p» = 1, p3 = 1. Then, we store the group wise minimum
distance (psg, Prea,Pvr,Pvr) for each of the test sample. Finally, as the deci-
sion we make the comparison of the group distances and the test sample is clas-
sified base on minimum distance. Note that our method (see Figure 4.1) is re-
stricted to the four groups of data where we considered SR, VF, PEA, and VT.

We can easily generalize the proposed method. Namely, we can substitute the no-

. _ [ v(SR) (VF) (PEA) +,(VT) o . G _
tations X = {XN, P ,XN,, f ,XN,,) I ,XN,,,’ f}’ given in step 1, by generalized Xy p=
{XISJI} , X]EIZ; o, X ISIC}}, for C number of group data. In addition, algorithm 4 shows

implementation of the proposed design of the AED shock and non-shock advice al-
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gorithm.

NSI and NTI based features set
X = (4139, X29, X020 227,
where N, N’,N”,N""" = number of samples, f = number of features.
|
[ Find effectiveness of NST and NTT features H Assessment of group separability score]

!
Effective features

X = (XS XD, xGEW 40D}

where r = number of effectlve features.

|

| ]
A A

Testing set Training set
Xp, { b ) yEh) X(VT)}, x© = {Xb(sf> JTE) pitred) X(VT)}
where Xry €X, where X ]EG,) EX,
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if

pvr < Psr

if
Prea < Psr

if

Psr < Prea

if
Pvr < Psr

and and and and
Psr < Pvr Pvr < Ppea Prea < Pvr Pvr < PrEa

and and and and
Psr < Pvr Pvr < Pyt Ppea < Pvr Pyr < Pvr

The victim’s ECG is The victim’s ECG The victim’s ECG is The victim’s ECG
non-shockable (SR) is shockable (VF) non-shockable (PEA) is shockable (VT)

Figure 4.1: Proposed design of the AED shock and non-shock advice algorithm
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Algorithm 4 Implementation of the proposed design of the AED shock and non-
shock advice algorithm

Require: Dataset “M* containing input features.
1: Load M
2: Select best three features from M.
3: Initialize k_fold=4, Training set TR=[], Test set TE=[].
4: Generate uniformly distributed random integer equal to size(M) in the range of
k_fold.
5: for ¢ =1 to class do
6: for K =1tok_fold do

7: for rand_idx i = 1 to size(M) do

8: if { == K then

9 Store value in TE from M
10: else
11: Store value in TR from M
12: end if
13: end for
14: end for
15: end for

//l START VALIDATION //

16: for m = 1 to size(TE) do
17: for n =1 to size(TR) do
18: Calculate the following distance according to Eq. 4.8
(i) Psr (X’ y)
(i) ppea(x,y)
(i))  pvr(x,y)
(v)  pvr(x,y)
19: end for

20: Store group-wise (Psr, PrEA, PVF, Pyr) minimum distance for each test
sample

21:  if psgr < ppga and psg < pyr and psg < pyr then

22 The victim’s ECG is “Non-shockable (SR)*

23 else if pyr < psg and pyr < ppr4 and pyr < pyr then

24: The victim’s ECG is “Shockable (VF)*

25:  elseif ppga < psg and ppga < pyr and ppga < pyr then

26: The victim’s ECG is “Non-shockable (PEA)“

27: else if pyr < psg and pyr < ppes and pyr < pyr then

28: The victim’s ECG is “Shockable (VT)“

29: end if

30: end for
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4.2.1 Find effectiveness of the NSI and NTI features

Based on the NSI and NTI of the scalogram, the total sixteen statistical features are
derived. Table 4.1 shows the features extracted from the scalogram through NSIT and
NTI. The detailed description of the NSI and NTI-based different types of features
have been presented in chapter 3. Here, it is not clear that which features are effec-
tive for the discrimination of shockable and non-shockable arrhythmias. Therefore,
it is necessary to find out the discriminatory abilities of features. In order to find out
the effective features, we watch at each of the generated features independently and
test their discriminatory capabilities by using the class separability technique such
as scatter matrices [156]. This technique helps us to select the best feature from the
set of features. Algorithm 5 shows a detailed process to find the effective feature.
Suppose that we have an n-dimensional feature vector ¥ = [x1,x2,...,%] as-
signed to c different classes (i = 1,2,...,c¢). The definition of within-class scatter

matrix S, and between-class scatter matrix S, are given by, respectively:

Se=Y Y Plx—pm)(x—m)", 4.2)
i=1xeD;
Sp=Y P(pi—p)(wi—uw)T, 4.3)

i=1
where D; is the ith class, and P; is a priori probability for class D;. Thatis P, =n; /N,
where n; is the number of samples in class D;, out of a total of N samples. The

classwise mean L; and the overall mean U are defined by:

1
U= — X, “4.4)
l i xeDj;
_ l Z 4.5)
”“ND& .

respectively, where D is the set of all classes. By following the equations 4.2 and
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4.3, we calculate the multiclass separability score f, = gﬁ The scatter matrices
value in figure 4.2 provides us with an insight how the separation among the four
different arrhythmias are using the individual features. In the figure, we see that
the feature “mean of NSI* on its own has the highest scatter matrices value, which
indicates that this feature has the best discriminatory capabilities. Also, we see that
the “mean of NTI* and “variance of NSI* have the second-best discriminatory capa-
bility, whereas the rest of the features are less than a satisfactory level. The selected
best three features are visualized by 3D scatter plot that displays the separation of
four different arrhythmias (see Figure 4.3). In the figure we see that the trivariate
combination presents good separation corresponding to the abnormal groups, and
the group-wise distribution is very much scattered.

Considering the characteristics of our actual scatter plot, it is not clever to use
the circle that is the Euclidean metric function. Therefore, the Euclidean metric
function is not suitable for the separation of the different groups of arrhythmias.
This is because there has a high possibility to occurred misclassification of the test
samples since many neighbors of the different groups of arrhythmias are belongs to
the circle (see Figure 4.3). On the other hand, in order to get a good separation of the
different groups of arrhythmias, we should choose an adequate topology for our ac-
tual scatter plot. Therefore, I have applied a sharp metric function with scale factor.
The proposed metric function, where we can give different scales to select the best
area on the scatter plot (see Figure 4.3). Therefore, the highest accuracy is achieved
for the test samples since open neighbors of the same groups of arrhythmias are

belongs to the sharp box.
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Table 4.1: List of features derived through NSI(b) and NT'I(a)

No. Feature Name Symbol
1 Mean of NSI UnsT
2 Variance of NSI Vinst
3 Slope of NSI SNsI
4 Kurtosis of NSI Knsr
5 Skewness of NSI SKnsr
6 | Entropy based Index of NSI | EBlys;
7 Power of NSI Pyst
8 Mode of NSI Myst
9 Mean of NTI UNTT
10 Variance of NTI VNTT
11 Slope of NTI SNTI
12 Kurtosis of NTI Knrr
13 Skewness of NTI SKnTI
14 | Entropy based Index of NTI | EBInTs
15 Power of NTI PNTI
16 Mode of NTI Myt1

Algorithm 5 Effective feature search

Require: Feature set: X = [x1,x2,...,%).
Ensure: Effective feature: EF

1

,_..,_‘
- D

R I A A T i

Load x
Initialize f = []

Initialize class number ¢ = 4
Calculate overall mean [ according to Eq.(4.5)

fori=1toc do

Calculate class wise mean ; according to Eq.(4.4)

Calculate Sy, and S, according to Eq.(4.2), (4.3)

Calculate score f, = g—”
W

end for

Store f into f and arrange in descending order.

. EF= Select the top three features from £.
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Scatter matrices value
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Features

Figure 4.2: Discriminatory capabilities of individual features for multi-class sepa-
ration
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»
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Figure 4.3: 3D scatter plot of the best three features
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4.2.2 Topology of the scatter plot on D dimensional Euclidean
space

We explain the concept of the topology of scatter plot (see Figure 4.3), through
which we are able to get a high accuracy distinction among the different groups of
the arrhythmias. We give the corresponding mathematical description as a concise
way, and do not go further into the mathematics [157] (General topology) for the
corresponding mathematics. Recall that our objective is to give a high accuracy
distinction procedure by making use of the informations available from the scatter
plot. For this purpose, we should choose an adequate topology of the given scatter
plot. In the theory of statistics and corresponding mathematical software, there
exist several provided methods of the classification, e.g., the Mahalanobis distance,
(general) nearest neighbor evaluation. However, such methods would not always be
optimal for each problem in consideration. For example, in case when we are given
a scatter plot on D dimensional Euclidean space, then the Mahalanobis distance is
defined through the covariance matrix of the scatter plot of training data of a given
group, e.g., the group of the ECG signals of SR etc., which is a real symmetric non-
negative definite D x D matrix by which we can define a multi-variable Gaussian
distribution. Hence, the classification through the Mahalanobis distance depends on
the concept of an approximation by means of the Gaussian distributions. Also, a
nearest neighbor evaluation is performed by the Euclidean distance, which we can
choose more adequately for each problem in consideration.

Now, suppose that we are given a non negative function p(x,y) on the product
space of D dimensional Euclidean space RP x RP, R = (—c0, o) the real line, that

satisfies the following:

p(x,y)=p(y,x) >0, forany x€RP yeRP,
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p(x,y)=0 ifandonlyif x=y.

We note that here we do not ask p to be a function that satisfies the triangle in-
equality such that p(x,y) < p(x,2) + p(z,y) for any x,y,z € RP, and the p does
not a metric function in general. For each x € R? and r > 0, let us define an open

neighborhood of the point x € R? as follows:

Ox;r) ={yeR” : p(x,y) <r}. 4.6)

Then, we can define a new topology on R? x RP, which is generated by the open
base such that

{0(x;r) : x€RP, r >0}, (4.7)

i.e., the family of the open neighbourhood O(x;r) defined by equation (4.6).

Our distinction procedure adopted here is as follows:  Suppose that we are
given a scatter plot of training data (see Figure 4.3), and a test data (we do not know
to which group of arrhythmias it belongs), denoted by x. Take the largest r > 0 by
which O(x;r) include only one training data, say y, namely y is the nearest point to
the test data x evaluated by p. Then we decide that the test data x is a same group
as the one of y (see Figure 4.4). For some special cases where the nearest points of
x evaluated by p are not only one point, we may prepare an adequate algorithm by

which we can avoid the ambiguity. As an example, we can take p as follows:

p(x,y) = Ar|x1 —y1/P* + -+ Aplxp — yp|??,

for x=(x1,...,xp),y= (¥1,...,yp) €ERP, (4.8)

where A;, j=1,...,Dand pj, j=1,...,D are given positive numbers. More gen-
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erally, we can take p as follows:

) P P
plxy) =wixy) Awixy), with wixy)= (l-nl%, ... —vol%),
4.9)
where 'w(x,y) is the transpose of the vector w(x,y), and A is a real symmetric

positive-definite D X D matrix:

ailr ... aip

apiy ... 4pD

withreal a;; =aj;, i, j = 1,...,D. In particular, by taking A as the diagonal matrix of
which diagonal elements satisfy a;; = A;, i = 1,..., D, then equation (4.9) is reduced
to (4.8). Note that for the p satisfying the equation (4.9), the topology defined

through (4.6), and (4.7) is equivalent to the one defined through the Euclidean metric

d(x,y) = /(x1 —y1)2+ -+ (xp —yp)?, but we evaluate the distance between x
and y by p(x,y), not by d(x,y).

In short, by several A we can give the different scales to the space of the scatter
plots. Therefore, we have different distances p. We should choose a p that is
adequate to the present distinction problem. In the experiment, we put D = 3 and

through the experiment, we choose 4;, j =1,2,3 and p;, j = 1,2,3 as follows:

M=6, A=1 A3=1, and p1=1, pr=1, p3=1.
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VA

Test sample

Vr.o:. OQQOPEA
&
- Euclidean metric
=1y =2)*=4%1
(x — 1)%+(y — 2)?>= 27 |
-8 Jo 4 Q g2 19 x
=D Sx(x—1D# ly—2|=4]
X(scalefactor) -'——————-|10><([x—1|)+|_'y—2|=4|
—6
-8

Figure 4.4: Decision strategy based on open neighbourhood topology (Scatter point
of training data and neighbourhood of test data in two-dimensional case.)

4.3 Performance evaluation and discussion

Here, we present step by step performance result of our proposed method and com-

pare with shockable and non-shockable state-of the-art methods.

4.3.1 Performance results

The performance results of the proposed method are evaluated for four class cate-
gories using four fold cross validation approach (see subsection 3.3.1.4.2 in chap-
ter 3) based on the evaluation matrices (see subsection 3.3.1.4.1 in chapter 3). The
confusion matrix plots with the performance results for shockable (VF, VT) and
non-shockable (SR, PEA) arrhythmias are shown in Figures 4.5, 4.6, 4.7, and 4.8 re-
spectively. The confusion matrix is generated through the proposed metric function-
based decision method with the scale factor, 4; = 6,4, = 1, A3 = 1, by using the
combination of the “Mean of NSI*, “Variance of NSI¥, and “Mean of NTI* features.

In Figures 4.5, 4.6, 4.7, and 4.8, the rows correspond to the predicted class and the
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columns correspond to the true class. The diagonal cells correspond to observations
that are correctly classified. The off-diagonal cells correspond to incorrectly classi-
fied observations. Both the number of observations and the percentage of the total
numbers of observations are shown in each cell. The values on the far right column
(green, and red color), and the row at the bottom (green, and red color) of each
figure show the percentages of the correct predictions and the incorrect predictions,
respectively. The cell in the bottom right of the plot shows the overall correct and
incorrect accuracy.

For example, on the Figure 4.5, 270 data, which is composed by 33 of PEA, 123
of SR, 75 of VF and 39 of VT, are tested. The first column shows that the 32 PEA
data within the actual 33 PEA test data are correctly identified and 1 PEA test data is
miss judged as VT. Similarly, the second column shows that the actual 123 SR test
data are correctly identified and non of them is miss judged as others, i.e., PEA, VE,
or VT. Similarly, the fourth column explains that, within the actual 39 number of
VT, 36 are correctly identified but 1 data is miss judged as VF, and 2 data are miss
judged as PEA. Therefore, 7.7% incorrect result given in the bottom of the fourth
column, indicated as the red color, is calculated from (1+2)/(1+2+36) =3/39.

On the other hand, the row concern, the first row of the same figure shows that
32 number of PEA are exactly identified as PEA, but in addition 2 of VT are miss
judged as PEA, and the far-right component 94.1% of this row, indicated as the
green color, is calculated from 32/(32+2). Similarly, the fourth row shows that
36 VT data are identified correctly, but in addition 1 of PEA data is miss judged as
VT. Therefore, 97.3% corrected (green color) and 2.7% (red color) incorrect results
are calculated from 36/(36+ 1) and 1/(36 + 1) which are shown in the far-right of
the fourth row. The cell in the bottom right of the plot of the same figure shows the

overall 98.5% correct and 1.5% incorrect accuracy.
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Confusion Matrix on fold-1

PEA 32 0 0 2 94.1%
11.9% | 0.0% | 0.0% | 0.7% § 59%

SR 0 123 0 0 100%
0.0% | 45.6% | 0.0% | 0.0% | 0.0%

VE 0 0 iS5 1 98.7%
0.0% | 0.0% | 27.8% | 0.4% 1.3%

Predicted label

VT 1 0 0 36 97.3%
0.4% | 0.0% | 0.0% | 13.3% | 2.7%

97.0% | 100% | 100% | 92.3% | 98.5%
3.0% 0.0% 0.0% 7.7% 1.5%

True label

Figure 4.5: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-1, (uysz, Vasr and tinry, and scale factor,
M =064 =1,43=—"1 cases)

Confusion Matrix on fold-2

pEa [BB8E 0 0 0 | 100%
12.2% | 0.0% | 0.0% | 0.0% | 0.0%
_ sr[EHE 123 0 o | 100%
E 0.0% | 45.6% | 0.0% | 0.0% | 0.0%
(34}
2 e G 0 74 o | 100%
B 0.0% | 0.0% |27.4% | 0.0% | 0.0%
J: ,(,
a o S 0 1 39 |97.5%

0.0% | 0.0% | 04% | 14.4% | 2.5%

100% | 100% | 98.7% | 100% }§ 99.6%
0.0% 0.0% 1.3% 0.0% 0.4%

& & X <
True label

Figure 4.6: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-2, (uyss, Vsr and Uy, and scale factor,
M =06,A =1,A3 =1 cases)
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Confusion Matrix on fold-3

PEA 34 0 0 0 100%
12.6% | 0.0% 0.0% 0.0% 0.0%
— SR 0 123 0 0 100%
g 0.0% | 45.6% | 0.0% 0.0% 0.0%
(T
3 vl 0 0 70 3 |95.9%
_'§ 0.0% 0.0% | 259% | 1.1% 4.1%
®
o. VT 0 0 4 36 90.0%
0.0% 0.0% 1.5% | 13.3% | 10.0%
100% 100% | 94.6% | 92.3% | 97.4%
0.0% 0.0% 5.4% 7.7% 2.6%
& > SN <
True label

Figure 4.7: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-3, (s, Vvsr and Uy7r, and scale factor,

M =6, =1,A3 =1 cases)

Confusion Matrix on fold-4

PEA 34 0 0 0 100%
12.6% | 0.0% 0.0% 0.0% 0.0%
— SR 0 122 0 0 100%
g 0.0% | 45.4% | 0.0% 0.0% 0.0%
3]
T vr e 0 74 0 100%
_‘§ 0.0% 0.0% | 27.5% | 0.0% 0.0%
8
o y7 0 0 1 38 97.4%
0.0% 0.0% 0.4% | 14.1% | 2.6%
100% 100% | 98.7% | 100% } 99.6%
0.0% 0.0% 1.3% 0.0% 0.4%
& &f& X <
True label

Figure 4.8: Confusion matrix with performance for shockable and non-shockable

arrhythmias on fold-4, (Unss, Vivsr and Unrr, and scale factor,

M =6,4 =1,A3 =1 cases)

The detailed performance analysis (fold-wise and group-wise) presented in the

Tables (4.2-4.5), which corresponding to Figures 4.5, 4.6, 4.7, and 4.8. The ta-
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ble shows individual precision, recall, F1-score, and accuracy for each group, and
shows overall macro and micro average precision, recall, and Fl-score. For ex-
ample, Table 4.2 presents 0.9412 precision, 0.9697 recall, 0.9552 Fl-score, and
98.88% accuracy for PEA test data. Similarly, for SR test data 1.0 precision, 1.0
recall, 1.0 Fl-score, and 100% accuracy are obtained, respectively. On the other
hand, 0.9868 precision, 1.0 recall, 0.9934 Fl-score, and 99.62% accuracy for VF
test data and 0.9730 precision, 0.9231 recall, 0.9474 Fl-score, and 98.51% accu-
racy for VT test data are obtained, respectively on fold-1. The overall macro and
micro average precision, recall, Fl1-score of 0.9752, 0.9732, 0.9740, and 0.9852 on
fold-1, 0.9938, 0.9967, 0.9952, and 0.9963 on fold-2, 0.9647, 0.9673, 0.9659, and
0.9741 on fold-3, 0.9936, 0.9967, 0.9951, and 0.9963 on fold-4, respectively are
shown in Tables (4.2-4.5).

From the experimental results, we observe that the classification accuracy of the
PEA, VF, and VT is relatively low. Because the PEA, VF, and VT signals belong
to the abnormal class, and the distribution of the abnormal class signals is closed
distance for the combination of the selected best three features and showing high
inter-dependence in the univariate histogram for the Mean of NSI feature as shown

in Figure 4.3.

Table 4.2: Performance of the proposed method on fold-1, (uysz, Vnss, UnTr, and
scale factor, A; = 6,4, = 1, A3 = 1 cases)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 09412  0.9697 0.9552 98.88
SR 1.0 1.0 1.0 100.0
Fold-1 VF 0.9868 1.0 0.9934 99.62
VT 09730 0.9231 0.9474 98.51

Macroavg. 09752 09732 0.9740
Microavg. 09852 0.9852 0.9852
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Table 4.3: Performance of the proposed method on fold-2, (Uyss, Vvsi, Untr, and
scale factor, A; = 6,4, = 1, A3 = 1 cases)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 1.0 1.0 1.0 100.0
SR 1.0 1.0 1.0 100.0
Fold2, VF 1.0 0.9867 0.9933 99.62
VT 0.9750 1.0 0.9873 99.62

Macro avg. 0.9938 0.9967 0.9952
Micro avg.  0.9963  0.9963 0.9963

Table 4.4: Performance of the proposed method on fold-3, (Uxsr, Vsr, UnTi, and
scale factor, A; = 6,4, = 1, A3 = 1 cases)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 1.0 1.0 1.0 100.0
SR 1.0 1.0 1.0 100.0
Fold-3 VF 0.9589  0.9459 0.9524 97.40
VT 0900 0.9231 0.9114 97.40

Macro avg. 09647 09673 0.9659
Micro avg.  0.9741 09741 0.9741

Table 4.5: Performance of the proposed method on fold-4, (Unsr, Vs, UnTr, and
scale factor, A; = 6,4, = 1, A3 = 1 cases)

Fold no. Group Precision Recall Fl-score Accuracy (%)
PEA 1.0 1.0 1.0 100.0
SR 1.0 1.0 1.0 100.0
Fold4 VF 1.0 0.9867 0.9933 99.62
VT 0.9744 1.0 0.9870 99.62

Macro avg. 0.9936  0.9967 0.9951
Micro avg.  0.9963  0.9963 0.9963

We have derived the detailed performance results of the proposed metric function-
based decision method for the different scale factor and compared with the Eu-
clidean metric function-based decision method. Tables (4.6-4.12) show group-
wise individual precision, recall, F1-score (F-measure) and accuracy and macro-and
micro-average precision, recall, F1-score for the different scale factor. As shown in
the Tables, for SR test data, 1.0 precision, 1.0 recall, 1.0 F1-score, and 100% accu-
racy are obtained for the different scale factors while the precision, recall, Fl-score,
and accuracy are different for the PEA, VF, and VT test data. The Figure 4.9 il-

lustrates the summary of the performance of the proposed metric function-based
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decision method in term of the different scale factor. It is observed from the figure
that the highest accuracy 98.79% is obtained at 41 =6, 7, 8, A, =1, A3 =1, and
the performance is repeated for the different scale factor. For example, the accuracy
98.51% is obtained at A; =3, 4, 5, 12, Ay = 1, A3 = 1, and the accuracy 98.79%,
98.60%, 98.42%, 98.05%, 97.96%, and 97.86% is obtained at A; =6, 7,8, A, =1,
M=1atA =9,10,11, =1, A3=1,at ,;=13t0 19, A, = 1, A3 = 1, at A=
251033, L, =1, A3=1,at 41=341040, A, =1, 43 =1, and at ;=41 to 50, A,
=1, A3 = 1, respectively. The accuracy is at its peak for the different scale factor
because the proposed metric function fitted well on the scatter plot by adopting dif-
ferent scale factor (see Figure 4.3). Therefore, there is a high possibility of occurred
correct classification of the test samples since open neighbors of the same groups of
arrhythmias belong to the proposed metric function.

In addition, Table 4.13 shows the detailed performance (group-wise and differ-
ent distinction schemes) comparison of the proposed metric function-based deci-
sion method and the Euclidean metric function-based decision method. As shown
in the Table, the ratio of the successful discrimination between normal signals (SR)
and abnormal signals (PEA, VF, and VT) is 100% for both methods. On the other
hand, 94.72% accuracy is achieved by the Euclidean metric function-based deci-
sion method, while the proposed metric function-based decision method increases
the accuracy to 97.78%, with 3.06% gain for the shockable (VF, VT) versus non-
shockable (PEA) arrhythmia cases.

The performance is improved of the proposed metric function-based decision
method for shockable vs non-shockable cases because we can select the best area of
the scatter plot by adopting different scales of the proposed metric function. On the
other hand, the performance is low of the Euclidean metric function-based decision
method for shockable vs non-shockable cases because the Euclidean metric func-
tion is not suitable for the separation of the different groups of arrhythmias due to

the characteristics of our actual scatter plot. This is because there has a high possi-
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bility to occurred misclassification of the test samples since many neighbors of the

different groups of arrhythmias are belongs to the circle (see Figure 4.3).

Table 4.6: Overall group-wise performance of the proposed method for the different
scale factor

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 0.9699  0.9627 0.9663 99.16
SR 1.0 1.0 1.0 100.0
M=LA=L4=1 VF 0.9603 0.9699 0.9651 98.05
(without scale) VT 0.9085 0.8968 0.9026 97.21

Macro avg. 0.9597 09573  0.9585
Micro avg. 09722 09722 0.9722

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M=20p =10 =1 VF 09670 0.9799 0.9734 98.51
’ ' VT 0.9533  0.9226 0.9377 98.23

Macro avg. 0.9764 09738 0.9750
Micro avg. 0.9824 09824  0.9824

PEA 0.9925 0.9925 0.9925 99.81

SR 1.0 1.0 1.0 100.0

M=3 =1 as=1 VF 09672 0.9866 0.9768 98.70
’ ' VT 0.9664 0.9290 0.9474 98.51

Macro avg. 0.9815 09770 0.9792
Micro avg. 09852  0.9852 0.9852

PEA 00025 00925 0.0925 99.81

SR 0 0 1.0 100.0

VE 00703 09833 09767 98,70

M=dh=1k=1 T 00603 00355 0.0477 9851

Macroavg. 09808 0.9778 0.9792
Micro avg. 0.9852 09852 0.9852

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M=5p=1 =1 VF 0.9767 0.9799 0.9783 98.79
’ ' VT 0.9542  0.9419 0.9481 98.51

Macroavg. 0.9790 0.9786 0.9788
Microavg. 09852 09852 0.9852

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M6 dp=12s=1 VF 0.9865 0.9799 0.9832 99.07
’ ' VT 0.9551 09613 0.9582 98.79

Macro avg.  0.9817 0.9834  0.9826
Micro avg.  0.9880 0.9880 0.9880

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=T e =12a=1 \%23 0.9865 0.9799 0.9832 99.07
’ ' VT 09551 0.9613 0.9582 98.79

Macro avg. 0.9817 0.9834 0.9826
Micro avg.  0.9880 0.9880 0.9880
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Table 4.7: Overall group-wise performance of the proposed method for the different
scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 0.9852 09925 0.9888 99.72
SR 1.0 1.0 1.0 100.0
=8 p= 1 is=1 VF 0.9865 0.9799 0.9832 99.07
’ ’ VT 0.9551 0.9613 0.9582 98.79

Macro avg. 09817 0.9834 0.9826
Microavg. 0.9880 0.9880 0.9880

PEA 09852 09925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=9y =1, = 1 VF 09832 09766 0.9799 68.88
’ ’ VT 0.9487 0.9548 0.9518 98.60

Macro avg. 09793 09810 0.9801
Microavg. 09861 0.9861 0.9861

PEA 0.9852 09925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

A= 1020 = 145 = 1 VF 09832 09766 0.9799 98.88
’ ’ VT 09487 09548 0.9518 98.60

Macroavg. 09793 0.9810 0.9801
Microavg. 09861 09861 0.9861

PEA 09852 09925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

Mm=1lip=1ls=1 VF 0.9864 09732 0.9798 98.88
' ’ VT 09430 09613 0.9521 98.60

Macroavg. 09787 0.9818 0.9802
Micro avg.  0.9861 0.9861 0.9861

PEA 09925 09851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=12 d0=1As =1 VF 09864 09699 0.9781 98.79
’ ’ VT 09317 09677 0.94%4 98.51

Macro avg. 09776  0.9807 0.9791
Microavg. 0.9852 0.9852 0.9852

PEA 0.9925 09851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M =132 = 1,0 = 1 VF 0.9863 0.9666 0.9764 98.70
' ’ vT 0.9259 09677 0.9464 98.42

Macro avg. 09762 09798 0.9779
Microavg. 09842 09842 0.9842

PEA 09925 0.9851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=140 =10 =1 VF 09863 0.9666 0.9764 98.70
’ ’ VT 0.9259  0.9677 0.9464 98.42

Macroavg. 09762 09798 0.9779
Microavg. 0.9842 0.9842 0.9842
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Table 4.8: Overall group-wise performance of the proposed method for the different
scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 0.9925 09851 0.9888 99.72
SR 1.0 1.0 1.0 100.0
VF 0.9863 0.9666 0.9764 98.70

M=154=12=1

VT 0.9259 09677 0.9464 98.42
Macro avg. 0.9762 0.9798 0.9779
Micro avg.  0.9842  0.9842  0.9842

PEA 0.9925 09851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M=167p =123 =1 VF 0.9863  0.9666 0.9764 98.70
’ VT 0.9259 09677 0.9464 98.42

Macroavg. 09762 09798 0.9779
Micro avg. 09842 0.9842 0.9842

PEA 0.9925 09851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M= 179 =123 =1 VF 0.9863 0.9666 0.9764 98.70
’ ’ VT 0.9259 0.9677 0.9464 98.42

Macro avg. 09762 0.9798 0.9779
Micro avg. 09842 0.9842 0.9842

PEA 0.9925 09851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=18 dn=1 A3 =1 VF 0.9863 0.9666 0.9764 98.70
’ ’ vT 0.9259 0.9677 0.9464 98.42

Macroavg. 09762 09798 0.9779
Microavg. 09842 0.9842 0.9842

PEA 00025 09851 0.0888 99,72

SR 10 70 10 100.0

VE 0.0%63 09666 09764 9870

M=1k=L=1 —F 00350 09677 0.0464 98.42

Macro avg. 09762 09798 0.9779
Microavg. 09842 0.9842 0.9842

PEA 00935 09851 0.9888 9672

SR 70 0 0 100.0

VE 00820 00632 0.9730 9851

M=20,4 =14 =1 VT 00108 09613 0.9401 9823

Macro avg.  0.9738  0.9774 0.9755
Microavg. 0.9824 0.9824 0.9824

PEA 0.9925 009851 0.9888 99.72

SR 1.0 1.0 1.0 100.0

VF 0.9796 09632 0.9713 08.42

M=2io =14 =1 VT 0.9193 0.9548 0.9367 98.14

Macroavg. 09728 09758 0.9742
Microavg. 0.9815 0.9815 0.9815
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Table 4.9: Overall group-wise performance of the proposed method for the different
scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 0.9851 0.9851 0.9851 99.62
SR 1.0 1.0 1.0 100.0
VF 0.9796 0.9632 0.9713 98.42
h=2h=lh=1 —< 00188 0.9484 0.9333 98.03

Macroavg. 09709 0.9742 (0.9724
Microavg. 09805 0.9805 0.9805

PEA 09851 00851 00851 59,62
SR 10 10 10 100.0
VF 00765 09632 0.9607 98.33
M=Bh=lLh=1 —<x 00i%2 09419 09299 7.96

Macroavg. 09699 09726 09712
Micro avg. 09796 0.9796 0.9796

PEA 00851 09851 09851 99.62

SR 7.0 70 0 100.0

VE 00763 09637 0.9607 0833

M=2k=14=1 VT 00182 09410 0.9299 97.96

Macro avg. 0.9699  0.9726 0.9712
Microavg. 09796  0.9796 0.9796

PEA 00851 09851 0.0851 99,62

SR 0 1.0 70 100.0

VE 00764 09666 09714 98.42

M=254=14=1 VT 00241 09410 09329 98.05

Macro avg. 09714 0.9734 0.9724
Microavg. 09805 0.9805 0.9805

PEA 0.9851 0.9851 0.9851 99.62

SR 1.0 1.0 1.0 100.0

=26 = 1= 1 VF 09764 0.9666 0.9714 98.42
' ’ VT 0.9241 0.9419 0.9329 98.05

Macroavg. 09714 09734 0.9724
Microavg. 09805 0.9805 0.9805

PEA 0.9851 0.9851 0.9851 99.62

SR 1.0 1.0 1.0 100.0

M =27 A= 10 =1 VE 09764 0.9666 09714 98.42
’ ’ VT 0.9241 09419 09329 98.05

Macroavg. 09714 09734 09724
Micro avg.  0.9805 0.9805 0.9805

PEA 09851 0.9851 0.9851 99.62

SR 1.0 1.0 1.0 100.0

=28 A= 1As =1 VF 0.9764 0.9666 09714 98.42
’ ’ VT 0.9241  0.9419 0.9329 98.05

Macro avg. 0.9714 09734 0.9724
Microavg. 0.9805 0.9805 0.9805
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Table 4.10: Overall group-wise performance of the proposed method for the differ-
ent scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 0.9851 09851 0.9851 99.62
SR 1.0 1.0 1.0 - 100.0
VE 0.9764 0.9666 0.9714 98.42

M=2k=Lk=1 —% 00241 09410 0.9329 98.05

Macro avg. 09714 0.9734 0.9724
Micro avg.  0.9805  0.9805 0.9805

PEA 00851 00851 00851 39.62

SR 10 0 10 100.0

VE 00764 09666 09714 98.42

h=304=14=1 VT 09241 00410 0.9329 98.05

Macroavg. 0.9714 09734 0.9724
Microavg. 0.9805 0.9805  0.9805

PEA 0.9852  0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

=3l dy =12 = 1 VF 09731 0.9666 0.9698 98.33
VT 0.9295 0.9355 0.9325 98.05

Macro avg. 09719  0.9736 0.9728
Micro avg.  0.9805  0.9805  0.9805

PEA 0.9852 09925 0.0888 99.72

SR 1.0 1.0 1.0 100.0

VE 0.9731 09666 0.9698 98.33

M=32k=14=1 VT 0.9295 09355 0.9325 98.05

Macro avg. 0.9719  0.9736  0.9728
Micro avg. 0.9805  0.9805 0.9805

PEA 00852 09925 0.0888% 99.72

SR 0 0 70 100.0

VE 09731 09666 0.9608 98.33

M=Bk=Lh=1 —<7 00295 0.0355 0.9325 98.05

Macro avg. 0.9719  0.9736  0.9728
Micro avg.  0.9805  0.9805 0.9805

PEA 0.9852  0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M =3 dp=10=1 VF 0.9730  0.9632 0.9681 98.23
VT 0.9236  0.9355 0.9295 97.96

Macro avg. 09704 0.9728 0.9716
Micro avg. 0.9796  0.9796  0.9796

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

VF 0.9730 0.9632 0.9681 98.23

M=35k=12%4=1 VT 0.9236 0.9355 0.9295 97.96

Macro avg. 0.9704  0.9728 0.9716
Micro avg. 0.9796  0.9796 0.9796
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Table 4.11: Overall group-wise performance of the proposed method for the differ-
ent scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)
PEA 09852 09925 0.9888 99.72
SR 1.0 1.0 1.0 100.0
VF 09730 09632 0.9681 98.23

A =36,=1A=1

VT 09236 0.9355 0.9295 97.96
Macroavg. 0.9704 0.9728 0.9716
Microavg. 09796 0.9796 0.9796

PEA 0.9852  0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M=3T Ao =15 =1 VF 09730 09632 0.9681 98.23
’ ’ VT 09236 09355 0.9295 97.96

Macroavg. 09704 09728 0.9716
Microavg. 09796 09796 0.9796

PEA 0.9852 09925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

M =38 A= 1A= 1 VF 09730 09632 0.9681 98.23
’ ’ VT 09236 09355 0.9295 97.96

Macroavg. 09704 09728 0.9716
Microavg. 09796 0.9796 0.9796

PEA 09852 09925 0.0888 5972
SR 7.0 10 0 100.0
VE 00730 09632 00681 9873
M=3¥h=1k=1 —<5 00236 00355 0.0295 57.96

Macro avg. 09704 0.9728 0.9716
Microavg. 09796 0.9796 0.9796

PEA 00852 09925 0.0888 9973
SR 0 0 10 100.0
VE 00730 0.0632 00681 983
b=k =14=1 VT 00236 09355 09295 97.96

Macro avg. 09704 09728 009716
Microavg. 09796 0.9796 0.9796

PEA 0.9852  0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

A=Al =10 =1 VF 09729  0.9599 0.9663 08.14
’ ’ VT 09177 09355 0.9265 97.86

Macroavg. 09689 0.9720 0.9704
Microavg. 0.9787 09787 0.9787

PEA 00852 00925 09888 9972
SR 70 7.0 70 100.0
VE 09729 09599 0.9663 08,14
M= h=14=1 —< 5 00177 00355 09765 57.36

Macro avg. 0.9689 0.9720 0.9704
Microavg. 09787 09787 0.9787
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Table 4.12: Overall group-wise performance of the proposed method for the differ-
ent scale factor (continue)

Scale factor Group Precision Recall Fl-score Accuracy (%)

PEA 00852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

VE 00729  0.9590 0.9663 98.14

h=8h=1i=1 —<x 00177 09355  0.9265 97,86
Macro avg. 0.9689  0.9720 0.9704
Micro avg.  0.9787 09787 0.9787

PEA 0.0852 0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

VE 09729 0.9599 0.9663 98.14

M=t a=lLh=1 —5 00177 09355 0.9265 97.86
Macro avg. 0.9689 0.9720 0.9704
Micro avg. 09787 0.9787 0.9787

PEA 0.9852 0.9925 0.9888 99.72

SR 1.0 1.0 10 100.0

VE 00729 0.9599 0.9663 98.14

h=45h=lh=1 —5 00177 00355 09265 5786
Macro avg. 0.9689 0.9720 0.9704
Micro avg.  0.9787 09787 0.9787

PEA 0.9852 0.9925 0.9888 99.72

SR 10 1.0 1.0 100.0

VF 0.0729  0.9590 0.9663 08.14

=8 h=lLh=1 —<5 00177 00355 09265 97.86
Macro avg.  0.9689  0.9720 0.9704
Micro avg.  0.9787 0.9787 0.9787

PEA 0.0852 0.9925 0.98883 99.72

SR 10 1.0 1.0 100.0

VE 0.0729  0.9599 0.9663 08.14

=4l lo=lh=1 —F 00177 00355 09265 57.86
Macro avg. 0.9689  0.9720 0.9704
Micro avg. 09787 09787 0.9787

PEA 00852 0.9925 0.0888 99.72

SR 1.0 1.0 1.0 100.0

VE 00720 0.9599 0.9663 98.14

=8 h=1A=1 —F 00177 00355 0.9265 37.86
Macro avg. 0.9689  0.9720 0.9704
Micro avg.  0.9787  0.9787 0.9787

PEA 0.9852  0.9925 0.9888 99.72

SR 1.0 1.0 1.0 100.0

VE 09729  0.9599 0.9663 98.14

h=494=14=1 VT 0.9177 0.9355 0.9265 97.86
Macro avg. 0.9689  0.9720 0.9704
Micro avg. 09787 09787 0.9787




138

Chapter 4. Design of the AED shock and non-shock advice algorithm

98.8

98.6 |-

98.4 -

Accuracy (%)
© 8
=] N

©
N
o

97.6 |-

974~

Scale factor

123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Figure 4.9: Accuracy for the different scale factor

Table 4.13: Performance comparison of the proposed metric function with the Eu-
clidean metric function

Method Group Precision | Recall | Fl-score | Croup-wise Distinction scheme | Accuracy(%)
accuracy (%)
PEA 0.9852 | 0.9925 | 0.9888 99.72
i SR 1.0 1.0 1.0 100.0 SR vs (PEA, VF, VT) 100.0
oposcdmeg VF 0.9865 | 0.9799 | 0.9832 | 99.07
function-based
decision misthod VT 0.9551 | 0.9613 | 0.9582 98.79
Macroavg. | 0.9817 | 0.9834 | 0.9826 PEA vs (VE, VT) 97.78
Micro avg. | 0.9880 | 0.9880 | 0.9880
PEA 0.9697 | 0.9552 | 0.9624 99.07
) ) SR 1.0 1.0 1.0 100.0 SR vs (PEA, VF, VT) 100.0
Eisiaarnnshita VF 0.9572 | 09732 | 0.9652 | 98.05
function-based
decisionimethad VT 0.9079 | 0.8903 | 0.8990 97.12
Macro avg. | 0.9587 | 0.9547 | 0.9567 PEA vs (VF, VT) 94,72
Micro avg. | 0.9713 | 09713 | 0.9713

" Normal (SR) vs Abnormal (PEA, VF and VT) and non-shockable (PEA) vs Shockable (VF, VT).

4.3.2 Discussion

The objective of this experiment is to certify the effectiveness of our proposed

method as an absolute sense, and to compare relatively the performance with the ex-

isting state-of-the-art shockable and non-shockable arrhythmia discrimination meth-

ods. Table 4.14, and 4.15 show the performance results where several factors have

been considered to compare the proposed method with other methods. For example,
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i have compared the proposed method with other distance-based decision methods
(e.g., Buclidean distance, Mahalanobis distance), and baseline methods where the
same strategy was used for the information extraction from the signals. I further
compared the proposed method with other existing state-of-the-art methods, those
exactly followed the same databases, the same distinction scheme, and included the
same arrhythmia types.

First, we compare the proposed method with the existing state-of-the-art method
that exactly followed the same strategy for the information extraction from the sig-
nals. For example, Rahman et al. [24] represented a method to derive the scalo-
gram in the time-frequency domain. In this paper, the authors presented various
experimental scalograms of the electrocardiograms using wavelet transform with
various pseudo differential-like operators and non-linear transformation functions.
Then, the scalogram is analyzed only in the frequency direction, and calculated
statistical features from the scalogram. Finally, the histogram is used in the de-
cision stage to distinguish shockable and non-shockable arrhythmia. The authors
achieved 100% accuracy for normal (SR) versus abnormal (PEA, VF, and VT) sig-
nals, while 91.58% accuracy was achieved for the shockable (VF, and VT) versus
non-shockable (PEA) of the abnormal class signals. On the other hand, the proposed
work followed the same strategy for the derivation of the scalogram from the signals
and analyzed the scalogram along frequency direction. In addition, the scalogram is
analyzed along the time direction which is a new addition in our research. Also, in
this proposed work I have designed a simple distance-based decision method with
a scale factor where the highest accuracy achieved. However, the proposed work
achieved 100% accuracy for normal (SR) versus abnormal (PEA, VF, and VT) sig-
nals, while 97.78% accuracy was achieved for the shockable (VF, and VT) versus
non-shockable (PEA) of the abnormal class signals at scale factor A; =6, A2 =1, A3
= 1.

We further compare our proposed method with other distance-based decision
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methods. From the Tables 4.14, and 4.15, it is clear that the proposed metric
function-based decision method performed better than the other distance-based de-
cision methods. For example, in [162, 168], they used the Euclidean metric function-
based decision method to distinguish arrthythmias. There it is mentioned that 91.75%
and 91.67% accuracy have been obtained, while the proposed metric function-based
decision method increases the accuracy to 97.78% with 6.03% and 6.11% gain. In
addition, Okai et al. [29] showed the detailed performance results of shockable ver-
sus non-shockable arrhythmia recognition algorithms by analyzing different spec-
trum feature parameters. They applied the Gabor wavelet transform to extract the
information from the ECG signal, and used the Mahalanobis distance in their deci-
sion stage. Note that, the classification through the Mahalanobis distance depends
on the concept of an approximation by means of the Gaussian distributions. The
Mahalanobis metric function-based decision method achieves 100% accuracy for
the distinction between normal (SR) and abnormal (PEA, VF, and VT) cases, and
86.03% accuracy for the shockable (VF, VT) and non-shockable (PEA) arrhyth-
mias in abnormal class signals, while the proposed metric function-based decision
method achieves 100% accuracy for the distinction between normal (SR) and abnor-
mal (PEA, VF, and VT) cases and increases the accuracy to 97.78% with 11.75%
gain for the shockable (VF, VT) and non-shockable (PEA) arrhythmias in abnormal
class signals.

We also further compare our proposed method with other existing state-of-the-
art methods those exactly followed the same types of distinction scheme and in-
cluded PEA arrhythmia. Sharma et al. [165] employed five-level decomposition
of the signal, extracted fuzzy entropy (FE), renyi entropy (RE) features, and then
fed features into various machine-learning based classifiers for the shockable and
non-shockable classification. They achieved 97.8% accuracy for the Shockable (VF,
VT) versus non-shockable (NSR, PEA, others), while the proposed method achieves

97.78%. The accuracy is slightly high for the existing method since the evaluation
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was performed on around five hundred samples where non-shockable samples (e.g.,
NSR samples) numbers are relatively higher than the shockable samples. In addi-
tion, we observe from Tables 4.14, and 4.15, that the methods as [158, 159, 160,
161, 163, 164, 166], and [167] achieved the high-performance results for shockable
versus non-shockable arrhythmia distinction, but PEA arrhythmia is not individu-
ally considered there. As has been explained in the introduction the discrimination
of PEA arrhythmia is particularly important in the abnormal classes regarding the
actual application of AED. From the Tables, we see that our proposed method ob-
tains an accuracy comparable to or greater than the above methods with respect to
the delicate distinction between shockable and non-shockable cases.

Run-time performance evaluation. = We evaluate the running time of our
proposed method. We use 11" Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz
CPU, 32 GB of RAM, iRIS-Xe graphics, and a 64-bit Windows 11 operating sys-
tem in our experiment. We measure feature extraction time (Derivation of the scalo-
gram, and statistical feature calculation), data set separation (training, and testing
set) time for cross fold validation, and testing time for 1079 samples. The features
extraction phase takes 4.37 x 102s in average for each test sample. In the training
phase, the time it takes 2.89 % 10"'s to separate the training data and test data for
the 4-fold cross-validation. The testing phase takes 8.90 * 1025 in average for each
fold. Hence, our method takes 3.35 % 10s in average to test each sample. So, our

proposed method takes in a total 4.40 * 1025 in average to test each sample.

4.4 Summary

A new shock and non-shock advice algorithm for the AED has been proposed in
this chapter. The algorithm is designed for two important guiding principles: first,
increasing the shockable and non-shockable arrhythmias distinction accuracy for

the application of reliable shock therapy by the AED. Second, the rapid decision by
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the AED is important to increase the survival rate of the patients. The proposed de-
sign of the algorithm is based on a set of effective features and adopts a new metric
function, which is defined through an adequately chosen topology for the space of
scatter plots. We can give the different scales of the metric function to the space of
the scatter plot through which we can choose the open neighbor of the test sample
(see Figure 4.4). As a consequence, the proposed method gives the highest accu-
racy and rapid decision between shockable and non-shockable arrhythmias. Note
that the performance of the proposed method is generally affected by the different
scale factors; therefore we have verified the variation in the performance of the pro-
posed method by changing the scale factor from 1 to 50 (See Tables (4.6-4.12), and
Figure 4.9). On the other hand, the effectiveness of the features is measured through
the assessment of the group separability score (see Figure 4.2) and by following the
effective features set, the three-dimensional scatter plot is derived to visualize the
separation of the four different groups (see Figure 4.3). Note that the features cor-
respond to statistical features, which are derived from the scalogram through two
quality parameters and the scalogram is derived by using the Gabor wavelet trans-
form with pseudo-differential like operators and non-linear transformation function.
The proposed shock and non-shock advice algorithm followed the cross-validation
process and has been validated on the well-known physio-bank arrhythmia database.

We conducted a comparative performance analysis of our proposed algorithm
with other state-of-the-art approaches, and the Euclidean metric function-based de-
cision method and it is shown that the proposed algorithm has the highest accu-
racy of the distinction between abnormal shockable (VT, VF) and abnormal non-
shockable (PEA) arrhythmias (see the comparison Tables 4.13, 4.14, and 4.15).
Also we have measured the run time performances of the proposed method, which
is explained in the discussion section. In the next chapter, we will provide the con-
clusions of our whole work in this dissertation and will discuss the future work in

detail.



Conclusions

5.1 Thesis summary

This thesis investigates the arrhythmia diagnosis system of the AED to find the
significant issues, and propose a structure of the arrhythmia diagnosis system to
overcome the existing issues through the analysis of ECG signals with engineer-
ing methods and generalized function theories. In the arthythmia diagnosis system,
two methods have been proposed: first, the core idea is to derive exact informa-
tion (derivation of the scalogram) from the abnormal classes of ECG signals which
leads to the decision algorithm for getting a better distinction between shockable

and non-shockable arrhythmias. Following the information, the new quality param-

145
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eter is adopted to get more information by quantizing the statistical features on the
scalogram. Second, design a simple decision algorithm (design of the AED shock
and non-shock advice algorithm) by following this information for improving the
precision and rapid decision in order to increase the survival rate.

The first approach, namely derivation of the scalogram explained in chapter 3.
To derive an accurate scalogram for the shockable and non-shockable arrhythmias of
the abnormal ECG classes, we proposed a method based on the Gabor wavelet trans-
form with pseudo-differential like operators and non-linear transformation function.
Through the pseudo-differential like operators, we can get much more enlarged
fruitful information (fractional order of differentiation of the signal) on the origi-
nal signals. Moreover, by applying the non-linear transformation functions to the
transformed signals, we can make balanced and bigger the part of the transformed
signals which has relatively small energy and amplitude. Through these, we are able
to generate different energies over time in the scalogram and different energies over
time lead to get the best discrimination in the decision stage, while the same level
of energies over time in the scalogram is generated by using the conventional ap-
proach. The same level of energies over time gives a barrier to distinguishing in the
decision algorithm. In addition, we have introduced a new quality parameter to ex-
plore the insights of the scalogram. Through the quality parameter, we can draw out
more information from the scalograms, which is useful for better discrimination.
The proposed method has been evaluated against 1079 samples from the physio
bank database. We have demonstrated an intrinsic effect of the different settings of
pseudo differential like operators with non-linear transformation functions by using
qualitative evaluation, and performed numerical experiments in terms of individual
precision, recall, Fl-score (F-measure) and group-wise accuracy, and macro-and
micro-average precision, recall, F1-score, to find how the application of the pseudo
differential like operators is powerful to the delicate distinctions of shockable and

non-shockable arrhythmias in abnormal classes ECG signals. The experimental re-
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sult of the proposed method was also compared with the Gabor wavelet transform-
based method, and the proposed method keeps the better performance for the dis-
tinction between shockable (VF and VT) and non-shockable (PEA) arrhythmia in
the abnormal class signals.

The second approach, namely the design of the AED shock and non-shock ad-
vice algorithm explained in chapter 4. The algorithm is designed for two important
guiding principles: first, increasing the shockable and non-shockable arrhythmias
distinction accuracy for the application of reliable shock therapy by the AED. Sec-
ond, the rapid decision by the AED is essential to increase the survival rate of the
patients. The proposed design of the algorithm is based on a set of effective fea-
tures and adopts a new metric function, which is defined through an adequately
chosen topology for the space of scatter plots. We can give the different scales of
the metric function to the space of the scatter plot through which we can choose
the open neighborhood of the test sample. As a consequence, the proposed method
gives the highest accuracy and rapid decision between shockable and non-shockable
arrhythmias. The method followed the cross validation approach for stabilizing
the performance and the experimental results, individual precision, recall, F1-score
(F-measure) and group-wise accuracy, and macro-and micro-average precision, re-
call, F1-score, that tested on physio bank arrhythmia databases are used to evaluate
the proposed method. The results of the proposed method are also compared with
other formally published methods and the Euclidean metric function-based deci-
sion method and show high performance for the distinction of shockable and non-
shockable arrhythmias in the abnormal classes. Moreover, we have measured the
run-time performances of the proposed method.

Overall, the main contribution of this thesis is to enhance the arrhythmia diag-
nosis system in the AED in order to increase the survival rate from sudden cardiac
arrest. The proposed arrhythmia diagnosis system is general and could be applied

for the distinction of different arrhythmia-based applications. Also, each contribu-
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tion to the arrhythmia diagnosis system could be used independently in different

applications.

5.2 Future work

There are several types of arrhythmias, depending on what part of the heart is af-
fected (upper chambers of the heart or lower chambers of the heart). Among these
arrhythmias, some are fatal arrhythmias, and some are non-fatal arrhythmias. Usu-
ally, the four possible fatal arrhythmias (e.g., PEA, VF, VT, and asystole) exist in an
unresponsive patient. They can be categorized into shockable (defibrillation effec-
tive) and non-shockable (defibrillation should not be used) arrhythmias. Note that
the asystole signal where there is no heartbeat and treated as a flat line and easily
identifiable. Also, it is worth mentioning that the conventional arrhythmia diagnosis
system uses the four types (e.g., SR, PEA, VF, and VT) of arrhythmias for classi-
fication. Therefore, in this thesis, we have considered four types of arrhythmias
(e.g., SR, PEA, VF, and VT) to evaluate our proposed arrhythmias diagnosis sys-
tem, which comes from fatal and non-fatal arrhythmias. In addition, it is important
to classify all types of arrhythmias so that the clinician can prevent and treat the
life-threatening arrhythmias. This is because there are some non-fatal arrhythmias
(e.g., AF, LBBBB, etc.) that could be precursors for the creation of fatal arrhyth-
mias. Therefore, in our future work, all types of arrhythmias will be considered
to validate our arrhythmias diagnosis system. Besides, the current stage of our ar-
rhythmias diagnosis system still stays at the software algorithms level. Therefore,
the final aim of our work is to design a hardware platform that can be integrated with
the AED to prevent sudden cardiac death caused by fatal arrhythmia. In this case,
it is possible to translate the proposed algorithms (e.g., derivation of the scalogram,
analysis of the scalogram, design of the AED shock non-shock advice algorithm)

into a single hardware framework.
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Appendix

A.1 Comparison of NTI with the Fourier transform

frequency spectrum

This section compares the NTI generated from the scalogram and the Fourier trans-
form frequency spectrum. Note that the scalogram is generated using the proposed
Gabor wavelet transform with pseudo-differential-like operators and a non-linear
transformation function. It is known that the wavelet transform method does not
return the frequency directly from the signal, whereas the Fourier transform does.
The NTI and Fourier transform frequency spectrum for normal SR and abnormal
PEA signals are in Figures A.1, A.2, A.3, and A.4. It is observed from Figure A.1
that we get the NTI ripples up to 200 scales (Equivalent frequency is 60 (Hz)) of the
scalogram for the normal SR signal that is equivalent to the Fourier transform fre-
quency spectrum shown in Figure A.2. Similarly from Figure A.3, we get the NTI
ripples up to 60 scales (Equivalent frequency is 18 (Hz)) of the scalogram for the
abnormal PEA signal that is equivalent to the Fourier transform frequency spectrum
shown in Figure A 4.
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A.2 Dataset preparation, and implementation of the

proposed arrhythmia diagnosis system

PhysioBank database contains over 90,000 recordings, over 4 terabytes of digitized
physiologic signals and time series, organized in over 80 databases. This section
explains how to download digitized ECG data from the Pysiobank database and
prepare dataset with five second signal segments through a programming environ-
ment using MATLAB. In order to download digitized time series data from the
database, we install the WFDB Toolbox into the MATLAB. Here, we use the com-
mands ’rdsamp’ and ’rdann’ to download the ECG data pro-grammatically. The
specific procedure for installing WFDB Toolbox is as follows:

o Start MATLAB.
 Go to the directory where we want to install WFDB Toolbox.
e Type the following command into the MATLAB.

[old_path]=which(’rdsamp’);

if( isempty(old_path)) rmpath(old_path(1:end-8));

end

widb_url="https://physionet.org/physiotools/matlab/...
wifdb-app-matlab/wfdb-app-toolbox-0-10-0.zip’;

[filestr, status]= urlwrite(wfdb_url,’ wfdb-app-toolbox-0-10-0.zip’);
unzip(’ wfdb-app-toolbox-0-10-0.zip’);

cd mcode

addpath(pwd)

savepath

function DLMITDB ()
fileID = fopen(’mitdb_record_num_list.txt’);

num_list_c = textscan(fileID, ’%d’);

num_1list = cell2mat(num_list_c);
fclose(fileID);
[n_size, ~] = size(num_list);

for i=1:n_size

fprintf (*%d /- %d\n’; 1. nosizely
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end

num = num_list (i) ;

db_url = [’mitdb/’ num2str (num)];

4 Lann-an typel; = rdann(db url’, ‘atr?, [,
ritag).:

[ann, an_type] = rdann(db_url, ’atr’);

dir_path=’mitdb’;

if- “exist (dir path *dir?)

mkdir (dir_path);

end

[signal ,Fs,tm]=rdsamp (db_url);

save (- Nmitdb\’ num2str{oum) * . mat’], ’signal?; ?
Fspar b mi e sian o inanistyped )

end

function Spliti()

mit_data = load(’.\mitdb\100.mat’);
for i=1:360
start_idx = 1 + (i-1)*(360%5);
end_idx = start_idx + (360%5);
data = mit_data.signal(start_idx:end_idx, 1);
time = mit_data.tm(start_idx:end_idx, 1);
mat = [time, datal];
dlmwrite ([’.\data\reclass\mitdb_100_1’ num2str (i)
remat? o], mat)

end

function obj = CreateFeaturesMat (obj)
tilc.;
for 1=1:4
switch 1
case 1
target_name = ’VF’;
case 2
target_name = ’*PEA’;
case 3
target_name = ’VT’;
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48 case 4
49 target_name = ’SR’;
50 end
51 files = dir([’.\data\reclass\’ target_name]);
52 [fi_size, "] = size(files);
53 fi_feature_v = [];
54| % nsi_str = cell();
55 nsi_str = struct ([]);

56 nti_str = struct ([]);

57 snr = 1;

58 for i=1:fl1_size

59 fprintf(’createfeaturematrix %s ... %d / %d\n’
, target_name, i, fl_size);

60 fp = [char(files(i).folder) ’\’ char(files(i).
name) ] ;

61 mat_v = load(fp);

62 d = mat_v.data_t;

63 data = [mat_v.time_t , d];

64 wvl = Wavelet (data);

65 wvl = m_gwt(wvl);

66 ft = Features(fp, wvl, target_name);

67 ft = £ft.NSIL():

68 Tt = e URTT L)

69 ft = ft.NSI_Features_A11(Q);

70 ft = ft.NTI_Features_Al1();

71 ngi gte = [nai str;. ft.nsi features_structl;

72 nti_str = [nti_str; ft.nti_features_structl];

73 end

74 file_name = [’features\’ target_name °’

_features_all.mat’];

75 save (file_name, ’nsi_str’, ’nti_str’);
76 end

77 time=toc;

78 || end

79|l classdef Wavelet

80 properties (SetAccess = public)

81 original_wave

82 scalogram

83 time_sweep



84
85
86
87
88
89
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scalo_power_ser
scalo_amp_max
scalo_amp_width
freq
target_type = ’’ J) SR,VF,PEA, VT
file_name = ?°
end
properties (SetAccess = private)
time % original_wave
data % original_wave
fiaisany,
ext_sec = b
end
methods
function obj = Wavelet(data)
obj.original_wave = data;
obj.time = obj.original_wave(:,1);
obj.time = obj.time - obj.time(1);
obj.data = obj.original_wave(:,2);
if (obj.time(2) - obj.time(1l))==0
obj.fs = 360;
% obj.fs = 250;
else
obj.fs = 1/(obj.time(2) - obj.time(1));
end
% if (obj.fs * obj.ext_sec) > length(obj.time)
% obj.ext_sec = length(obj.time) / obj.fs;
/A end
end
function value = get.ext_sec(obj)
value = obj.ext_sec;
end
function value = get.fs(obj)
value = obj.fs;
end
obj = m_gwt (obj)
obj = m_gwt_nn(obj)
obj = wvl_feature(obj)

obj scalo (obj)
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end
end
classdef Features
properties (SetAccess = public)
file_name
wvl
category
nsi
nti
nsi_features_struct
nti_features_struct
signal_features_struct
scalogram_features_struct
vt_features_struct
calc_feature_time
scalo_nsi_struct
scalo_amp_width
end
methods
function obj = Features(file_name, in_wvl,
obj.file_name = file_name;
obj.wvl = in_wvl;
obj.category = ctg;
end
function obj = Calc(obj)
Haes
obj = obj.NSIQ);
obj = obj.NTI();
obj = obj.NSI_Features_Al1();
obj = obj.NTI_Features_Al1();
obj.calc_feature_time = toc;
obj = obj.Signal_Features();
end
function obj = PreCalc(obj)
obj.NSIQ);
obj.NTIQ);

obj

obj
end
function obj = CalcNSIF(obj)

obj = obj.NSI_Features();

ctg)
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end

end
function obj = CalcNTIF(obj)
obj = obj.NTI_Features();
end
obj = NSI_Features_OneLoop(obj, i);
obj = NTI_Features_OneLoop(obj, i);
obj = ScaloPeakNSI(obj, i);
obj = ScaloPeakNTI(obj, i);
function obj = Calc_s(obj)
tic:
obj = obj.NSI();
obj = obj.NTI();
obj = obj.NSI_Features_s();
obj = obj.NTI_Features_s();
obj.calc_feature_time = toc;
obj = obj.Signal_Features();
end
function obj = Calc_vt(obj)
obj = obj.VF_Features();
end
obj = NSI(obj)
obj = NTI(obj)
obj = NSI2(obj)
obj = NSI3(obj)
obj = TimeSweep (obj);
obj = Signal_Features (obj);

obj = Signal_Features_All(obj);
obj = NSI_Features_All(obj);
obj = NTI_Features_All(obj);

obj = Scalogram_Features_All(obj);

obj = NSI_Features_master (obj);

obj = NTI_Features_master (obj);

obj = Signal_Features_master (obj);

obj = NSI_Features(obj)

obj = scalo(obj)

slope = HO3_slope_func(obj, signal,Fs)

[ ER ] = energy_ratio( obj, vector, alpha,

methods (Static)

beta )
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CreateFeatures ()
end
end
function obj = m_gwt (obj)
T = length(obj.data);
opol = 6;
[p,mu] = polyfit(obj.time,obj.data,opol);
f_y = polyval(p,obj.time,[],mu);
demean_signal_f = obj.data - f_y;
sigma = 0.5;
omega_0 = 2*pi;
N = 200;
A N=500;
dt =17 obJuLe;
ext_points = round(obj.ext sec * obj.fs) - 1;
loop_num = floor(length(demean_signal_f) / ext_points)

%all_range_scalo = zeros(T, length(obj.data));

all_range_scalo = zeros(T, ext_points+1, loop_num);
f_signal = zeros(ext_points+1l, loop_num);
for i = 1:loop_num

start_idx = (i-1)*ext_points+1;

ot Pl

start_idx = start_idx - 1;
end
target = demean_signal_f (start_idx : start_idx +

ext_points);
f_gignal(:,i) = target:
len_t = length(target);
YY = zexosf(len.t, T);
for = 10N

omega = 0.2%pi*j;

) omega = 0.2%j;
a = omega_0 / omega;
wvl_time = sigma * a;
t = -wvl_time/2 : dt : wvl_time/2;
(R
% t = t./(4x%a);
/) t =t./(a/4);
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% =t /{sgqriila));
gauss = exp((-t.~2)/(2*sigma~2)) / sqrt ((2xpix
sigma~2));
% psi = gauss .*x (exp(l1i * omega_0 * t) - exp
(-1/2*%sigma~2*omega_0"2));
psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*sigma~2*omega_0"2)).*% (1/a);
yA psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*%sigma~2*xomega_0-2)) .*x ((1/a)."2);
% psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2xsigma~2*xomega_0-2)).* sqrt(i/a);
% psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*sigma~2*xomega_072)) .* a;
% psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*xsigma~2*omega_0-2)) .* (a."~2);
% psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*sigma~2*xomega_072)) .* 4x*a;
% psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*sigma~2*omega_0-2)) .% (sqrt(a));
7 psi = gauss .* (exp(1i * omega_0 * t) - exp
(-1/2xsigma~2*xomega_0-2)).* (1/(4x%a));
YA psi = gauss .* (exp(li * omega_0 * t) - exp
(-1/2*xsigma~2*omega_0-2)) .* (1/(sqrt(a)));
% psi = 1/sqrt(4*a)*psi;
/A psi = 1/sqrt(a/4)*psi;
psi = 1/sqrt(a)*psi;
5 psi = 1/sqrt(sqrt(a))*psi;
Y = abs(conv(target, psi)) * dt;
f_len = length(psi);
rem_v = rem(f_len, 2);
f_len = f_len + rem_v;
YALlek Ten/2) = [1;
Y(len_t+1 : len_t+f_len/2-rem_v-1) = [];

¥YCo s ) =Y
end
b
XX = Yy,
%AMAX = zeros(len_t, 1);

sum_time_ser = zeros(len_t, 1);
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for j=1l:len_t
[mz, idx] = max(XX(:, j));
YMAX (§) = idx*0.1;
sum_time_ser(j) = sum(XX(:, j));
XX(:,3) = XX(:,3j) ./ mz;

end
b XX = XX."2;
yA XX = XX."4;
Y 5 ST § I LA
XX = XX."(1/4);
T XX = XX.~(1/8);
/) all_range_scalo(:, start_idx : start_idx +

ext_points) = XX;
all_range_scalo(:,:,1i) = XX;
hh
if obj.target_type "= ’
folder_path = [’.\images\scalo_power\’ obj.
target_typel;
if ~exist(folder_path, ?dir?)
mkdir (folder_path);
end

path = [folder path *\* obj.file_name 7. png?*];

x_ser = 0:1/o0bj.fs:obj.ext_sec;
X_ser = x_ser’;
x_ser = x_ser(l:len_t);

f = figure;

plot(x_ser, sum_time_ser);
xlabel (’sec’) ;

ylabel (’Scalogram Power’);
%ylim([-10, 10]);

grid on;

saveas (f, path);
delete(f);

% saveas (f, path);
end
obj.scalo_power_ser = sum_time_ser;
obj.scalo_amp_max = max(sum_time_ser);
end

obj.freq = Y;
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obj.scalogram = all_range_scalo;

%obj.filtered_signal = f_signal;
end

function obj = NSI(obj)

[N, len_t, loop_num] size (obj.wvl.scalogram) ;
FSMN = zeros(len_t, loop_num);
for i=1:loop_num
%FSMN = zeros(l,len_t-1);
AF = zeros(N,len_t);
Af = zeros(N,len_t);
AFa = zeros(1,len_t);
Afa = zeros (1,len-t);
forkri= 1l llenst
Xx = obj.wvl.scalogram(:,;k,;i);
forf =1 10N
AF (f,k)
Af (£f,k)

xx (£)*(f);
XX(EE)

end
AFa(1,k)
Afa(l,k)

sum (AF (: ,k));
sum (Af (: ,k));

end
FSMN(:,i) = AFa./Afa;
%hnsi = FSMN;
end
obj.nsi = FSMN;
end
function obj = NTI(obj)
[N, len_t, loop_num] = size(obj.wvl.scalogram);
FTMN = zeros(N, loop_num);

for i=1:loop_num

AF = zeros(len_t,N);
Af = zeros(len_t,N);
AFa = zeros (1, N);
Afa = zeros (1, N);

for k = 1:1:N

xx = (obj.wvl.scalogram(k,:,i))’;
for £f = 1:1:1en_t
AF(f ,k) = xx(f)*(£f);

Af (£ .,k) xx(£) g
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342 end
343 AFa(1,k) = sum(AF(:,k));
344 Afa(l,k) = sum(Af(:,k));
345 end
346 FTMN(:,i) = AFa./Afa;
347 end
348 obj.nti = FTMN;
349 || end

350|| function [slope] = HO3_slope_func(obj, signal,Fs)
351 dt = 1/Fs;

352 [y x]=size(signal);

353 if y<x

354 signal=signal’;

355 end

356 zikul = 1:2:length(signal)-1;

357 Ziku2 ‘= zikul+1ij;

358 normal_signal = (signal - mean(signal)) .*max(abs(
signal));

359 slope = (normal_signal(ziku2) - normal_signal(zikul))
./dt;

360 slope = mean(abs(slope));

361 || end

362 || function [obj] = NSI_Features_All(obj)

363 fs = obj.wvl.fs;

364 Signal = obj.nsi;

365 [LONGS, ~] = size(Signal);

366 str = struct ([]);

367||% Signal =============================s============
368 one_struct.name = ’NSI Mean’;

369 one_struct.value = 1/LONGS*sum(Signal);

370 str = [str, one_struct];

371||%  Signal ============================s=============
372 || % one_struct.name = ’NSI std’;

373 (| % one_struct.value = std(Signal);

374 | % str = [str, one_structl];

375||%  Signal =========================================
376 one_struct.name = ’NSI Var’;

377 one_struct.value = var(Signal);

378 str = [str, one_struct];
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%  Signal =========================================
one_struct.name = ’NSI Slope’;
one_struct.value = obj.HO3_slope_func(Signal,fs);
str = [str, one_struct];

%  Signal =========================================
one_struct.name = ’NSI kurtosis’;
one_struct.value = kurtosis (Signal);
str = [str, one_struct];

% Signal==s=====================================
one_struct.name = ’NSI skewness’;
one_struct.value = skewness (Signal);

str = Fgtr; one structl;

%  Signal =========================================
one_struct.name = ’NSI EBI’;
one_struct.value = -sum(Signal.*log2(Signal));
str = [str, one_structl];

7 Signal=========s=======s==s=s=s====================
one_struct.name = ’NSI energy’;

Signal_energy_t = Signal."2;
one_struct.value = sum(Signal_energy_t);
str = [str, one_struct];

%  Signal ==s=======================================
one_struct.name = ’NSI mode?’;
one_struct.value = mode(Signal);
str- = [str,  one_structl;

% Signal =========================================

/A one_struct.name = ’Signal median’;

/A one_struct.value = median(Signal);

A 8tr < :[str, one struct];
obj.nsi_features_struct = str;

end

function [obj] = NTI_Features_All(obj)

%

fs = obj.wvl.fs;

Signal = obj.nti;

[LONGS, "] = size(Signal);

str = struct ([]);

Signal ========s===s====S==SSSS=SSSSSSS==sS=ss=s=s===
one_struct.name = ’NTI Mean?;

one_struct.value = 1/LONGS*sum(Signal);
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%

A

%

A

%

h
b
A
h

str = [str,
Signal
one_struct.
one_struct
str = [str,
Signal
one_struct
one_struct

str = [str,

Signal: ====

one_struct
one_struct
str = [str,
Signal
one_struct
one_struct
str = [str,
one_struct
one_struct
str = [str,
Signal
one_struct
one_struct
str = [str,

one_struct.

Signal_energy_t =

one_struct.
str = [str,
Signal
one_struct.
one_struct.
str = [str;
Signal
one_struct.
one_struct.

str = [str,

obj.nti_features_struct =

.value =

.name =

.value =

.name =

.value =

.lame =

.value =

.name =

.value =

.name =

.value =

one_struct];

AINT L - g5d 2
std (Signal);

name =

one_struct];

LNTL Var?;
var (Signal);

one_struct];

’NTI Slope’;
obj.HO3_slope_func(Signal,fs);

one_struct];

ENTT kurtosis’;
kurtosis (Signal);

one_struct];

>NTI skewness’;
skewness (Signal);

one_struct];

*NSI EBI?*;
-sum(Signal.*log2(Signal));

one_struct];

name = ’NTI energy’;
Signal."2;
value = sum(Signal_energy_t);

one_struct];

’NTI mode’;
mode (Signal);

name =
value =

one_struct];

name = ’Signal median’;

value = median(Signal);
one_struct];

stxr;
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end
function decision ()
Tt

pea_mat = load(’features\PEA_features_all .mat’);

sr_mat = load(’features\SR_features_all.mat’);
vf_mat = load(’features\VF_features_all.mat’);
vt_mat = load(’features\VT_features_all.mat’);
[size_pea, "] = size(pea_mat.nsi_str);

[size. sr:, 7] size(sr_mat.nsi_str);

[size_vf, ~] size (vf_mat.nsi_str);

[size_vt, ~] size(vt_mat.nsi_str);

pea_fp = GetStructureValue(pea_str);

sr_fp = GetStructureValue(sr_str);
vi_fp = GetStructureValue(vf_str);
vt_fp = GetStructureValue(vt_str);

fp_all=[pea-fp; ‘srifp;.vE £p; vt _fpls
pea_label = GetStructurelabell (pea_str);

sr_label = GetStructurelabel2(sr_str);
vi_label = GetStructurelLabel3d(vf_str);
vt_label = GetStructurelabeld(vt_str);

true_label=[pea_label; sr_label; vf_label; vt_labell];
fp_score=scattermat (fp_all, true_label);

features_idx = [fp_score];
[size_f_idx, "] = size(features_idx);
k_fold = 4;

pea_rnd_idx = randi(4, size_pea, 1);

sr_rnd_idx randi (4, size_sr, 1);

vf_rnd_idx randi (4, size_vf, 1);

vt_rnd_idx randi (4, size_vt, 1);

pea_str = [pea_mat.nsi_str, pea_mat.nti_str];
sr_str = [sr_mat.nsi_str, sr_mat.nti_str];
vi_str = [vf_mat.nsi_str, vf_mat.nti_str];

vt_str [vt_mat.nsi_str, vt_mat.nti_str];

pea_distance_k = cell(4,1);

sr_distance_k = cell(4,1);
vf_distance_k = cell(4,1);
vt_distance_k = cell(4,1);

for k=1:k_fold

learn_f_pea = [];
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496 valid_f_pea = [];
497 learn_f_sr = [];
498 valid_f_sr = [];
499 learn_f_vf = [];
500 valid_f_vf = [];
501 learn_f_vt = [];
502 valid_f_vt = [];
503 [learn_f_pea, valid_f_pea] = Learning(pea_rnd_idx,

k, features_idx, pea_str);

504 [learn_f_sr, valid_f_sr] Learning (sr_rnd_idx, k,

features_idx, sr_str);

505 [learn_f_vf, valid_f_vf] = Learning(vf_rnd_idx, k,
features_idx, vf_str);
506 [learn_f_vt, valid_f_vt] = Learning(vt_rnd_idx, ki,

features_idx, vt_str);

507 training=toc;

508 pea_d = Valid(learn_f_pea, learn_f_sr, learn_f_vf,
leatn. f vt , wvalid £ _pea);

509 sr_d = Valid(learn_f_pea, learn_f_sr, learn_f_vif,
learn_f_vt, valid_f_sr);

510 vi_d = Valid(learn_f_pea, learn_f_sr, learn_f_vif,
learn_f_vt, valid_f_vf);

511 vt_d = Valid(learn_f_pea, learn_f_sr, learn_f_vf,

learn_f_vt, valid_f_vt);

512 testing=toc;

513 pea_distance_k{k,1} = pea_d;

514 sr_distance_k{k,1} = sr_d4d;

515 vf_distance_k{k,1} = vf_d;

516 vt_distance_k{k,1} = vt_d;

517 end

518 PEA_test=pea_distance_k{1};

519 for m = 2:size(pea_distance_k,1)

520 PEA_test = [PEA_test;pea_distance_k{ml}];

521 end

522 colidx = sum(cumprod(cellfun(@isempty, PEA_test),
20 ,2) ' & A3

523 PEA_output = PEA_test (sub2ind(size (PEA_test), (1:
size (PEA_test ,1)).’, colidx));

524 SR_test=sr_distance_k{1};
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b

%

for m = 2:size(sr_distance_k,1)
SR_test = [SR_test;sr_distance_k{m}];

end

colidx = sum(cumprod(cellfun(@isempty, SR_test),

2@ ke

SR_output = SR_test (sub2ind(size (SR_test),

(SR_test ,1)).°

srceldidx)h)s

VF_test=vf_distance_k{1};

for m = 2:size(vf_distance_k ,1)

VF_test = [VF_test;vf_distance_k{m}];

end

(1:8ize

colidx = sum(cumprod(cellfun(Qisempty, VF_test),

2-2) o

VF_output = VF_test(sub2ind(size(VF_test),

(VF - test ;1)).2

, colidx));

VT_test=vt_distance_k{1};

for m = 2:size(vt_distance_k,1)

VT_test = [VT_test;vt_distance_k{ml}];

end

(1:size

colidx = sum(cumprod(cellfun(@isempty, VT_test),

¢ b R

VT_output = VT_test(sub2ind(size(VT_test),

(VT_test ,1)).°

predicted_result=

s VTooutputl

. colidx))’;

[PEA_output; SR_output;

micro_macro_PR(true_label , predicted_result);

plotconfusion(categorical (true_label),categorical(

predicted_result));

fh = gcf;
ax = gca;
ax.FontSize = 10;

set (fh, ’Position?

, [0° 0 350 350]);

set (findobj(ax,’type’,’test’),’fontsize’,3);
ah = fh.Children(2);

ah.XLabel.String

ah.YLabel.String

title(’Confusion
Fontsize’,10)

title(’Confusion

= "True label’;

= ’Predicted label?’;

Matrix for Euclidean Metric?’,

Matrix for fold=1?,

’Fontsize

(1:size

VF_output

b
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2 ,10)
title(’Confusion Matrix for \lambda=6’, ’Fontsize’
,10)
gat (get ,2¢celor? g}y
hold on
end
function [learn_f, valid_f] = Learning(rnd_idx, k, f_idx,
f_str)
learn_f = [];
validif.= [l
[size_file, ~] = size(rnd_idx);
[edze f idx "7 = siZze (fiidx).;

for i=1:size_file
if Endoddx (i) T=-k
1-f = Zzeros (1, sizesf ddx);
for f=1:size_£f_idx
Lo f (e f)eis gt r Gl foidx(E) ) values
end
Tearn if o= [lLearn & Q. %]
else
v_f = zeros(l, size_f_idx);
for f=1:size_£f_idx
v_f(1,f) = f_str(i, f_idx(f)).value;
end
valid_f

Evalidifia avofls
end
end

end

function [distance] Valid(learn_f_pea, learn_f_sr,

learn_f_vf, learn_f_vt, valid_f)

[size_v, "] = size(valid_f£f);
distance = cell(size_v, 4);
lamda=6;

for i=1:size_v
testi(ifs) = ivalaidess: (i, 05
for j=1l:size(learn_£f_sr)
dis_sr(j,1) = lamda*(abs(test(i,1)-learn_f_sr(j,1)
Y)+abas(tegt (i 2)-1learn. f sxi{j,2)) Habaltest(i;3)
“Tegrn Fler i 8));
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58811 % dis_sr(j,1) = sqrt((test(i,1)-learn_f_sr(j,1))
~2+(test (i,2)-learn_f_sr(j,2)) 2+(test(i,3)-learn_f_sr(
Jo8) 02205

589 end

590 d_sr=min(dis_sr);

591 for j=1:size(learn_f_vf)

592 dis_vf(j,1) = lamda*(abs(test(i,1)-learn_f_vf(j,1)

))+abs(test(i,2)-learn_£f_vf(j,2))+abs(test(i,3)
~learn £ .vf(j,3));

5931 % dis vi(j 1) = sari((test (i 1) -1earn £ vE(1 1))
~2+(test(i,2)-learn_f_vf(j,2)) 2+(test(i,3)-learn_Ff_vf(
J: 80:02)0%

594 end

595 d_vf=min(dis_vf);

596 for j=1:size(learn_f_pea)

597 dis_pea(j,1) = lamda*(abs(test(i,1)-learn_f_pea(]j

,1)))+abs(test (i,2)-learn_f_pea(j,2))+abs(test(
i,3)-learn_f_pea(j,3));

598 || % dis_pea(j,1) = sqrt((test(i,1)-learn_f_pea(j,1))
~2+(test(i,2)-learn_f_pea(j,2)) "2+(test(i,3)-
learn_f_pea(j,3))"2);

599 end

600 d_pea=min(dis_pea);

601 for j=1:size(learn_f_vt)

602 dis_vt(j,1) = lamda*(abs(test(i,1)-learn_f_vt(j,1)
))+abs(test(i,2)-learn_f_vt(j,2))+abs(test(i,3)
-learn_f_vt(j,3));

603 || % dis.vt(j,1) = sqrt((test(i,1)-learn £ vt(j,1))~2+(
test (i,2)-learn_f_vt(j,2)) "2+(test(i,3)-learn_f_vt(j,3)
ivEr

604 end

605 d_vt=min(dis_vt);

606 if d_sr<d_vf && d_sr<d_pea && d_sr<d_vt

607 || % distance(i,1) = d_sr;

608 distance{i,1} = ’SR’;

609 fprintf (’The signal is SR (Non-Shockable)\

Bt}
610 elseif d_vf<d_sr && d_vi<d_pea && d_vi<d_vt

61111 % distance (i, 2) = d_wf:
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distance{i,2} = *VF’;
fprintf (’The signal is VF (Shockable)\n’);
elseif d_pea<d_sr && d_pea<d_vi && d_pea<d_vt
% distance(i,3) = d_pea;
distance{i,3} PEA ;
fprintf (’The signal is PEA (Non-Shockable)\

n?);
elseif d_vt<d_sr && d_vt<d_vf && d_vt<d_pea
b distance(i,4) = d_vt;
distance{i,4} = ’VT’;

fprintf (’The signal is VT (Shockable)\n’);
end
end
end
function [score_idx]=scattermat(data,Y)
[, 1l]l=size(data);
clases=unique (Y);
tot_clases=length(clases) ;
[total_length, ~“]=size(data);
S_b=zeros(l,1);
S_w=zeros(l,1);
overallmean=mean(data);
for i=1l:tot_clases
clasei = find(Y==clases(i));
xi=data(clasei,:);
mci=mean(xi);
xi=xi-repmat(mci,length(clasei) ,1);
S_w=S_w+((length(clasei)./total_length)*(xi’*xi));
S_b=S_b+((length(clasei) ./total_length) *(mci-
overallmean) ’>*(mci-overallmean)) ;
end
sw=diag(S_w);
sb=diag(S_b);
score=sb/sw;
[“,score_idx] = maxk(score,b3);
score = sort(score,’descend’);
plot{scare, %%, ?linswideh ;2]
xticks ([1 23 4 5.6 7:8:9 10 11.12 13 14.15 °16])
zticklabala ({ " \mu {NSI}? *V_{NSI}+, "8 {NSIT}? , 2K _{NSI}?
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end

oK ENST R VERL NS T 2o De A NS oM - A NG T 4 " Xmu s
NELT o e NTE B 2 i T Re INTL R 2 S ST 300,
EBT: FNTER 0D NTT o M INTT R0

xlabel (’Features’, ’FontSize’ ,12);

ylabel (’Scatter matrices value’, ’FontSize’,12);

grid on

function vs = GetStructureValue (str)

end

Eri el = sdizelstr):;
vs = zeros(r,c);
fior: si=lwx
for j=tuc
veli, 4 = 8trtisg) walue;
end

end

function 1lsl1l = GetStructurelabell (str)

end

[ro, ~] = size(str):
Vel = el (ro 1)
for i=1:ro
Is1fi, 13 = 2PEAYS

end

function 1s2 = GetStructurelabel2(str)

end

[ro, ~] = size(str);
152 = gell(ro,1);
for i=1:ro
Is24i,;:¥ = *8R";

end

function 1s3 = GetStructurelabel3(str)

end

[ro, 7] = size(str);
1s3 = cell(ro,1);
for i=1:ro
1s3{i,:} = *VF’;

end
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function 1ls4 = GetStructurelLabeld (str)
[ro, "] = size(str);
1s4 = cell(ro,1);
for i=l:ro
1s4{i,:} = *VT’;
end
end

function m_display ()

sr_mat = load(’features\SR_features_all.mat’);
vf_mat = load(’features\VF_features_all.mat’);
pea_mat = load(’features\PEA_features_all.mat’);
vt_mat = load(’features\VT_features_all.mat’);

[size_sr, ~] size(sr_mat.nsi_str);

[size_vf, 7] size(vf_mat.nsi_str);

[size_pea, "] = size(pea_mat.nsi_str);
[size_vt, ] = size(vt_mat.nsi_str);
sr_str = [sr_mat.nsi_str, sr_mat.nti_str];
vi_str = [vf_mat.nsi_str, vf_mat.nti_str];
pea_str = [pea_mat.nsi_str, pea_mat.nti_str];
vt_str = [vt_mat.nsi_str, vt_mat.nti_str];
pea_fp = GetStructureValue(pea_str);

sr_fp = GetStructureValue(sr_str);

vi_fp = GetStructureValue(vi_str);

vt_fp = GetStructureValue(vt_str);
fp.dll=[pea fp; srifp; wi.Ipy wmtotpls

pea_label = GetStructurelabell (pea_str);

sr_label = GetStructurelLabel2(sr_str);

vf_label GetStructurelabel3(vf_str);

vt_label GetStructurelLabeld (vt_str);

true_label=[pea_label; sr_label; vf_label; vt_labell;

X=lfp o all (s sd)  fpoalli(s 20 fp all i B)ipaall (5,40
fp alliCs B) fo_alk (i8] ofp addl Gy 70  dpalli, 8);
fpuall Ce 9y, fp 8110 D), Tpimddete A1) s fp el il (5 42 )
fplalliCe a3 fpiall (i 14) L dprald (o 1B ) fpaal 105 16)

13
varNamss = {*\mu_{NSI}?: *V_{NSIY?*; ?s_{NSi}’; ’K_-{NSI
Yo o8k - {INST} s 2EBI {NSTI}?: 2P {NSIF 2y 2M {NST}: %2

Mo TNTEFL: P ANTIF s Y8 {NTI s FH ANTLE: 25K 1
NTIG?: 4EBT _ANTI P’ PP INTIF2: M ANTLY sk



188 Appendix A. Appendix

717 gplotmatrix (X, [],true_label,[],[],10);

718 text GLu 0L 07 wlid 1905 26:¢..32 1 438 65352 BT 64 T
7T .83 .90 -.96], repmat (-.06,1,16), varNames', ?
FontSize’,10) ;

719 text(repmat (-.04,1,16), [.96 .88 .82 .77 .70 .63 .57
B 5 4E BT 032 260 019 12 0665501 cvarNames:, 12
FontSize’ ,10, ’Rotation’ ,90);

720 x=fp allilc; 1)

721 y=fp_all(:,2);

722 z=fpoall (,9);

723 group = cell2mat(true_label);

724 uniqueGroups = unique (group);

725 view (3)

726 grid on

727 hold on

728 for k = 1:length(uniqueGroups)

729 ind = group==uniqueGroups (k) ;

730 if k==

731 plot3(x(ind) ,y(ind) ,z(ind),?.?,?Color?,?
b’,’markersize’ ,10);

732 elseif k==

733 plot3(x(ind),y(ind) ,z(ind),’.’,’Color’,’
g’,’markersize’ ,10);

734 elseif k==

73 plot3{x Cind )y yiind) ;2(ind), " ;*Colox?, !
c’,’markersize’,10);

736 elseif k==

737 plot3(x(ind),;y(ind) ,=z(ind) ,*.?,"Colox?,*
r’,’markersize’ ,10);

738 end

739 end

740 xlabel (’\mu_{NSI}’);

741 ylabel (’V_{NSI}’)

742 zlabel (’\mu_{NTI}?)

743 legend (SR’ ,’VF?,°PEA’ ,°VT?)

744 end

745 || function scalo ()
746 f = figure;
747 set (f,’Position?’,[0 0 800 700]);
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748 [~, LONGS, ~] = size(scalogram);
749 mesh(scalogram) ;
750 prid (YnfE ] |
751 az = 0;
752 el = 90;
753 view( az, el);
754 set(gca,’XTickLabel’,0:1:5,’XTick’,l:round(LONGS/S):
LONGS, ’FontSize? ,12);
755 set{gca,?YTickLabel? ;0:1:20,*YTick?,1:10:200;, *FontBize
b dd) .
756 colorbar;
757 colormap( ’jet?’);
758 shading( ’interp?’);
759 x1lim( [0 LONGS]);
760 xlabel (°Time [sec]?,’FontSize? ,16);
761 ylabel (’Frequency [Hz]’,’FontSize’,16);
762 end
763 || function [micro, macro] = micro_macro_PR(orig_label ,
pred_label)
764 mat=confusionmat (orig_label, pred_label);
763 len=size(mat,1);
766 TP=zeros(len,1);
767 FP=zeros(len,1);
768 FN=zeros(len,1);
769 Pre=zeros(len,1);
770 Re=zeros(len,1);
771 Fl_score=zeros(len,l);
772 total = sum(sum(mat));
773 for i=1:1len
774 subtotal=0;
775 TP(i)=mat (i,i);
776 FP(i)=sum(mat (:, i))-mat(i,i);
777 FN(i)=sum(mat (i,:))-mat(i,i);
778 subtotal=subtotal+sum(FP(i)+FN(i));
779 cla=total -subtotal;
780 classwiseAcc(i)=100%cla/total;
781 Pre (i)=TP (i) /(TP(i)+FP (1)) ;
782 Re (i)=TP (i) /(TP (i)+FN(i));
783 Fl_score(i)=2*Pre(i)*Re(i)/(Pre(i)+Re(i));
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end
total_correct = 0;
totall = 0;
for i =1:len
total_correct = total_correct+ mat(i,i);
totall = totall + sum(mat(:,i));
end
overall_accuracy = 100*total_correct/totall;
macro.precision=mean (Pre) ;
macro.recall=mean (Re) ;
macro.fscore=mean (F1_score);
micro.precision=sum (TP)/(sum (TP)+sum(FP));
micro.recall=sum(TP)/(sum (TP)+sum (FN)) ;
micro.fscore=2%*micro.precision*micro.recall/(micro.
precision+micro.recall);
end
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