"新たな低炭素エネルギー社会に対応した新型電池の開発 (5)"

松本 太¹・池原 飛之²・郡司貴雄³・大坂武男⁴ ・入井友海太⁵・安東信雄⁶

"Development of Novel Battery towards New Low Carbon Energy Society (5)"

Futoshi MATSUMOTO¹ • Takayuki IKAHARA² • Takao GUNJI³
 • Takeo OHSAKA⁴ • Yuuta IRII⁵ • Nobuo ANDO⁶

1. 緒言

本プロジェクトは、次世代の新型電池の開発に焦点を当 て、産学連携のもとに行われているプロジェクトである。 今年度は、産学連携研究で得られたリチウムイオン電池 (LIB)に関する二つの研究成果を報告する。

2. 研究結果紹介

2.1.XPSを用いた充電およびプレドープ過程で生成す るグラファイト負極上の SEI 被膜の組成分析

LIB の負極材料である Graphite などは初回充電時、負極 表面に Solid Electrolyte Interphase (SEI)被膜が生成する。 SEI は電解液の還元を抑制するなどの働きがあるが、充放 電を繰り返すことで、SEI の腐食や Li 析出などで抵抗層 になり電池が劣化する原因にもなる。そのため、電池の 劣化因子を理解するために、SEI の成分や組成を分析する ことは非常に重要である。しかし、SEI は大気中では酸化 してしまい、測定が非常に困難であるため、SEI の詳しい 成分組成はほとんど明らかになっていない。本研究では 充電または Li イオンプレドープ(LPD)¹⁾ によって形成し た SEI 被膜の成分や組成を大気非暴露で測定可能な XPS を用い定量的に把握することを目的とした。

*1: 教授 神奈川大学工学部物質生命化学科

- 4: 客員教授 神奈川大学工学研究所
- Visiting Professor Research Institute for Engineering, Kanagawa University
- 5: 客員研究員 神奈川大学工学研究所
- Researcher Research Institute for Engineering, Kanagawa University.
- 6: 客員研究員 神奈川大学工学研究所

Fig. 1 (A)LPD および(B)充電によって Li 挿入された電池の 容量測定結果

活物質に Graphite を用いて作製したスラリーを塗工し真空 乾燥させ電極を作製した。電極の密度が 1.5 g cm⁻³ になるよ うにプレスしたものを電極とし、Ar 雰囲気下で電池を作製 した。LPD と充放電装置による充電の 2 通りの条件で行っ た(以下、充電および LPD)。その後、トランスファーベッセ ルを用いて大気非暴露鏡下で XPS により SEI の分析を行っ た。LPD 量と充電量は 100, 75, 50, 45, 40, 35, 25%の割合で

Fig. 2 (A)LPD および(B)充電によって形成した SEI の各 Li 挿入量における XPS による組成分析結果

Professor, Dept. of Material and Life Chemistry, Kanagawa University

^{2:} 教授 神奈川大学工学部物質生命化学科

Professor, Dept. of Material and Life Chemistry, Kanagawa University

^{3:} 特別助教 神奈川大学工学部物質生命化学科

Assistant Professor, Dept. of Material and Life Chemistry, Kanagawa University

Researcher Research Institute for Engineering, Kanagawa University.

Fig. 3 充電によって形成した SEI の各 Li 挿入量における XPS 測定結果

行った。

Fig.1に充電およびLPDによってLi⁺を挿入した各電池 における時間ごとの容量変化を示す。活物質量から計算 される理論容量から目的通りの容量であることが確認で きた。Fig.2 に XPS によって求めた SEI 被膜の元素割合 を示す。充電と LPD では O と F での増減傾向が異なって おり、充電の場合、40%までОの割合が増加しているが 40%以降は割合が減少している。逆に F は 40%まで減少 し、以降は増加している。LPD では O は増加し、F は減 少していた。このことから SEI 成長過程では LPD と充電 で異なることが確認できた。Fig.3 に充電の場合の C 1s と F1s 軌道の XPS を示す。25%では Graphite 由来のピー クが観測され、35%以上では、C と F のメインピークは C=OとLiFになった。これは電解液の還元により炭酸塩 が生成したことに起因する。また LiPF6 が炭酸塩と反応 することで LiF が生成したと考えた。この結果から先に 還元反応により炭酸塩が生成され被膜となった後に LiF が生成するためOとFの割合が反比例したと考えられる。

2.2. 次世代 LIB のための Li 含有金属酸化物/活性炭を 用いたハイブリッド正極の性能特性の検討

高エネルギー密度を有する Li イオン二次電池(LIB)と 出力特性で有利な電気二重層キャパシタとのハイブ リッド化は新規蓄電デバイスの構築という観点から極 めて重要な取り組みである。本研究室では片面に LiFePO4(LFP)、もう一方の面に活性炭(AC)を塗工し、穴 開け加工を施すことにより効率的にLFPからACへのエ ネルギー移動が起こることに起因する高レートでの放 電特性と高容量の保持を確認している²⁾。本研究ではさ

Fig. 4 (a)穴あけ及び (b)穴なし電極電池のレート試験結 果 (AC wt. %:36.1%)

 Fig. 5
 穴あけ及び穴無し電極における AC の wt.%に

 対する AC 容量放電率

Fig.6 ACの wt.% におけるエネルギー密度と出力性 能の関係

らなる高速放電特性や高容量化を目指し、AC の目付割 合を検討することによって、LFP/AC 比が電池性能にど のような影響を与えるか調べた。 正極活物質として片面に LFP 層、もう一方の片面に AC 層を形成した。これら材料を用いてスラリーを調製し た後、塗工・乾燥させた。ピコ秒パルスレーザーで開口 率 0.5%、開口径 20 µm となるように穴あけを行った。Li 金属を負極として電池を作製した。0.1 C で 3 サイクル充 放電試験により容量測定を行い、その後、高電流でのレー ト試験を行った。レート試験は 0.1C で充電を行ったあと

Fig. 7 エネルギー密度と出力密度の関係. 図中の数字は ACの wt.%

AC 容量分を 20 C にて急速放電を行い 5 分休止し、再び 20 C にて急速放電を行うことを 10 回繰り返した。

Fig.4に穴あけ、穴なし電極で作製した電池のレート試験 結果を示す。10回の20C放電によって得られる放電容量 に違いが見られる。この図から1回目で放電した容量を AC 放電容量とし、AC の理論容量に対する AC の実際の放 電容量の割合を AC 容量放電率とした。Fig. 5 に電極にお ける AC の質量割合と AC 容量放電率の関係を示す。AC 割合が低い場合、穴なし電極では約50%の放電率しか得ら れなかったのに対し、穴あけ電極の場合、AC 割合に関係 なくほぼ 100%の放電率を示したことから穴あけ電極で作 製した電池の方が優れた特性を有していることが分かっ た。Fig.6に穴あき電極で作製した電池の20C放電による エネルギー密度を求め、各電池のレート試験の結果から求 めた出力密度をしめす。Fig. 7 に出力密度を横軸エネル ギー密度を縦軸に示す。Fig. 6、Fig. 7 より AC wt. %が 35~50%での本電池は出力性能とエネルギー密度が両立で きることが見られ、本ハイブリッド電池で従来の蓄電デバ イスでは得られない領域の性能を示すデバイスの構築に 成功した。

3. 終わりに

本研究で行った LIB の不可逆容量の除去のための LPD とハイブリッド正極の実現により、次世代の LIB の性能の 向上に大きく貢献することが考えられる。

最近、自動車が電動化され、さらに、自動車自体も移動

Fig.8 車の走行中での非接触給電システムの概念図例

する電子機器化し始めている。このような高度な電子化社 会において次に起こる変化は、これら移動機器への電力供 給システムの発達である。電力を供給するために、ある場 所に行く、待つといった動作はなくなる方向に技術は発展 していくであろう。この方向へ変化は始まっており、携帯 電話を非接触で充電するシステムが既に市販されて、私た ちの生活に浸透し始めている。今後の社会では、インフラ の中にいる限りは様々な場所での機器充電が求められる。 その中で、機器内にはある程度の電力を貯める電池が必要 であるが、大きな電力を貯めるための電池は必要でなくな る。例えば、電気自動車は様々な場所で少しずつ充電しな がら走り続ける(Fig. 8)。しかし、電池が充電されるために は、電池は瞬時に大電力を受け止めなければならない。し かし、現行の LIB は、Li+が正極と負極の間を行き来するこ とで充電と放電が行われているので、Li+の移動の速度に制 限されて、急に大電力を充電することはできない。本研究 において開発したハイブリッド電極はこのような要望に 合う電極であり、今後、大きな注目を浴びることが期待で きる。

4. 発表論文

(1) Tatsuya Watanabe, Takashi Tsuda, Nobuo Ando, Susumu Nakamura, Narumi Hayashi, Naohiko Soma, Takao Gunji, Takeo Ohsaka, Futoshi Matsumoto, An Improved Pre-Lithiation of Graphite Anodes Using Through-Holed Cathode and Anode Electrodes in a Laminated Lithium Ion Battery, *Electrochimica Acta*, 134848 (2019).

(2) Takashi Tsuda, Nobuo Ando, Tomohiro Utaka, Kenji Kojima, Susumu Nakamura, Narumi Hayashi, Naohiko Soma, Takao Gunji, Toyokazu Tanabe, Takeo Ohsaka, Futoshi Matsumoto, Improvement of High-Rate Performance of LiFePO₄ Cathode with Through-Holed LiFePO₄/Activated Carbon Hybrid Electrode Structure Fabricated with a Pico-second Pulsed Laser, *Electrochimica Acta*, **298**, 827-834 (2019).