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Abstract:

In this dissertation, single crystals of various titanium oxides and oxyfluorides were
grown employing high-temperature constant-voltage electrolysis of TiO, with 42MoO4
(4 = Li, Na, K, Cs)-based melts. Structural, electronic, magnetic, and optical properties,
and photocatalytic H> evolution activities of the resultant crystals were extensively
investigated. The described method is highly effective in obtaining electron-doped
titanium oxides and oxyfluorides with precisely controlled chemical compositions and
crystal structures. Throughout the dissertation, the author emphasizes that crystals
obtained herein are never obtained by any other techniques, and the doped d electrons
significantly impact the properties of the materials.

Chapter 1 describes a brief overview of titanium oxides, mixed-anion compounds, and
crystal growth techniques. The objectives of the dissertation are also mentioned in this
chapter. In Chapter 2, needle-like crystals of hollandite-type Cs,TisO16 were successfully
obtained by constant-voltage electrolysis of TiO; with the Cs;MoOs melt. Depending on
the applied voltages, the resultant crystals exhibit distinct properties, either electrical
insulators with optical transparency or semiconductors with metallic luster. Chapter 3
deals with the crystal growth of titanium oxides containing lithium, sodium, and
potassium by using the 42MoQO4 (4 = Li, Na, K) melt. Crystals of K, TisO16 (hollandite-
type), NaxwTicO13, and LizwTisO7 (ramsdellite-type) are successfully grown. These
compounds unexceptionally crystallize in one-dimensional tunnel structures with various
tunnel shapes depending on the alkali metals incorporated. In Chapter 4, the crystal
growth of titanium oxyfluorides is attempted by using the eutectic LixMoQ4~LiF melt.
Rocksalt-type LixTi(O,F)s (F/Ti ~ 0.15) crystals are obtained by precisely tuning the
applied voltage. The crystals were found to produce Hz more efficiently from aqueous
methanol under UV light than a nondoped oxyfluoride LisTi,O¢F reference. Chapter 5
reports the successful growth of Na/Mo/F-codoped CaTiQO; crystals by using the
NayMoOs—NaF-CaMoOs melt. The dopant concentration is controlled by the applied
voltage values. Finally, the concluding remarks and suggestions for future works are
given in Chapter 6.
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Chapter I—General Introduction

This chapter briefly overviews the research background (including some fundamental knowledge
and historical context) that motivates the author to faunch the study. Please note that the subsequent
chapters (Chapters 2, 3, 4, and 5) alsc include the Infroduction section, in which the detailed

background for each chapter is described.

1.1. Titanium Oxides—Their Structures, Properties, and

Applications

1.1.1. Titenium Dioxide

General. Titanium dioxide (TiO2), discovered individually by W. Gregor in 1791 and M. H.
Klaproth in 1795," is the most popular and important material among the simple binary titanium
oxides. TiO: generally features high chemical/thermal stability, abundance (0.44% of the Earth’s crust
as titanium),” low cost, and nontoxicity toward both human beings and the environment. Practical
uses of Ti0z cover every scene of our daily lives, including pigments, paints, coatings, printing inks,
paper textiles, plastics, rubbers, antibacterial agents, cosmetics, food additives, and so on.**

Industrially, TiO2 is manufactured starting from ore sources (typically rutile and ilmenite FeTiOs)

by two main routes:” (1) the chlorine method and (2) the sulfuric acid method. The chlorine method

involves the formation of TiCls by reacting rutile ore and chlorine gas under reductive conditions (eq

1



Chapter 1—General Introduction

1), followed by high-temperature oxidation of purified TiCls to obtain rutile-type TiO2 (eq 2).

TiOz (rutile ore) + C + 2Cly — TiCly + COy (h

TiCla + Oz — TiO2) + 2C1T (2)

The sulfuric acid method is the first commercialized process in the 1920s for the production of the
Ti0; pigment and includes the following three-step reactions {eqs 3-5). In the first step, ilmenite
FeTiOs is dissolved in concentrated sulfuric acid (eq 3). Next, the resultant TiIOSQ4 is separated,
purified, and then hydrolyzed to form insoluble precipitates of TiO(OH)z (eq 4). Finally, anatase- and

rutile-type TiO; is obtained after the heat treatment of TIO(OH), (eq 5).

FeTiOs + 2H2804 — FeSO4 + TIOSO4 + 2H0 (3)
TiOSO4 + 2H20 — TIO(CH)d + HaS04 (4)
TiO(OH)2 — TiO, + H20 (5)

Regarding cost and waste managements, the chlorine method dominates the majority of the recent
industry: ~60% for the chlorine method and ~40% for the sulfuric acid method.® The world total
production of TiO» is approximated at 6.6 million tons per year, where Japan accounts for about 3%
of the total.”

Structure. TiO2 exists in many types of crystal structures. This fea.tufe is called polymorphism,
which describes the same crystalline compound showing different atomic arrangements. The most
widely known polymorphs of TiO2 must be anatase, rutile, and brocokite. At the present day, anatase
and rutile are predominant in the industrially manufactured TiO2. As far as the author knows, however,

at least tive polymorphs—Ti02(B), a-PbOs, ramsdellite, hollandite, and baddeleyite—have been
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reported other than the aforementioned three. Figure 1.1 shows a polyhedral representation of crystal
structures for the eight known polymorphs (the VESTA software’ for visualization), and Table 1.1

1017 These polymorphs include both the naturally-occurring phases

provides the crystallographic data.
(anatase, rutile, brookite, and TiO2(B)) and synthetic phases (a-PbO., ramsdellite, hollandite, and
baddeleyite), exhibiting a wide variety of structural motifs. Rutile is the most stable form at ambient
conditions, and other polymorphs irreversibly transform to rutile upon heating.'*?° Both of a=PbO»-
and baddeleyite-type TiO2 are high-pressure polymorphs: while a~-PbO2-type TiO2 is stable at
ambient conditions, baddeleyite-type TiO2 is not.?! The syntheses of TiO2(B), a-PbO>, ramsdellite,

hollandite, and baddeleyite are relatively difficult, limiting physical research on these polymorphs

with highly crystalline samples.

(@) (b) (c) (d)

)

(e) (f) (9) (h

Figure 1.1. Polyhedral representation of the crystal structures of the eight TiO2 polymorphs: (a)

anatase, (b) rutile, (c) brookite, (d) TiO2(B), (e) a-PbO,, (f) hollandite, (g) ramsdellite, and (h)
baddeleyite. Blue and red spheres represent Ti and O ions, respectively. Ti ions are six coordinated in

(a)—(g) but are seven coordinated in (h).
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Chapter 1—General Introduction

Buckeridge and co-workers revealed in their theoretical calculations that the band structures of
TiO2 can be tuned largely by varying the local coordination environments of Ti and O,?* which may
suggest broadened applications in each polymorph. The calculated band structures and density of
states (DOS) of the eight TiO2 polymorphs are shown in Figures 1.2 and 1.3. For all the polymorphs,
the valence band maximum (VBM) and conduction band minimum (CBM) are mainly composed of
the O 2p and Ti 3d orbitals, respectively. Clearly, the conduction band of baddeleyite-type TiO; is
highly dispersive; it ranges approximately from —8 to 0 eV relative to VBM. Baddeleyite-type TiO2
also features the narrowest band-gap energy of 2.20 eV originating from the significantly raised VBM.

On the other hand, the largest band-gap energy of 4.11 eV is obtained in TiO2(B).

Energy relative to vacuum (eV)
|
h
|

? o

N

Rume

2 & L o 2 2
~ *cg ~ e~
g 3 6} O & "g o
§ & ¥ & S 3
S 3 S Q <]
- 5 %
R Q

Figure 1.2, Calculated valence band (VB) and conduction band (CB) positions relative to the vacuum
level for the eight TiO2 polymorphs. The Hz and Oz redox potentials are also shown for comparison.

Reprinted (adapted) with permission from ref 22. Copyright 2015 American Chemical Society.
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Figure 1.3. Calculated density of states (DOS) and partial DOS of the eight TiO2 polymorphs as a
function of energy relative to the valence band maximum (VBM). Reprinted (adapted) with

permission from ref 22. Copyright 2015 American Chemical Society.

Photocatalyst. The historic breakthrough in the research on TiO2 is willing to bet the discovery of
catalytic effects induced by light, viz., photocatalysis. As one of the early works, Kato and Mashio
reported in 1964 the liquid-phase oxidation of tetralin (1,2,3,4-tetrahydronaphthalene) promoted by
anatase- and rutile-type TiO2 photocatalysts under UV-light irradiation.”® In 1972, Honda and
Fujishima discovered the renowned “Honda—Fujishima effect” involving the electrolysis of water into
hydrogen and oxygen by using a rutile-type TiO2 single crystal as a photoanode and a Pt cathode.?*
With the irradiation of UV light onto the TiO» photoanode, the oxidation/reduction reactions of water
take place at a much lower anodic bias voltage than the electrolysis without irradiating UV light. Ever

since the pioneering study by Honda and Fujishima, attempts have been made to apply the principle
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to heterogeneous catalysts.” In 1976, Bulatov and Khidekel achieved water splitting over rutile-type
TiO2 powder modified by Pt particles under UV light.*® The Pt particles deposited on the surface of
TiO2 grains work as electron scavengers, inhibiting electron—hole recombination to improve the
photocatalytic performance.?” It should be noted that anatase and rutile are both commonly-used
polymorphs in photocatalysis. They are mainly photosensitive in the UV range because of their wide
bandgaps (~3.2 eV and ~3.0 eV for anatase and rutile, respectively).”® Anatase generally exhibits
higher photocatalytic activities than rutile because of, e.g., its electronic structure® and surface
properties.®

Other Applications. The open-circuit voltage (OCV) for TiO2(B)-used batteries is higher than
those of anatase- and rutile-used ones (1.6 V for TiO(B),*! 1.55 V for anatase,*” and 1.4 V for rutile*®),
allowing this polymorph a potential anode material for lithium-ion secondary batteries (LIBs).
Ramsdellite- and hollandite-type TiO2, both of which adopt large tunnel structures, are widely
investigated for anode materials for LIBs as well.**>7 Keeping an eye on the high work function and
the large band gap (3.86 eV) of hollandite-type TiO,, this polymorph may be applicable to transparent
conducting oxides (TCOs), which possess both electrical conductivity and visible-range optical
transparency, for photovoltaic devices as well as short-wavelength light-emitting diodes.?

Noteworthy applications have not been reported for brookite-, @-PbO»- and baddeleyite-type TiOx.

1.1.2. Ternary and Higher-Order Titanium Oxides

The diversity of crystal structures of titanium oxides tremendously increases with a combination
of additional elements, so more unique properties can arise in ternary and higher-order titanium
oxides, as outlined below.

Three-Dimensional (3D) Structures. Barium titanate BaTiOs, being ferroelectric at room

temperature, adopts a perovskite-type structure with a slight tetragonal distortion (tetragonality c/a ~
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1.01).*** Owing to the high dielectric constant, BaTiO3 has been utilized as, e.g., a component of
multilayer ceramic capacitors (MLCCs).*! Lead zirconate titanate perovskite Pb(Zr,Ti)Os (PZT)
shows an exceptional piezoelectric effect and finds application in piezoelectric elements embedded
in various types of machinery.*” Spinel-type LisTisO12 is a promising anode material for LIBs,
showing negligible volume change during charge/discharge cycles and a theoretical capacity of 175
mA h g™1.** An A4-site deficient (La,Li)TiOs perovskite is a fast lithium-ion conductor (10~ S cm~" at
room temperature) and intensively studied as a candidate of solid electrolytes for all-solid LIBs.**
Furthermore, pyrochlore-type Ln2Ti207 (Ln = Dy, Ho) exhibits a geometrical frustration associated
with ferromagnetic and dipolar interactions, called “spin ice.”** Crystal structures of these

compounds are depicted in Figure 1.4.

(@)

Figure 1.4. Crystal structures of various titanium oxides with 3D structures: (a) BaTiOs, (b)
Pb(Zr,Ti)Os, (c) LisTisO12, (d) (La,Li)TiOs, and (e) Ln2Ti207 (Ln = Dy, Ho). For all the structures,

blue and red spheres represent Ti and O ions, respectively.
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Two-Dimensional (2D) Structures. 42L.a>Ti3010 (4 = K, Rb, Cs) with a Ruddlesden—Popper-type
n = 3 structure exhibits a high photocatalytic activity for overall water splitting,’” as well as
photoluminescence® and upconversion luminescence.” Layered perovskite titanates that belong to
the Ruddlesden—Popper (RP) phases,’®™? A4’[4,-1B,03+1], the Dion-Jacobson (DJ) phases,’**
A’TA1By03n+1], and the Aurivillius (AV) phases,”” [Bi202][4~18:03x+1] (4 and A4’ are typically
alkali, alkali-earth, or rare-earth metals; B is a transition metal; and » denotes the number of
perovskite-like slabs [4-18,03x+1]) are quite attractive regarding host—guest chemistry (Figure 1.5).
Numerous RP, DJ, and AV derivatives have been synthesized via insertion/extraction and ion-
exchange reactions in an aqueous solution and a molten salt, or using solid reagents.>* "’ |
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Figure 1.5. [100] view of selected perovskites and layered perovskites: (a) perovskite SrTiOs, (b)
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Ruddlesden—Popper Kz[La:Ti3010], (¢) Dion—-Jacobson Rb[La;TizNbOio], and (d) Aurivillius

[Bi202][Bi2TizO10]. For all the structures, blue and red spheres represent Ti and O ions, respectively.
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One-Dimensional (1D) Structures. Some titanium oxides with 1D tunnel structures are found in
the series of the so-called Wadsley—Andersson compounds, 42Ti,O02:+1 (7= 3, 4, 6, 7, 9), where 4 is
usually sodium (Figure 1.6).”** The compounds with 7 = 6, 7, and 9 adopt 1D tunnel structures,
albeit layered structures for » = 3 and 4. Sodium cations that reside in the interlayer galleries and
tunnels built from edge- and corner-shared TiOs octahedra are readily replaced by Li* and H* 3%
The A2Ti,O2.+1 analog has been investigated as potential electrode materials®*? and photocatalysts.*®
Another large family with 1D tunnel structures meets hollandite-type compounds having the general
formula 4.(Ti,M)3O16, where A4 is a large non-framework mono- or di-valent cation residing in tunnels
and M is a di- or tri-valent cation substituting for Ti*" (Figure 1.7).**® To neutralize the negative
charge of the framework, the x value in A{Ti,M)s016 increases up to 2. Hollandite titanates have
received attention mainly because of potential applications as, e.g., immobilizers of radioactive

elements,””® solid-state electrolytes,” and electrode materials, 01!

Figure 1.6. Wadsley—Andersson compounds 42Ti»Oz+1 withn =3, 4, 6, 7, and 9, viewed along layers
and tunnels: (a) NazTi307, (b) NazTisOo, (c) NazTisO13, (d) NazTi7O1s, and (e) NazTioO19. Sodium,

yellow; titanium, blue; and oxygen; red.
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Figure 1.7. (a) Perspective view of hollandite-type A(Ti,M)sO16 from the [001] direction and (b) a

double chain made up of edge-shared (Ti,AM)Os octahedra.
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1.1.3. Electron-Doped Titanium Oxides

Titanium ions in oxides usually show the +4 valence state (d° electronic configuration). However,
compounds synthesized under strong reductive conditions (typically involving Ha gas, graphite, and
reduced oxygen partial pressure) contain low-valent Ti** (d') and Ti** (d?) ions, often resulting in
mixed-valent states. Such “reduced” titanium oxides exhibit various fascinating properties derived
from the doped d electrons. For example, rocksalt-type TiO (ref 102), perovskite-type SrTiOsz-s (refs
103 and 104), and spinel-type LiTi2O04 (refs 105 and 106) show superconducting transitions at ~1.0,
~0.5, and ~13.7 K, respectively. SrTiOs-s1is the firstly discovered oxide superconductor. LiTi2O4 had
been a transition metal superconductor with the highest 7¢ value until the discovery of high-
temperature superconductivity in layered copper oxides.'%” A series of reduced binary titanium oxides,
the so-called Magnéli phases, Ti»Ozr1 (7= 2-10),'% ! and TiO2(B)-type Na,TiO; (ref 112) undergo
Peierls-like metal-insulator transitions induced by temperature, light, and pressure. The appearance
of weak ferromagnetism at room temperature is suggested in hollandite-type K;TisOse.!"®
Furthermore, SrTiOs-s exhibits much higher H2/O2 evolution activities under UV light than the
oxygen-stoichiometric SrTiOs (i.e., negligible contents of Ti**), which are responsible for the
prolonged lifetime of photogenerated electrons and the reinforced driving force for water oxidation.!*
Electron doping into titanium oxides is thus capable of not only providing unique electronic/magnetic

properties but also improving some kind of catalytic activities.
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1.2. Mixed-Anion Compounds

1.2.1. Interest in Mixed-Anion Compounds

Recent accelerating advances in mixed-anion compounds, which contain two or more anionic
species in the solid state, arise from their expanding degrees of freedom in chemical compositions,
local symmetry around cations, and related properties.''*"!7 Such compounds are manifested as a
new materials platform beyond the single anion for next-generation technologies. Figures 1.8 and 1.9

showcase basic concepts of mixed-anion compounds.!!®

Traditional single-anion compounds (oxides, chlorides,...)

Many structure types discovered g i
by selecting cationic species Restricted local coordination
(AO,, AB,O,, ABO;,....) (octahedron, tetrahedron,...)

Mixed anion compounds

New coordination geometry
(new building block)

e o @
o
® .a_.. % L .SMQ
0%, N* H-,cr
°© o
. 3 . 3; o o '-I’-'o
s%, (0,), Bi*...

Number Position Size

Figure 1.8. From oxides to mixed-anion compounds. Anion coordination and crystal structures of

oxides (upper half) and mixed-anion compounds (lower half). Reprinted from ref 115 (open access).
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Figure 1.9. What mixed-anion compounds can do. (a) Tuning of crystal field splitting (CFS). (b)
Band gap control. (c) Local degree of freedom. (d) Local asymmetry. (¢) Bonding differentiation. (f)
Anion diffusion and reaction. (g) Dimensional reduction. (h) Molecular anions. Reprinted from ref

115 (open access).
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The perhaps most well-known mixed-anion compounds are oxide-anion-containing ones, including
oxyhydrides (O*/H-), oxynitrides (O*/N*), oxyhalides (O*/X. X = F-, CI-, Br, or I),
oxychalcogenides (0*/Ch; Ch = S, Se*", or Te*"), and oxypnictides (0%>/Pn; Pn = P>, As*, Bi*~
or Sb*). Apart from the O anion, however, compounds such as nitride-halides,"'*""® hydride-
halides,'®'*  halide-chalcogenides,'*'?*  hydride-chalcogenides,'”  phosphide-nitrides,

phosphide-tellurides,'?’

and MXene-related materials (e.g., Y2CF2)'*!%° as well as containing
molecular anions (e.g., OH-, CO3*, HCOs3~, NOs~, SO4*, PO4*~, HPO3*", 1057, SCN-, BH4™, (02)*,
and (S2)*)"%'*! can also be recognized as the members of mixed-anion compounds.

The number of mixed-anion compounds containing the O?~ anion recorded in Inorganic Crystal
Structure Database (ICSD)'? is limited compared with common oxides: >50,000 for oxides and
<3,000 for the sum of oxy-hydrides, -fluorides, -nitrides, -chalcogenides, and -pnictides (as of
October 2017)."1>1%3 This fact clearly evidences that exploration and synthesis methods of mixed-
anion compounds have not been established yet. The majority of the global atmosphere consists of
oxygen (oxidative) and nitrogen (inert)—this is why many stable compounds exist in oxides on the
earth. The difficulty in the synthesis of mixed-anion compounds is mainly caused by the different
nature of anionic species. The most traditional synthesis method of ceramics is a simple “heat & beat”
or “shake & bake” route, in which high-temperature firing (usually >1000 °C) of a mixture of metal
oxide reagents in air atmosphere is included.'* In this method, mixed-anion compounds are not ofien
available even if reagents containing non-oxide anions are used, because of the loss of anions as
gaseous products (e.g., Hz and Clz) during the heating, as well as the formation of single-anion

compounds with high stability (e.g., metal nitrides).'*
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1.2.2. Topochemical Reactions

Low-temperature topochemical reactions are an alternative approach to synthesizing mixed-anion
compounds. Topochemical reactions lead to thermodynamically metastable phases, which are never
obtained by standard high-temperature solid-state reactions, as a result of insertion/extraction and
ion-exchange reactions with the crystal structure of parent phases maintained.'*® In particular, the
following three examples are worthwhile to be noted. Al-Mamouri and co-workers demonstrated the
synthesis of an oxyfluoride superconductor Sr2CuO2F2+swith 7 = 46 K via topochemical fluorination
of Sr2Cu0s at 210 °C in flowing F2/N2 gas.'*® Kodenkandath and co-workers synthesized layered
oxyhalides (CuX)LaNb,O7 (X = Cl and Br) by ion-exchange reactions between RbLaNb207 and CuX>
at 325 °C."7 Kobayashi and co-workers obtained perovskite oxyhydrides BaTiOs—H; by reacting
BaTiOs and CaH: at 500-580 °C.'*® Crystal structures of compounds before and after topochemical
reactions are compared in Figure 1.10. Besides the above, a number of mixed-anion compounds have

been synthesized by low-temperature topochemical reactions.
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(@)

Sr,CuO,F,,
(b)
CuX,
(X=Cl, Br)

325 °C

RbLaNb,O, (CuX)LaNb,O,

(c)
CaH,
B

500-580 °C

BaTiO, BaTi(O,H),

Figure 1.10. Three examples of topochemical reactions to obtain metastable mixed-anion compounds
starting from stable oxide precursors: (a) from Sr2CuOs to Sr2CuO2F2+s (b) from RbLaNb207 to

(CuX)LaNb207 (X = Cl, Br), and (c) from BaTiO3 to BaTi(O,H)s.

17



Chapter 1—General Introduction

1.2.3. Titanium-Based Mixed-Anion Compounds

Titanium-based compounds have been arduously pursued because of their appealing properties.
Several examples are outlined below, underlining their respective properties.

Oxyhydrides. BaTiOs-H. catalyzes the formation of NH; in flowing H2/N2 gas at elevated
temperatures (400 °C, 5 MPa).'*® EuTiOs-.Hx is a ferromagnetic metal below 7 = 12 K, at which an
antiferromagnetic-to-ferromagnetic transition is observed.'”® La;Ti;O7-H; efficiently works as a
photoanode for water splitting hydrogen evolution.!*!

Oxynitrides. LaTiO2N is capable of producing Ha and O2 from aqueous solutions containing
sacrificial reagents under visible light.!*%153

Oxysulfides. Ln2Ti2S,0s (Ln = lanthanoids) is a visible-light-driven photocatalyst showing high
activities for both water reduction and oxidation in the presence of sacrificial reagents.'>*!**

Oxyfluorides. Rb2KTiOFs is a nonlinear optical material with a wide bandgap of 3.87 eV.!*® Min*+-
doped BaTiOFs is a red-emitting phosphor and may find application in LED backlighting'*
Pb2Ti20s.4F12 shows a temperature-independent large dielectric constant,'*® and excellent visible-
light-responsive photocatalytic activities for water splitting and CO2 reduction.**1%

Clearly, anion mixing appears favorable for the formation of visible-light absorbing materials that
have promise as photocatalysts. Incorporation of anions with lower electronegativity than that of O*
(e.g., N*~and $*) considerably raises the VBM position and thus reduces the bandgap energy without
affecting the CBM position, as shown in Figure 1.11.1°M1%2 The visible-light response in the

oxyfluoride Pb,Ti20s 4F1 2 is an exceptional case, which is associated with strong interaction between

the Pb 6s and O 2p orbitals arising from fluorine incorporation into the crystal lattice. 3>
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Figure 1.11. Schematic illustration of band gap narrowing via the incorporation of non-oxide anions.

The broken lines represent the redox potentials for hydrogen and oxygen evolution reactions.

1.2.4. Oxyfluorides

Oxyfluorides, in which a metal center is coordinated by both O*~ and F~ anions, are considered as
the most extensively studied class of mixed-anion compounds. Fluorine has the highest
electronegativity among all elements, and the F~ anion in oxyfluorides is featured with (1) a lower
ionic charge and (2) a similar ionic radius (1.33 A for F~vs 1.40 A for O%* in six-fold coordination'®?),
with respect to the O anion. These features often lead to interesting structural and physical properties
unique to oxyfluorides.

Synthesis. Regarding the synthesis of oxyfluorides, a wide variety of methods have been
developed—the details will be described in Chapter 4. Here, let the author deal with low-temperature

fluorination reactions of oxide precursors using fluorinating agents that are one of the promising
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approaches toward synthesizing novel oxyfluorides. Once a parent oxide is heated along with a

fluorinating agent, reactions proceed in the different charge compensation manners as below:; 64163

(1) one O* anion is replaced by one F~ anion with a reduction in the oxidation state of transition
metals [e.g., 4RbLaNb**207 + C2F4 — 4RbLaNb***;06F + 2CO; (ref 166), where CF4
represents the monomer unit of polytetrafluoroethylene (PTFE)];

(2) one O* anion is replaced by two F~ anions with no change in the oxidation state of transition
metals [e.g., St2Ti**O4 + CuF2 — Sr2Ti*OsF; + CuO (ref 167)]; and

(3) insertion of F~ anions into vacant or interstitial sites with an increase in the oxidation state of

transition metals [e.g., LaStMn**O4 + 0.85F> — LaSrMn*7+*O4F 7 (ref 168)].

Despite being extensively used, the reaction mechanism of these reactions is poorly understood
because the oxidation state of transition metals is sometimes maintained and sometimes altered upon
fluorination, even if similar parent phases are employed: RP-type ruthenium oxides Sr2Ru**04 and
SrsRu*,07 yield SroRu*OsF; (ref 169) and SrsRu*07F; (ref 170), respectively.

Fluorine Occupation Patterns. Arrangements of 0%~ and F~ anions in oxyfluorides range from
order (site-selective occupation) to disorder (random distribution), arising from their comparable
ionic sizes. This is in sharp contrast to oxyhalides containing larger halogens (X = CI, Br, I), in which
O%*/X -ordered low-dimensional structures are usually formed.!”"'”* Most of the O*/F--disordered
structures are found in compounds with simple structures such as rocksalt-,'’*!7” perovskite-,'”*17
and ReOs-type,'*8! all of which have only one anion site. On the other hand, more complex
oxyfluorides with multiple anion sites can adopt the O%/F~-ordered structure. To give an example,
RP-type layered oxyfluorides, such as K2NbOsF (ref 182), SroMOsF (M = Sc, Mn, Fe, Co, Ni),'33-187

and BazMOsF (M = Sc, In),'® show the preferential occupation of the F~ anions at the apical sites.
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Meanwhile, it has been reported that the degree of O*/F~ anion order in SroFeOsF (ref 185) and REOF
(RE =Y, La, Pr, Sm—Er)'3"""! is tuned by external stimuli such as pressure and temperature. Taking
into account these facts, the O>/F~ arrangement in oxyfluorides seems to depend heavily on counter
cation species (and the character of crystal structures).

In principle, it is practically impossible to distinguish between O%*  and F~ anions by diffraction
experiments because of their similar scattering powers for both X-ray and neutron. For this reason,
the structure analysis of oxyfluorides is often performed with constraints relevant to the
crystallographic positions and occupancy factors of O>~ and F~ anions.'**'** Recently, the presence
of O*/F~ anion order in Pb,Ti4O0F2 was confirmed by considering bond valence sums (BVSs) and
charge density distribution visualized by the maximum entropy method (MEM), taking into account

the different bonding nature between metal-oxygen (M-0) and metal—fluorine (AM-F) bonds.'*>1%
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1.3. Crystal Growth Techniques

1.3.1. Preface’”’

For researchers working on solid-state chemistry and physics, high-quality single crystals of target
materials are highly desirable to gain deeper insight into their crystal structures and physical
properties. In a single crystal without any imperfections, constituent atoms arrange in an orderly and
repetitive fashion, so that single crystals bring out the best performance in materials. Various physical
property measurements such as electrical resistivity are performed on single crystals with more
accuracy than polycrystalline samples composed of a huge number of crystals. This is because the
latter has randomly orientated crystallites and grain boundaries, both of which are harmful to studies
on intrinsic properties. In addition, high-quality single crystals enable us to perform structure analysis
by single-crystal X-ray diffraction, which is the most conclusive way for the structure determination
of crystalline compounds. Although many compounds can be obtained as single crystals, the best
growth method strongly depends on properties of each compound (melting point, congruent or
incongruent melting, solubility, and volatility, just to name a few). Hence, the choice of growth
methods is of capital importance.

Crystal growth techniques of materials are classified into the following three categories: solid-,
liquid-, and gas-phase reactions. From the viewpoint of growing sizable and well-developed crystals,
the liquid-phase reaction is more suitable than the others because of the ease of atomic reconstructions.

Now, several commonly-used growth methods will be briefly reviewed in the subsequent subsections.

1.3.2. Melt Growth and Solution Growth Methods’"’*
Crystal growth techniques through liquid phases fall into two classifications: (1) melt growth and

(2) solution growth methods (Figure 1.12). For the former (1), crystals are obtained by cooling their

22



Chapter 1—General Introduction

own melt, employing supercooling as a driving force of crystal growth. The Bridgman, Czochralski,
Vemeuil, and optical floating zone (OFZ) methods are typical examples of this class. These methods
can grow large-sized crystals in a short period, but cannot be applied to crystal growth of compounds
that show incongruent melting (i.e., decomposition into another solid and a liquid), phase
transformation before melting, and high volatility. |

For the latter (2), crystal growth is driven by supersaturation triggered by slow cooling and/or
evaporation of solvents. The solution growth method is further divided into three categories based on
the kinds of solvents: (i) the aqueous solution method—water; (ii) the hydrothermal method-high-
temperature/pressure water; and (iii) the flux method—molten inorganic compounds (e.g., oxides and
halides). In all cases, solvents are required to adequately dissolve solutes under specific experimental
conditions. These methods can be employed with simpler apparatus and much lower operating
temperatures than those of the melt growth methods. However, the crystal growths generally result in

relatively small crystals despite a fairly long period.

S

Figure 1.12. Overview of crystal growth techniques through liquid phases.

2
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1.3.3. Molten Salt Electrolysis

Molten salt electrolysis is another technique to grow single crystals, which belongs to the class of
the solution growth method. This technique bears relation to the flux method to some extent—but
includes redox-driven electrocrystallization by applying an electric current or voltage to the
system.'?72%2%1 In modern society, the significant industrial importance of molten salt electrolysis
meets the productions of aluminum and sodium metals. The metallic aluminum is obtained via
electrolysis of a molten mixture consisting of Al2O3 and cryolite NasAlFs (the so-called Hall-Héroult
process), where NazAlFs works as a flux to lower the melting point of Al,03 from ~2000 °C to ~1000
°C.?? The metallic sodium is produced by electrolyzing molten NaCl to which CaClz is added (the
so-called Downs process), where the electrolysis is performed at about 600 °C.**

Regarding the growth of oxide crystals by molten salt electrolysis, early works trace back over 160
years. In 1860, Scheibler obtained single crystals of tungsten bronzes Na,WO; by electrolytic

reduction of polytungstate melts.***

Afterward, numerous compounds with wide varieties of
constituent elements and structural types have been synthesized by this technique.?**** The thus-
obtained crystals sometimes exhibit new, unexpected structures as well as intriguing properties, such
as superconductivity. For titanium oxides, examples include spinel-type LiTi2O4 (ref 236), pseudo-
brookite-type CaTi2O4 (ref 237), and hollandite-type Cs,TigO1s (ref 238).

It is worth noting that, in most of the previous studies, crystal growth was performed under
constant-current conditions. One can assume that the constant-voltage mode may be advantageous
than the constant-current mode because the former leads to a more stable driving force of crystal
growth. A few researchers performed constant-voltage growth; however, little mention was made of
how applied voltage values affect the resulting phases and their chemical compositions, opening up

opportunities for further detailed investigations (see also: Chapter 2, Introduction). In addition, the

author emphasizes here that the crystal growth of oxyfluorides by molten salt electrolysis had not
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been reported, irrespective of constant-current and -voltage conditions (see also: Chapter 4,
Introduction).

In a typical experiment, starting materials containing both solute and flux components are packed
into a crucible as a reaction vessel. The reactants are heated above the melting point of the flux in an
electric furnace, and two or three inert electrodes (typically platinum wires) are inserted into the
molten mixture. The number of electrodes is based on whether the electrolysis is performed
employing two- or three-electrode configurations. Crystals will grow on the surface(s) of the cathode
and/or anode as a result of the electrolysis of the molten mixture. The duration time of the electrolysis
greatly depends on the literature; it ranges from ~30 min to several tens of hours. Compared with

other crystal growth techniques, molten salt electrolysis possesses the following advantages:'¥7-2%

(1) the technique involves oxidation or reduction of metal ions, often giving rise to compounds
with unusual valency (i.e., hole or electron doping);

(2) itis an isothermal process—temperature gradients are not needed for crystal growth;

(3) sizeable crystals sometimes grow within a relatively short period; and

(4) the crystal growth can be controlled by tuning electrochemical parameters.

Besides the advantages mentioned above, there is a possible disadvantage; crystals are obtained
with a low yield and occasionally in an aggregated form because of a limited number of nucleation
sites (i.e., electrode surfaces). Sometimes this feature hinders functional/physical research that needs
a large number of samples or well-developed crystals. Nevertheless, molten salt electrolysis is still

very useful for growing single crystals.
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1.4. Objectives of This Dissertation

As overviewed in 1.1 and 1.2, properties of both titanium oxides and oxyfluerides are largely
composition- and structure-dependent, which means, in turn, the precise manipulation of target
materials is important. Unlike tetravalent titanium oxides that we usually encounter, electron-doped
(reduced) titanium oxides are attractive because of their interesting electronic/magnetic properties
and catalytic activities arising from the d electrons doped into the crystal lattice, see 1.1.3. Meanwhile,
electron-doped titanium oxyfluorides have never been exploited well. Sizable single crystals of these
compounds are highly craved because various characterizations are feasible on single crystals with
more accuracy than polycrystalline samples, see 1.3.1. However, a possible problem emerges in
achieving the crystal growth, mainly originating from the difficulty in the reduction of stable
tetravalent titanium ions. To overcome this problem, the author had his eyes on molten salt
electrolysis in which crystal growth involving electrochemical redox reactions is included. This
technique is indeed one of the effective methods in yielding sizable single crystals of electron-doped
compounds, see 1.3.3. Additionally, crystals with finely tuned compositions and structures may be
obtained by altering both adding metal species and electrochemical parameters.

Electrochemical reactions represent the basic principle of batteries so that studies aimed at energy
applications have been arduously performed. On the other hand, it bears mentioning that this study
features a positive utilization of electrochemical reactions toward material synthesis and crystal
growth. This dissertation is therefore of significance in presenting the utility of the electrochemical
technique for the research on solid-state chemistry and physics. Such a study is relatively rare—so
the author is convinced that this dissertation will have a major impact on the community of inorganic
materials chemistry.

Of specific concerns in this dissertation are the following three points.
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(1) To grow sizable single crystals of electron-doped titanium oxides employing high-temperature
molten salt electrolysis with constantly applied voltages.

(2) To apply this technique to crystal growth of multiple-anion-containing compounds, in
particular titanium oxyfluorides.

(3) To investigate structural, electronic, magnetic, and optical properties, and photocatalytic

activities.

1.5. Outline

This dissertation consists of the following chapters. Chapter 1 describes a brief overview of
titanium oxides, mixed-anion compounds, and crystal growth techniques to build bridges between the
subsequent chapters. The objectives of the dissertation are also mentioned in this chapter.

Chapter 2 demonstrates the crystal growth of hollandite-type Cs:TigO1s employing high-
temperature molten salt electrolysis with constantly applied voltages. The structural and electronic
properties of the resultant crystals are investigated.

Chapter 3 deals with the crystal growth of titanium oxides containing lithium, sodium, and
potassium. Crystals of KxTisOi6 (hollandite-type), Na+.TisO13, and Liz+Ti307 (ramsdellite-type) are
successfully grown. The crystal structure—alkali species relationships are systematically discussed.

In Chapter 4, the crystal growth of titanium oxyfluorides is attempted. Rocksalt-type LioTi{O,F)3
(F/T1 ~ 0.15) crystals are obtained by precisely tuning the applied voltage. The structural, magnetic,
and optical properties, and photocatalytic Hz evolution activities of the resultant crystals are studied.

In Chapter 5, attempts to grow crystals of F-doped CaTiOs lead to Na/Mo/F-codoped CaTiOs

crystals. The crystals are obtained only with a narrow range of applied voltages.
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Finally, the works are concluded in Chapter 6, and suggestions for future works are given.

With some modifications, Chapters 2, 3, and 4 are written on the basis of the author’s own
publications—see the section on “Peer-Reviewed Original Papers.” According to the policy Oh theses
and dissertations of American Chemical Society (ACS) and Roval Society of Chemistry (RSC),
authors may reuse all or part of the submitted, accepted, or published work in a thesis or dissertation

that the author writes and is required to submit to satisfy the criteria of degree-granting

institutions.”*** Statements of the proper permission are described on the last page of each chapter.
Chapter 5 is an unpublished material, but will be submitted to be considered for publication in the

future.
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2.1, Abstract

Electrochemical crystal growth of hollandite-type Cs,TigO1s was examined employing high-
temperature electrolysis of a molten mixture consisting of TiO2 and Cs2MoO4 with constantly applied
voltages. The resultant needle-like crystals showed obviously distinct appearances, either optical
transparency or metallic luster, depending on the applied voltage. While the transparent crystals were
electrical insulators, the metallic luster crystals were moderately conductive, with p-T curves being
fitted with the one-dimensional (1D) VRH model, suggesting that the compound is a 1D metal

involving carrier localization.
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2.2. Introduction

Mixed-valent transition-metal compounds have attracted a great deal of attention because of their
remarkable properties and functionalities. Such compounds have been studied extensively, including
high-temperature superconducting copper oxides' and colossal magnetoresistance (CMR) manganese
oxides.” A family of alkali-metal titanium oxides, the so-called titanium bronze, is another example
displaying various interesting electronic and magnetic properties originating from mixed-valent
Ti**/Ti*". For instance, the spinel-type LiTi>O4 exhibits superconductivity with critical temperatures
as high as 7. = 13.7 K. The TiO2(B)-type Nao2sTiO2 shows a magnetic transition at 7t = 430 K,
followed by a metal—insulator transition at 7, = 630 K.* Furthermore, magnetization measurements
of hollandite-type K1.46TisO16 revealed a small spontaneous magnetization at room temperature that
suggests the appearance of weak ferromagnetism.” These oxides generally show a great deal of alkali-
metal nonstoichiometry, leading to diversity in electronic/magnetic properties as a function of the
alkali-metal content. For instance, the Li+Ti2—<O4 (x = 0-1/3) solid solution shows distinct electric
behaviors at the terminal compositions: LiTi2O4 (x = 0) is a superconductor, while Li4TisO12 (x = 1/3)
is an electrical insulator.” The control of chemical composition is thus essential for exploring novel
electronic and magnetic properties.

Titanium oxides with a hollandite-type structure are members of titanium bronze phases, with a
general formula of 4:TisO1s (x < 2) where 4 = alkali metals.>!° The crystal structure consists of
double-chains of edge-shared TiOs octahedra that are connected by sharing the corners, forming a
one-dimensional (1D) tunnel structure along the c-axis, as illustrated in Figure 2.1. The 4 ions
partially occupy the crystallographic sites inside the 1D tunnels, and the oxidation state of titanium
varies with the 4 ion content (x). The unique crystal structure of hollandite-type titanium oxides gives

rise to various ionic functionalities such as alkali-ion conductors,® electrode materials for lithium-ion
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secondary batteries (LIBs),”® and solid matrices for immobilization of radioactive cesium.’ Taking
into account possible nonstoichiometry, it is also of significance to study electronic properties of

A;TigO16 with varying alkali-metal contents (x).

Figure 2.1. Polyhedral representation of the crystal structure of hollandite-type Cs;TigO1s viewed
along the c-axis. Color scheme: Cs in turquoise, Ti in blue, and O in red. Connectivity of Cs ions is
not shown for clarity. The black box outlines the unit cell. The illustration was generated by the

VESTA software'! based on the structural model in ref 9.

Mixed-valent titanium oxides are usually synthesized involving a reduction of TiO2 under an Hz-
containing atmosphere,*>"!* but they can also be obtained by means of high-temperature
electrochemical reduction.”!? Reid and Watts reported the crystal growth of hollandite-type Cs,TisO1s

(originally represented as Cs.TisOg with x < 1) by constant-current electrolysis of a molten mixture
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of TiO2 and Cs,Ti20s at 925 °C.'2 They showed that the grown crystals were bronze-colored prisms
with an anisotropic semiconductive behavior. Later Abe et al. successfully obtained needle-like
Cs.TigO16 crystals (x = 1.35) by constant-current electrolysis of a molten mixture of TiO> and
CssMoOs at 900 °C.° Alkali-metal molybdenum oxides, 42MoQs, were used as efficient flux
materials also for the electrochemical crystal growth of manganese oxide perovskites'®!* and Cr,03."
It should be noted that the electrochemically grown Cs,TisO16 crystals are favorable for transport
measurements owing to their highly anisotropic morphology.

Although the earlier work only employed the crystal growth of Cs:TisO16 with constant-current
conditions,”!% a constant-voltage mode may be more advantageous than the constant-current mode to
precisely control the Cs content, because the former will lead to a more stable driving force of
reduction. Nevertheless, such studies have never been reported. In this chapter, the electrochemical
crystal growth of Cs,TigO16 with constant-voltage conditions has been examined. The resultant
crystals showed obviously distinct appearances when varying the applied voltage, either optical
transparency or metallic luster, suggesting different Cs contents for the two crystals. These results
demonstrate that the constant-voltage electrolysis is highly effective to grow crystals with controlled
chemical compositions. To the best of the author’s knowledge, there were no experimental reports on
the growth of transparent crystals of hollandite-type mixed-valent titanium oxides, which could be

noteworthy in the research field of optoelectronics.
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2.3. Experimental Section

2.3.1. Materials

TiO2 (anatase, 99%, Kojundo Chemical Laboratory), Cs2COs3 (99.9%, Sigma-Aldrich), and MoOs
(99.98%, Kojundo Chemical Laboratory) were used as received without further purification.
Cs2Mo0Os was prepared by a conventional solid-state reaction technique. A powder mixture of Cs2CO3
and MoOj3 with the same molar ratio was put into an alumina crucible and calcined at 600 °C for 12
h in air. Because of its heavily hygroscopic nature, the product was kept in a desiccator as soon as

possible.

2.3.2. Electrochemical Crystal Growth

Single crystalline samples of Cs,TisO16 were grown by high-temperature constant-voltage (i.e.,
potentiometric) electrolysis of the molten mixture of TiOz and Cs2MoO4. An alumina crucible (30
cm? in volume) was used as a reaction vessel and filled with 4.0 g of the Cs;MoQ4 powder. Three Pt
wires (0.5 mm in diameter) connected to an external potentiostat (Hokuto Denko: HZ-5000) were
introduced into the crucible in a box furnace as the working, counter, and pseudoreference electrodes
(WE, CE, and PRE, respectively). A 0.10 g powder of TiO2 was put in the vicinity of CE to prevent
undissolved TiO2 from being incorporated into grown crystals on WE; PRE and WE were placed near

one another. Schematic illustrations of crystal growth equipment are shown in Figure 2.2.
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Figure 2.2. Schematic illustrations of equipment for high-temperature molten salt electrolysis, where
(a) shows the overall view of the experimental setup and (b) indicates the arrangements of the

electrodes and reactants in the crucible.

Cyclic voltammetry (CV) was performed to determine applied voltages for the subsequent
constant-voltage electrolysis. Voltage scan range and scan rate were —2.0 V < V"< 0 V (vs Pt PRE)
and 100 mV s™', respectively. Electrochemical reduction of TiO2 at 1050 °C for 5 h was carried out
in air with different applied voltages. Based on the result of CV, applied voltage values were set at I
=-0.6, 1.0, —1.4, and —1.8 V. At the end of each run, the Pt electrodes were taken out from the
furnace to be rapidly cooled to room temperature. Electrolysis for 5 h resulted in deposition of needle-
like crystals on WE. The tip part of WE was immersed in distilled water for overnight to dissolve the

Cs2Mo0;4 residue and thereby remove the crystals from WE.
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2.3.3. Characterization

The resultant crystals were observed by a digital microscope (Keyence: VHX-5000) and field-
emission scanning electron microscope (FE-SEM; Hitachi: SU-8010). The chemical composition of
the crystals was analyzed by means of energy dispersive X-ray spectroscopy (EDX; Horiba: EMAX-
2770) using ground crystals. The Cs/Ti cationic ratios were determined for the crystals grown with
= —-0.6 V and —1.0 V by inductively coupled plasma-mass spectroscopy (ICP-MS; PerkinElmer:
ELAN DRC II). The valence state of titanium was investigated by means of X-ray photoelectron
spectroscopy (XPS; Ulvac-Phi: Model 5500; Mg K« radiation). Phase identification of the grown
crystals was conducted using a powder X-ray diffractometer (Rigaku: Ultima IV Protectus; Cu K«
radiation). The grown crystals were evenly spread on a “non-reflection” sample holder made of an
obliquely cut silicon crystal, and analyzed in a 2 @range of 10°-90° with a step size of 0.02° (operating
condition: 40 kV, 40 mA).

Single-crystal X-ray diffraction (SCXRD) was carried out utilizing a four-circle diffractometer
(Rigaku: Saturn70; Mo K« radiation). A cylindrical crystal of approximate dimensions 0.03 x 0.03 x
0.13 mm® was selected for data collection. The intensity data were collected by the @ scan method at
113 K (operating condition: 50 kV, 60 mA). The crystal structure was solved by direct methods
(SHELXS97) and refined by full-matrix least-squares calculations on F? using SHELXL97
program.'® All the atoms in the crystal lattice were refined anisotropically. Electrical resistivity (o)
measurements were performed employing a four-probe technique (PPMS; Quantum Design) in a

temperature range of 2-300 K.
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2.4. Results and Discussion

2.4.1. Crystal Growth

Figure 2.3 shows a cyclic voltammogram of the molten mixture of TiO2 and Cs2MoO4 at 1050 °C.
When the applied voltage reaches approximately = —0.6 V in the forward (cathodic) sweep, a small
current with negative sign arises, indicating that a reduction reaction of TiO; takes place below —0.6
V. Then, the negative current starts to increase rapidly below —1.0 V and reaches —50 mA at -2.0 V.
In the backward (anodic) sweep, the negative current steadily decreases and converges to 0 mA when
the applied negative voltage is decreased. Clear oxidation peaks are not observed, presumably
because of high electrochemical stability of the deposited crystals. The redox reactions at WE and

CE can be described with the following formulas:

WE: 8TiO; + xCs* + xe~ — Cs;TisOs (1)

CE: x/2Mo04* — xe™ -+ x/2Mo0Q; + x/40> )

Therefore, the overall reaction for the Cs;TisO16 formation is represented as

Overall: 8TiO2 + x/2Cs2Mo004 — Cs:TigO16 + X/2M00;3 + x/402 (3)
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Current / mA

40 - scan rate (v): 100 mv s~
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Potential / V vs Pt PRE

Figure 2.3. Cyclic voltammogram of the molten mixture of TiO2 and Cs2Mo0Q4 at 1050 °C in air. This

plot was recorded at v = 100 mV s™' with 0.5 mm-diameter Pt wire working, counter, and

pseudoreference electrodes. Arrows mark the potential-scan direction. The horizontal broken line is

a guide of 0 mA.

Electrochemical reduction reactions with constant-voltage conditions were conducted. Taking into
account the result of CV, the applied voltages were set at onset (0.6 V), moderate (—1.0 V), and high
(—1.4 and —1.8 V) values. The shape of the resultant crystals is highly anisotropic, with the maximum
length of ~2 mm (Figure 2.4). Noticeably, the appearance of the crystals depends on the applied
voltage: the crystals are brownish with optical transparency for "= —0.6 V, while they show metallic
luster for '=—-1.0, —1.4, and —1.8 V. It should be noted that attempts with the constant-current mode
always resulted in the growth of metallic luster crystals (Figure S2.1 of thé Supporting Information),

and optically transparent crystals were never obtained, consistent with the previous reports.”!?
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Figure 2.4. Optical micrographs of the crystals grown with the different applied voltages V' = —0.6,

-1.0,-14,and -1.8 V.

The distinct appearances most likely originate from different electronic properties. In fact, electron
irradiation during SEM observations led to a severe charging effect only for the crystals grown with
V'=-0.6'V, as shown in Figure S2.2. This feature implies that the transparent crystals are electrically
insulating, and hence the Cs content (x) would be lower than that in the metallic luster crystals. The
x values estimated from EDX data were 1.4 + 0.2 for both of the transparent and metallic luster
crystals (Figure S2.3): the Cs/Ti ratio seems to be similar and cannot be distinguished. The Cs/Ti
ratios of the crystals grown with /= —0.6 V and —1.0 V were also analyzed by ICP-MS (see
Supporting Information for experimental details). The x values are 1.3-1.4 for both of the V'=-0.6 V
and —1.0 V crystals (Table S2.1): again, the Cs content cannot be distinguished within the accuracy
of the chemical analyses.

The fact that the Cs/Ti ratios are close to each other between the optically transparent and metallic
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luster crystals is worthy of attention. This feature is not surprising, as it is widely known that
electronic properties of strongly correlated electron systems are often very sensitive to the carrier
concentration. To investigate the valence state of titanium in the grown crystals, XPS measurements
were performed. Experimental details are given in the Supporting Information. Ti 2p core-level
spectra of the Cs,TigO16 crystals evidenced a negative chemical shift with respect to the TiO»
reference (Figure S2.4). In addition, spectral deconvolution analysis indicated that each of the Ti 2p3/
and 2p1/2 peaks can be fitted with two peaks, and the component at lower binding energies (£B) gets
enhanced as the negative voltage during the electrolysis is increased. Although the negative chemical
shifts as well as the low-Es component is consistent with the existence of reduced Ti species,'” the
author notes that this XPS result is preliminary, and further studies will be necessary to quantitatively
discuss the valence state of titanium in the Cs,TigO1¢ crystals.

Powder X-ray diffraction (PXRD) patterns for the as-grown (i.e., nonpulverized) crystals are
presented in Figure 2.5. While all the patterns exhibit common features typically seen for hollandite-
type oxides, diffraction peaks with 440 are only seen, reflecting highly anisotropic morphology with
the longitudinal direction along the c-axis. These peaks are readily indexed based on a tetragonal unit
cell, resulting in lattice parameters close to the literature values (a = 10.2866 A and ¢ = 2.9669 A (ref
9)). Systematic changes in the lattice parameters expected for the sample series are not observed,
probably because of poor accuracy of the diffraction data caused by misalignment of crystals mounted
on the sample holder. For the Cs;TisO1s crystals, powder patterns were hardly obtained because the

crystals were subject to mechanical fragility and easily amorphized when ground intensely.
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Figure 2.5. PXRD patterns for the nonpulverized crystals grown with '=-0.6, -1.0, -1.4, and —1.8
V. The simulated pattern for Cs1.35TigsO16 (ICSD #172224) was taken from the ICSD database. Arrows

indicate unidentified reflections.

Some peaks are still unknown (marked with arrows), assignable to neither the hollandite-related
structures nor the starting materials. Carter and Withers reported the appearance of extra reflections
originating from an incommensurate sublattice in barium titanium oxide hollandites Ba.M, Tis-,O16
(M =Mg, Mn, Fe, Co, Ni, and Zn).'%!° While the possibility that the extra reflections come from the
Cs sublattice cannot be ruled out, the author tentatively concludes that this possibility is rather
unlikely. The reasons are as follows: (1) There are no satellite reflections in the SCXRD pattern for
the J"=-1.0 V crystal. (2) The CsxTisO1¢ crystals were relatively rapidly cooled to room temperature
at the last process of the crystal growth. It has been recognized that the long-range order of the tunnel-
site ions is smeared or disrupted in rapidly cooled samples, resulting in satellite reflections becoming

weaker and broader.'”
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2.4.2. Structure Refinements and Description

Structural refinements for the grown crystals were attempted based on the SCXRD data. The
crystallographic data, refinement details, and atomic coordinates for the metallic luster crystal grown
with /'=-1.0 V are listed in Tables 2.1-2.3. Meanwhile, refinements of the transparent crystals (V' =
—0.6 V) were unsuccessful, due to the inferior quality of the grown crystals (it should be noted that
the analysis is severely hindered even with tiny crystalline defects). The diffraction pattern for the J’
= —1.0 V crystal is indexed based on a tetragonal unit cell with /4/m space group, and the lattice
parameters are determined to be a = 10.2323(14) A and ¢ = 2.9514(6) A. These values are somewhat
smaller than those of polycrystalline Csi.36:3)TisO16 refined with neutron diffraction data at 100 K:?!

a=10.2705(2) A and ¢ = 2.96469(5) A.

Table 2.1. Crystallographic data and refinement details for Cs122TisO1s.

Crystallographic data:

formula Cs1.22Tis016

formula weight 801.35

crystal system tetragonal

space group I4/m (no. 87)

alA 10.2323(14)

c/A 2.9514(6)

VA3 309.01(9)

Z 1

Deate / g em™ 4.306

dri-o/ A (2x) 1.947(3)
2.017(5)

dri-o2/ A (2x) 1.974(3)
1.938(5)

62



Chapter 2—Hollandite-Type CsxIisQO;s

Table 2.1. continued.

“BVS for Ti

Data collection:

temperature / K

crystal dimensions / mm?

4 (Mo Ka)/ mm™!

scan mode

maximum 26/ deg.

index ranges

no. of measured reflections

no. of independent reflections

no. of observed reflections with 7> 2o (J)

Rint

Refinement:

calculated weights

final R indices [/> 20 (1))
R indices (all data)®
goodness-of-fit (GOF)

no. of refined parameters

largest difference peak and hole / e A=

+3.998

113

0.03 x0.03 x0.13

8.529

0]

60.8
-12<h<14,-14<k<14,-4<]<3
1293

256

207

0.1043

w = 1/[cX(Fo?) + (0.0469P)%]
where P = (Fo* + 2F3)/3

Ry =0.0499, wR, = 0.1024
R1=0.0641, wR2 =0.1120
1.091

24

1.26,-1.26

“The BVS parameters used as follows: Ti*-0* (/o = 1.815)%

bRy = 3| Fol—|Fol/Z|Fol, wRa = [Ew(Fot-F 2 Ew(Fo)2] 2

63



Chapter 2—Hollandite-Type Cs:TisQO;6

Table 2.2. Atomic coordinates, equivalent isotropic displacement parameters (Ueq) and occupancy

factors (g) for Cs1.2:TisO1s.

atom site g % y z Ueq ! A%@
Csl 2a 0.11 1.0000 0 0 0.01(4)
Cs2 de 0.25 1.0000 0 ~0.10(2) 0.008(5)
Ti 8h 1.0 133382(12)  0.15034(12) 0 0.0075(4)
01 8h 1.0 1.2099(4) 0.1574(4) ~0.5000 0.0034(9)
02 8h 1.0 1.3337(4) -0.0391(4) 0 0.0046(10)

“Ueq 1s defined as one-third of the trace of the orthogonalized Ujj tensor.

Table 2.3. Atomic anisotropic displacement parameters for Cs1.22TisO1s.

atom Un Uz Uss Uz Uz Uz
Csl  0008(10)  0.008(10)  0.01(11) 0 0 0

Cs2 0.005(2) 0.005(2) 0.014(18) 0 0 0
Ti 0.0080(7)  0.0068(7)  0.0077(8)  0.0014(4) 0 0

01 0.0052)  0.003(2) 0.0032)  0.0011(16) 0 0

02 0.003(2)  0.006(2)  0.0042)  —0.0009(16) 0 0
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The local coordination environments around the Ti and Cs atoms are shown in Figure 2.6. The Ti
atom is coordinated by six O atoms to form a distorted octahedron (Figure 2.6a). The Cs position was
refined assuming a split-site model, because a preliminary analysis locating Cs atoms only on the
symmetrical 2a position at (1, 0, 0) led to large residual electron density around this site. This can be
interpreted as the presence of static displacement of Cs atoms, and it may be reasonable to refine the
data setting a less-symmetrical site (assigned as “4e”) at (1, 0, z) in addition to the 2« site (Figure
2.6b). The refinement with this split-site model indeed improved the goodness-of-fit factor. The
occupancy factors (g) of Cs atoms were converged to 0.11 and 0.25 for the Cs1 (2a)- and Cs2 (4e)-
sites, respectively. From the refined occupancy factors of the constituent elements, the chemical
composition can be written as Cs1.22TisO16. This implies that Cs atoms are present at a 30% probability
within the 1D cavity randomly occupying either symmetrical or less-symmetrical site. As shown in
Table 2.3, the atomic displacement parameters for the Cs sites are highly anisotropic along the c-axis,
that is, larger value for Uss than Ui and Uz, Similar features were reported for other hollandite-type
oxides, including K2RugO1¢ (ref 22), K2VsOie (ref 23), KzlrsOi6 (ref 24), and Csy.1TisO16 (ref 25), in
which unusual 4-site occupancies™ or competitions between atomic size and bond valence were taken

into account.?*
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3.438(5) A

Figure 2.6. Local coordination environments around the (a) Ti and (b) Cs cations in the Cs122TigO1s
hollandite structure. The color scheme is the same as Figure 2.1. The Ti and Cs cations are coordinated
by six and twelve O anions, respectively, forming a distorted octahedron and an octadecahedron. The
Cs cation is disordered over two positions, Cs1 (2¢) and Cs2 (4e), along the c-axis. For the image (b),
the interatomic distances of the Cs1-0O1 and Cs1-O2 bonds are shown and those of the Cs2-O1 and
Cs2-02 bonds are omitted. The occupancy factors () of the Csl and Cs2 sites are shown in red and

blue, respectively.
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2.4.3. Electronic Properties

In Figure 2.7, electrical resistivity (p) along the c-axis is plotted as a function of temperature for
the crystals grown with /"= -1.0 V and —1.8 V. The resistivity data for the ’=-0.6 Vand -1.4V
crystals were less reliable and hence excluded from the figure, because of quite low bulk conductivity
for the former, and non-ohmic contacts of gold electrodes attached on a too small crystal for the latter.
As the temperature is lowered, the resistivity values for the = -1.0 V and —1.8 V crystals are
enhanced and eventually unable to be measured at approximately 100 and 75 K, respectively. Both
crystals show a semiconducting behavior with relatively small resistivity values of 10>-10° Q m at
room temperature. The magnitude of resistivity is lower for the J'=—1.8 V crystal than the /'=-1.0

V crystal, strongly suggesting that the former is more electron-doped than the latter.
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Figure 2.7. Temperature dependence of electrical resistivity (p) for the crystals grown with J'=-1.0
V (empty black circles) and —1.8 V (filled red circles). Inset shows a schematic illustration of the

electrical resistivity measurements with a four-probe configuration.
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The p-T curves do not follow the Arrhenius law (Figure 2.8a), but they are nicely fitted with the
variable range hopping (VRH) model (Figure 2.8b—d). The VRH model describes electrical
conduction mechanisms where the periodicity of the crystal lattice is disturbed by randomness and/or
defects, and electron conduction takes place via tunneling effects, which leads to the following

equation:?%?’

pocexpl(TW/T)*V]  (4)

where 7o and 7 denote a characteristic temperature and the dimensionality, respectively. Least-squares
calculations of the p-T curves were carried out for » =1, 2, and 3, and the calculation with 7 = 1 gave
the best fit for the both crystals (Figure 2.8b). This result indicates that the crystals are likely to be
so-called “disordered metals” containing 1D-tunnel structures occupied by Cs atoms. Moetakef et al.
recently reported crystal growth and density functional theory (DFT) study of a related hollandite,
K. TisO1s (x = 1.4).1%%8 Their calculations indicated that a finite density of states (DOS) exists at the
Fermi level, consistent with the metallic character of the /"=—-1.0 Vand —1.8 V crystals. The random
Cs distribution as revealed by the structural analysis is the possible source of the disturbed periodic
potential. The 7o values are 13.4 and 11.6 K for the /"= —-1.0 V and —1.8 V crystals, respectively.
Because the 7o value is related to a degree of localization, the smaller 7o value for the crystal with 7
= —1.8 V is consistent with the fact that the crystals grown with larger negative voltages tend to be

more carrier-doped because of stronger reductive conditions.
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Figure 2.8. Ln pvs T7V™! (n=0, 1, 2, 3) curves for the crystals grown with 7= —1.0 V (empty black

circles) and —1.8 V (filled red circles) plotted based on the (a) Arrhenius (7 = 0), (b) 1D VRH (n= 1),

(c) 2D VRH (n = 2), and (d) 3D VRH (n = 3) models. The best fit is obtained in (b).
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Finally, the author comments on the optical property of hollandite-type Cs,TigO16 and its pbssible
applications to optoelectronics. A recent theoretical work by Buckeridge et al. revealed that the band
structures of TiO2 can be tuned largely by varying the local coordination environments of Ti and 0.%
Among eight known polymorphs, hollandite TiO2 may be noteworthy because the hollandite has the
largest work function together with the large band gap. Such a characteristic feature makes this
polymorph a potential transparent conducting oxide (TCO) used for photovoltaic devices as well as
short-wavelength light emitting diodes.*® The transparent Cs.TisO16 crystals obtained herein are too
resistive at this moment, but optimally doped Cs.TisO16 crystals may be noteworthy as promising

TCOs, if further electron doping is possible while retaining their transparency.

2.5. Concluding Remarks

This chapter demonstrated the electrochemical crystal growth of hollandite-type Cs,TisO1s
employing high-temperature electrolysis of the molten mixture of TiO2 and Cs2MoO4 with constant-
voltage conditions. Needle-like single crystals were successfully grown with different applied
voltages of V= -0.6, -1.0, 1.4, and —1.8 V. Importantly, the resultant crystals showed obviously
distinct appearances and electronic properties: while the crystals grown with V' = —0.6 V were
electrically insulating with optical transparency, the crystals with ' = 1.0, —1.4, and —1.8 V were
moderately conductive with metallic luster. As far as the author knows, there are no experimental
reports on the growth of transparent crystals of hollandite-type mixed-valent titanium oxides, which
could be noteworthy in the research field of optoelectronics.

The author emphasizes that the Cs.TisO1s crystals grown with constant-voltage conditions are
chemically well-controlled and sufficiently large in size for physical property measurements. This

technique may be applicable to crystal growth of various transition metal oxide systems, and the
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resultant crystals are valuable for systematic studies on their optical/electronic properties in relation

to the chemical composition.

Accession Codes

CCDC 1545319 contains the supplementary crystallographic data for this chapter. These data can be
obtained free of charge via www.ccdc.camac.uk/data request/cif, or by emailing
data_request@ccdc.cam.acuk, or by contacting The Cambridge Crystallographic Data Centre, 12

Union Road, Cambridge CB2 1EZ, UK, fax: +44 1223 336033,

Rights and Permission

This chapter is based on ref 1 in the list of peer-reviewed original papers. Reprinted (adapted) with
permission from Cryst. Growth Des. 2017, 17, 11, 5691-5696. Copyright 2017 American Chemical

Society.
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Titanates:

3.1. Abstract

Single crystals of lithium, sodium, and potassium titanates were grown with high-temperature
constant-voltage electrolysis of TiOz with 42MoQ4 (4 = Li, Na, and K) as melts. Using the potassium-
containing melt, needle-like crystals of hollandite-type K. TizO16 with a maximum length of ~1 mm
were successfully obtained. On the cther hand, needle-like crystals of Naz+.TisO13 and ramsdellite-
type Liz+ 11307 with a maximum length of ~3 mm were grown when the sodium- and lithium-
containing melts were employed, respectively. This chapter demonstraies that the electrochemical
crystal growth is favorable to obtain titanates with various one-dimensional tunnel structures upon
varying the alkali-metal elements. The diversity in structural types of the resultant single crystals is

reasonably explained in terms of the ionic size of the alkali metals incorporated.
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3.2. Introduction

Titanium dioxide (TiO2) is an important material because of its large potential for practical
applications in pigments,' water splitting photocatalysts,” and dye-sensitized solar cells (DSCs).?
TiO2 has numerous polymorphs, such as anatase (space group [4i/amd), rutile (P4/mnm), brookite
(Pbca), TiO2(B) (C2/m), a-PbO2 (Pbcn), ramsdellite (Pbhnm), hollandite (/4/m), and baddeleyite
(P2:/c). Among these polymorphs, rutile, anatase, brookite, and TiO2(B) are naturally-occurring
phases, but the others are synthetic ones.* A recent theoretical study by Buckeridge et al. indicated
that the band structures of TiOz can be tuned largely by varying the local coordination environments
of Ti and O.° For instance, hollandite-type TiO; is noteworthy because hollandite has the largest work
function together with a large band gap of 3.86 eV. Such a characteristic feature makes this polymorph
a potential transparent conducting oxide (TCO) applicable to photovoltaic devices as well as short-
wavelength light emitting diodes.® Polymorph engineering of TiO2 thus offers significant and novel
functionalities. Incorporation of alkali-metal ions in the crystal lattice of TiO2 seems to be one of the
most effective routes to obtain TiO2 polymorphs, because such cations with different ionic sizes have
large impacts on the atomic configuration in the crystal lattice. Because incorporated alkali-metal
ions are weakly bound to the TiO2 framework, TiO2 polymorphs may be obtained accordingly by
means of topotactic alkali-metal extraction.

Alkali-metal titanates containing reduced Ti species also display various interesting electronic and
magnetic properties originating from mixed-valent Ti**/Ti*. For instance, LiTi2O4 is known to be the
only spinel-structured oxide superconductor with 7 ~ 13.7 K, which was first discovered by Johnston
et al.%” Wadsley-bronze, Nao2sTiO, with a TiO2(B)-based structure, shows a magnetic transi tion at 7¢
= 430 K, followed by a metal-insulator transition at 7, = 630 K.* Furthermore, magnetization

measurements of hollandite-type K1.46TisO16 revealed small spontaneous magnetization at room
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temperature suggesting the appearance of weak ferromagnetism.” These oxides generally show a great
deal of alkali-metal nonstoichiometry, leading to diversity in electronic/magnetic properties as a
function of the alkali-metal content.

Mixed-valent alkali-metal titanates are usually accessible via reduction of TiO2 under a Hz-
containing atmosphere.®®*1° Meanwhile, several researchers reported the crystal growth of mixed-
valent alkali-metal titanates employing high-temperature electrolysis of molten salts. Single crystals
of the superconducting spinel LiTi2O4 were successfully grown by constant-current electrolysis with
a mixture of NaBOg, LiBO», NaF, and TiOz at 780 °C!! or with a mixture of Na2B4O7, LiF, Li2COs3,
and TiOz at 1000 °C.'? Single crystals of hollandite-type Cs,TisO16 were grown by constant-current
electrolysis of a molten mixture of TiO2 and Cs2Ti20s at 925 °C™ or TiO2 and Cs2MoOs at 900 °C. 1

Recently, the author achieved crystal growth of Cs.TigO1s with controlled electronic properties by
employing constant-voltage electrolysis of a TiO2/Cs;MoQO4 mixture.'> The author anticipated that
the constant-voltage mode is more advantageous than the constant-current mode to precisely control
the carrier content owing to the more stable driving force of reduction for the former. Consequently,
needle-like Cs:TisOq¢ crystals with distinct appearances, either optical transparency or metallic luster,
were successfully obtained.!* While the transparent crystals were electrical insulators, the metallic
luster crystals were moderately conductive, suggesting that the carrier content in the transparent
crystals would be lower than that in the metallic luster crystals. It is noteworthy that the transparent
Cs;TigO16 crystals were never grown by means of any other techniques, emphasizing the advantage
of the constant-voltage electrolysis.

Given the fact that hollandite Cs.TisO1s crystals with controlled electronic properties are formed
with the electrolysis of the molten TiO2/Cs2MoO4 mixture, crystal growth of titanates with different
alkali-metal-containing melts are also intriguing to explore novel electronic functionalities. In this

chapter, the electrochemical crystal growth of lithium, sodium, and potassium titanates under

77



Chapter 3—Lithium, Sodium, and Potassium Titanates

constant-voltage conditions has been examined starting from a molten mixture of TiO2 and 42MoO4
(A =1Li, Na, and K) to discuss the influence of the ionic size of the alkali-metal elements on the crystal
structure. Needle-like single crystals of K, TieO1s (hollandite-type), NazTisO13, and Lizw 11307
(ramsdellite-type) were successfully grown. Remarkably, each crystal lattice is featured with a one-
dimensional tunnel structure. The diversity in structural types is reasonably explained in terms of the

ionic size of alkali metals incorporated.
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3.3. Experimental Section

3.3.1. Materials

TiO2 (anatase, 99%, Kojundo Chemical Laboratory), Li2COs (99.99%, Kojundo Chemical
Laboratory), Na2CO3 (99.8%, FUJIFILM Wako Pure Chemical), K2COs (99.5%, FUJIFILM Wako
Pure Chemical), and MoO3 (99.98%, Kojundo Chemical Laboratory) were used as received without
further purification. A2Mo004 (4 = Li, Na, or K) was prepared by a conventional solid-state reaction
technique using MoQ;3 and the corresponding carb oﬁate, Li2CO3, NaxCOs, or K2COs. Stoichiometric
amounts of these reagents were thoroughly ground in an agate mortar. Subsequently, the mixture was
transferred into a 3 mol % yttria-stabilized zirconia (3YSZ) crucible and calcined at 600 °C for 12 h

in air. After calcination, phase-pure white (colorless) A2MoO4 powder was obtained.

3.3.2. Electrochemical Crystal Growth

Single crystals of lithium, sodium, and potassium titanates were grown with high-temperature
constant-voltage (i.e., potentiometric) electrolysis of a molten mixture of TiO2 and 42Mo0Q4 (4 = Li,
Na, or K), employing a method similar to that reported previously.!> A 4.0 g powder of 42MoOQ;4 was
loaded into a Pt crucible (30 cm® in volume) or a 3YSZ crucible (20 cm?) as a reaction vessel. To
perform high-temperature electrolysis with a three-electrode configuration, three Pt wires (0.5 mm in
diameter) connected to an external potentiostat (Hokuto Denko: HZ-5000) were introduced into the
crucible in a box or vertical tubular furnace. The pseudoreference and working electrodes (PRE and
WE, respectively) were placed near one another. A 0.10 g powder of TiO2 was put in the vicinity of
the counter electrode (CE) to prevent undissolved TiO2 from being incorporated into grown crystals

on WE.

Cyclic voltammetry (CV) was performed to determine the applied voltages for the subsequent
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constant-voltage electrolysis. The voltage scan range and scan rate were —1.2 V < V<0 V (vs Pt PRE)
and 100 mV s7!, respectively. It should be noted that the target compounds containing reduced
titanium species (Ti** ions) will form at negative voltages with respect to PRE. The electrolysis was
carried out at 1050 °C for 5 h in air. For sodium titanates, the crystal growth was also performed in
flowing Ar gas. The furnace was first heated to 1050 °C at a heating rate of 7 °C min™' and then held
for 30 min at this temperature to stabilize the melt prior to the electrolysis. Applied voltage values
were set on the basis of the CV data: V'=-0.6 V and —0.85 V for the growth of potassium titanates;
V=-0.6,-0.7, and —0.75 V for sedium titanates; and "= -04, 0.6, —0.65, and —0.7 V for lithium
titanates. At the end of each run, the applied voltage was turned off, and the Pt electrodes were
immediately taken out from the furnace to be rapidly cooled to room temperature. Electrolysis for 5
h resulted in crystal growth at the surface of WE, while no crystals grew on CE. The tip part of WE
was immersed in distilled water at room temperature for overnight to dissolve the solidified 42MoQ4
residues, and thereby remove the crystals from WE, Finally, the isolated crystals were washed

thoroughly with distilled water and ethanol several times.

3.3.3. Characterization

Powder X-ray Diffraction (PXRD}. Phase identification of the grown crystals was conducted
using a powder X-ray diffractometer (Rigaku: Ultima IV Protectus; Cu K e radiation; 4= 1.5418 A).
The as-grown crystals were evenly spread on a “non-reflection” sample holder made of an cbliquely-
cut silicon crystal and analyzed in a 2 @range of 10°-90° with a step size of 0.02° (operating condition:
40 kV, 40 mA).

Chemical Analyses. The chemical composition of the crystals was analyzed with a field-emission
scanning electron microscope (FE-SEM; Hitachi: SU-8010) equipped with an energy dispersive X-

ray spectroscopy analyzer (EDX; Horiba: EMAX-2770). The cationic compositions were determined
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by inductively coupled plasma-atomic emission spectroscopy (ICP-AES; Shimadzu: ICPE-9820).
Typically, the as-grown crystals were dissolved in a hot acidic solution of H2SO4 and HNO3 to prepare
the sample solution.

Ultraviolet—Visible-Near Infrared (UV-Vis—NIR) Diffuse Reflectance Spectroscopy. Diffuse
reflectance spectra were acquired for the lithium and sodium titanate crystals. The measurements
were carried out in a wavelength window of 200-1000 nm using a UV-vis—NIR spectrophotometer
(Shimadzu: UV-2600 or JASCO: V-770) equipped with an integrating sphere. The reflectance
spectrum of a BaSO4 powder was used as a baseline. The reflectance data were converted to
absorbance data using the Kubelka—Munk function,'® F(Rw) = (1-Rw)*/2R», where R« is the relative
reflectance (Rample/RBaso, ). Lithium- and sodium-stoichiometric titanium compounds, Li2TizO7 and
Na2TicO13, were used as references. Phase-pure samples were synthesized by the solid-state reaction
method; details of the syntheses and PXRD patterns are given in Figures S3.1 and S3.2 of the

Supporting Information.
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3.4. Results and Discussion

3.4.1. Electrochemical Measurements of Molten Salts

Figure 3.1 shows the cyclic voltammograms of the molten mixtures of (a) TiO2 and K2MoOy, (b)
TiO2 and NaxMoOy, and (c) TiO2 and Li2MoO4 at 1050 °C. In Figure 3.1a, when the applied voltage
reaches approximately /"= —0.6 V in the forward (cathodic) sweep, a small current with a negative
sign arises, indicating that reduction of TiO; starts at —0.6 V. The negative current then increases
rapidly below —0.95 V with increasing negative voltage through a small peak at about —0.84 V, and
reaches —6.4 mA at —1.2 V. In the backward (anodic) sweep, the negative current steadily decreases
and overshoots the horizontal axis at —0.97 V. Then, the positive current forms an oxidation peak at
about —0.85 V followed by a small hump at about —0.73 V, and eventually converges to 0 mA. The
wide hysteresis suggests that crystals deposited on WE in the forward sweep are electrochemically
oxidized. A similar hysteresis is observed in the TiO2/4:2Mo00Q4 (4 = Li and Na) melts, as shown in
Figure 3.1b and c. Unlike the CV result for the TiO2/Cs:2MoO4 melt (ref 15), oxidation peaks are
clearly observed in the backward sweep in the above three experiments. This suggests that crystals
grown from the TiO2/42Mo0O4 melts with 4 = Li, Na, and K have less electrochemical stability than
the Cs,T13O16 crystal. With the decreasing ionic size of the alkali metals, both the reduction/oxidation
peaks shift to the positive side with respect to those observed for the TiO2/K;MoQO4 melt. This
tendency suggests that TiO> is reduced more easily in the melts with smaller alkali metals, and the
grown crystals are less stable against electrochemical oxidation. The largest current is observed in the

TiO2/Li2M0QO4 melt, probably originating from the high Li* mobility.
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3.4.2. K-Ti-O System

3.4.2.1. Crystal Growth

Electrochemical crystal growth of potassium titanates with different constant-voltage values of
=—0.6 Vand —0.85 V was conducted. The shape of the resultant K-Ti—O crystals is highly anisotropic,
with a maximum length of approximately 1 mm (Figure 3.2). The author has noticed that needle-like
crystals always grow in a direction perpendicular to the surface of WE, indicating that the longitudinal
direction of the needle-like crystals corresponds to the electric field direction. Meanwhile, attempts
without applying the electric field resulted in no sizable crystals on the Pt electrodes even with the
same temperature sequence. This experimental fact obviously indicates that the electric field acts as
a driving force of the crystal growth. Similar to the case of Cs—Ti—O, " the appearance of the crystals
strongly depends on the applied voltage: the crystals are brownish with optical transparency for J' =
—0.6 V, while they are black for /'=—0.85 V. We also examined the crystal growth at }’=-0.9 V and
—1.0 V, but these attempts were unsuccessful, due to the breakdown of WE underneath the melt.

Possible K TigO16 formation reactions can be described with the following formulas:

WE: 8TiO2 + xK* + xe™ — K;TigO16 (D)
CE: x/2Mo04* — xe~ + x/2Mo03 + x/40; )
Overall: 8TiO2 + x/2K2MoO4 — K. TigO16 + x/2M003 + x/402 (3)
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V=_0.85V

Figure 3.2. Optical micrographs of the resultant K-Ti—O crystals grown with different applied

voltages J'=-0.6 Vand -0.85 V.

Also, it should be noted that transparent needle-like K2+.TisO13 crystals as by-products always grew
on the upper part of WE (Figure S3.3). A possible growth mechanism will be discussed in 3.4.3.1.

The PXRD patterns of the as-grown (i.e., nonpulverized) K-Ti—O crystals are presented in Figure
3.3. Powder patterns for the K-Ti—O crystals were hardly obtained because the crystals were easily
amorphized when ground intensely. Most of the reflections are indexable to a tetragonal unit cell of
hollandite-type K TisO16 belonging to the /4/m space group (K1‘3I5Ti8016, ICDD PDF 47-0690). The
crystal of K, TigO16 is isomorphic to the Cs counterpart, consisting of double-chains of edge-shared
TiOs octahedra that are connected by sharing the corners, forming a one-dimensional (1D) tunnel
structure along the c-axis, see Figure 3.4. The 40 reflections are preferentially seen in the PXRD
profile; the longitudinal direction of the needle-like crystals surely corresponds to the c-axis. The a-
parameters calculated from the d-spacing of the lattice plane (600) are 10.12 A and 10.16 A for the
=—0.6 V and —0.85 V crystals, respectively, being somewhat smaller than the literature values (a =

10.188(2) A and ¢ = 2.9661(7) A (ref 18)). The a-parameter of K,TisO1s tends to increase as the K
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content (x) increases.'” 2 Therefore, the = —0.85 V crystal could have a larger x value than the V' =

—0.6 V crystal.
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Figure 3.3. PXRD patterns for the nonpulverized K, TisO16 crystals grown with J'=-0.6 V and —0.85

V. The simulated pattern for K135TisO1s (ICDD PDF 47-0690) was also shown. An additional

reflection is marked with arrow.
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Figure 3.4. Schematic illustration of the crystal structure of hollandite-type K,TigO16 viewed along
the c-axis. Purple, blue, and red spheres represent K, Ti, and O ions, respectively. The illustration was

created with the VESTA software.!”

For the /= —-0.6 V crystals, an additional reflection is seen at about 26= 46° (marked with arrow
in Figure 3.3), which is not assignable to the starting materials. It is widely known that
nonstoichiometric  hollandite-type compounds frequently exhibit a superlattice or an
incommensurately modulated structure.® % For instance, Latroche et al. observed superlattice
reflections at room temperature in a related hollandite Cs.TigO16 (originally represented as Cs,TiO2
with x = 0.13) and successfully refined the structure based on the tetragonal /41/a space group.* Later,
Fanchon et al. found a temperature-induced order (/41/a)-disorder (/4/m) phase transition in the

electrochemically grown Cs; TigO16 (x = 1.06) hollandite crystal, involving a three-dimensional long-
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range order of Cs cations.”* From these aspects, the additional reflection observed in the V'=—0.6 V
crystals would be attributed to a long-range order of K cations in the crystal lattice.

The distinct appearances of the resultant crystals are likely related to the valence states of titanium
through different chemical compositions. The transparent crystals are electrically insulating, and
hence the K content (x) would be lower than that in the black crystals. The K/Ti ratios for the J' =
—0.6 V and —0.85 V crystals estimated from the EDX data were 0.214(2) and 0.176(4), respectively
(based on the measurements for more than three points at the crystal surface; see Figure S3.4). This
result 1s contrary to the above expectation, and would be caused by a slight amount of melt residues
on the surfaces. Also, a certain amount of molybdenum was detected in the J'= —0.85 V crystal. To
validate the EDX result, the cationic ratios of the crystals were analyzed by ICP-AES. The values are
summarized in Table 3.1. While no traces of possible contaminants such as Pt, Zr, and Y were detected,
the V= —0.85 V crystal was found to contain 12.5 mol % of molybdenum. This is in contrast to the
result of the Cs counterpart where Mo was never detected in the Cs,TigO16 crystals grown with V' =
~0.6 V and —1.0 V.!° The values of K/Ti = 0.115 and 0.170 for the V"= —0.6 V and —0.85 V crystals,
respectively, are comparable to the Cs/Ti ratios for the Cs;TisO16 crystals analyzed by ICP-MS (Cs/Ti
= 0.171 and 0.163 for the V' = —0.6 V and —1.0 V crystals, respectively'”). Further detailed
characterization is highly desirable to gain deeper insight into the chemical composition and crystal
structure of the resultant crystals by means of, for instance, single-crystal X-ray diffraction and
electron diffraction. It is noteworthy that preliminary experiments with the use of an alumina reaction
vessel resulted in a significant amount of Al incorporation (approximately 20 mol % per Ti) for the
growth of K;TigO16 even with high-purity and high-density crucibles, implying that the K;MoQO4 melt
is more reactive with alumina than the Cs2MoO4 melt. The size of such Al-containing crystals was

somewhat larger than the Al-free crystals obtained with a Pt crucible.
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Table 3.1. Cationic compositions of the K.TisO1s crystals grown with ' = —-0.6 V and -0.85 V

analyzed by ICP-AES.

applied voltage / V K / mol % Ti / mol % Mo / mol % formula®
-0.85 12.7 74 .8 125 Ki1.16Mo1.15Ti6.85016
-0.6 10.3 89.7 n.d.@ Ko0.92TigO16

“Not detected. “Formula is given assuming no oxygen deficiencies in the crystals (i.e., O16).

3.4.3. Na-Ti-O System

3.4.3.1. Crystal Growth

Single crystals of sodium titanates were grown with high-temperature electrolysis of the molten
TiO2/Na2MoO4 mixture. The applied voltages were set at onset (—0.6 V), moderate (—0.7 V), and high
(=0.75 V) values on the basis of the CV data in Figure 3.1b. An optical micrograph of the resultant
Na-Ti—O crystals grown with /= —0.75 V is shown in Figure 3.5. The appearance of the resultant
crystals is yellowish with optical transparency. Although the electrolysis with different applied
voltages resulted in crystals with a similar appearance, higher negative voltages were prone to

yielding a larger amount of crystals.
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TS

Figure 3.5. Optical micrograph of the resultant Na-Ti—O crystals grown with }'=-0.75 V.

Shown in Figure 3.6 is the PXRD pattern of the pulverized Na-Ti—O crystals grown with '=—-0.75
V. All the reflections are readily indexed based on a monoclinic unit cell belonging to the C2/m space
group (NazTigO13, ICSD #182965). A schematic illustration of the Naz+TisO13 structure is depicted
in Figure 3.7. Three TiOs octahedra are edge-shared to form a single-chain, and the single-chain is
connected with two identical chains at the edges, resulting in a zigzag ribbon. The ribbons are corner-
shared, forming a (TisO13)* framework with (1 x 3) rectangular-shaped 1D tunnels along the b-axis.

Sodium ions reside in the 1D tunnels, which are completely exchangeable with Li* and H* %32
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Figure 3.6. PXRD pattern for the pulverized Naz+,TisO13 crystals grown with V' = —0.75 V. The
simulated pattern for sodium-stoichiometric NaTigO13 (ICSD #182965) was taken from the ICSD

database.

Figure 3.7. Schematic illustration of the crystal structure of Na2+TicO13 viewed along the b-axis.

Yellow, blue, and red spheres represent Na, Ti, and O ions, respectively.
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For the V' = —0.75 V crystals, the lattice parameters refined by least-square calculations are a =
15.11(1) A, b = 3.741(4) A, ¢ = 9.182(7) A, B = 98.98(8)°, and V' = 512.7(7) A3, being in good
agreement with those previously reported for sodium-stoichiometric NazTisO13.>**** Upon
electrochemical sodium intercalation in Na2+.TisO13 (from x = 0 to 1), this compound exhibits a small
volume expansion (1%) accompanied by significant increases both in the c-parameter and the S-
angle.® Judging from the lattice parameters, the excess Na content (x) of the "= —0.75 V crystals is
presumed to be small. The Na/Ti ratio estimated from the EDX data is 0.37, implying a slight sodium
excess with respect to Na/Ti = 0.33 for NaTisO13, see Figure S3.5. The ICP-AES analysis also
indicates that the crystals have a sodium excess (Na/Ti = 0.358) and are free from impurities such as
Mo, Pt, Zr, and Y (Table 3.2). The mean valence number of titanium (V1) is thus calculated to be

+3.975 assuming an oxygen-stoichiometric composition of Naz.15TisO13.

Table 3.2. Cationic compositions of the Nax+.TicO13 crystals grown with "= —0.75 V analyzed by

ICP-AES.

applied voltage / V Na / mol % Ti / mol % formula® mean bt

-0.75 26.4 73.6 Naz2.15TisO13 +3.975

“Formula is given assuming no oxygen deficiencies in the crystals (i.e., O13).
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The Naz+,Ti¢O13 formation reactions may be written as:

WE: 6TiO2 + 1/202 + (2 + x)Na* + (2 + x)e” — Naz+:TisO13 4)
CE: (2 +x)/2Mo04* — (2 + x)e~ + (2 + x)/2M00s3 + (2 + x)/40z2 (5)
Overall: 6TiO2 + (2 + x)/2Na;MoQO4 —

Naz+TisO13 + (2 + x)/2Mo03 + x/402 (6)

where O molecules in eq (4) are assumed to be supplied from air. In fact, the Na2+TicO13 crystals,
in analogy with K2+ TisO13, always grow on the upper part of WE in contact with air. This
experimental fact emphasizes the essential role of Oz molecules in the phase formation of Na2+TicO13
and K2+.TisO13. To validate this assumption, the growth of the Na2+TisO13 crystals was attempted in
flowing Ar gas. In this condition, as expected, the Nax+TisO13 crystals grew on WE underneath the
melt, although metallic particles (Mo and MoOy) were obtained as by-products (Figures S3.6 and
S3.7). Noticeably, the Ar-grown Naz+TicO13 crystals showed dark gray color, contrary to the air-
grown crystals, suggestive of a more Na-rich composition for the former. The Na/Ti ratio of the Ar-
grown crystals was estimated to be 0.59 (Figure S3.8a), which is about 1.5 times higher than that of
the air-grown crystals. As shown in Figure S3.8b, the metallic particles were mainly composed of
molybdenum. Clearly, crystal growth in an inert atmosphere results in more reduced phases than in

air, taking into account the resultant compounds.
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3.4.3.2. Optical Properties

UV-vis diffuse reflectance spectra were collected to study optical properties of the grown crystals.
Figure 3.8 shows the spectra of the Naz+,TisO13 (x = 0.15) crystals and the sodium-stoichiometric (i.e.,
x = 0) Na2TisO13 powder prepared by the solid-state reaction (SSR) method. The Na2TigO13 powder
possesses a steep absorption edge at ~350 nm solely absorbs UV light, which reflects the white
(colorless) appearance. The position of the absorption edge for the NaxTigO13 powder is consistent
with those reported previously.’**® By contrast, the Naz:.TisO13 crystals absorb visible light at
wavelengths shorter than 750 nm, with a slightly red-shifted absorption edge. This feature likely

originates from doped electrons into the crystal lattice along with excess Na ions.
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Figure 3.8. UV-vis diffuse reflectance spectra of the Na2.15TicO13 crystals and NazTisO13 powder.

94



Chapter 3—Lithium, Sodium, and Potassium Titanates

3.4.4. Li-Ti-O System

3.4.4.1. Crystal Growth

Electrochemical crystal growth of lithium titanates was conducted. Taking into account the CV
data in Figure 3.1c, the applied voltages were set at onset (0.4 V), moderate (—0.6 V), and high
(-0.65 and —0.7 V) values. Shown in Figure 3.9 are the optical micrographs of the resultant Li-Ti—O
crystals grown with different applied voltages. While the appearance of the needle-like crystals grown
with J'=-0.4 V is greenish with optical transparency, the electrolysis with the larger negative voltage
(i.e., stronger reductive conditions) resulted in grayish transparent crystals. The J"'=—0.65 V product
was found to contain a small amount of black octahedral-shaped crystals as by-products (Figure S3.9).
Meanwhile, black flake-like crystals were mainly obtained instead of needle-like crystals in the

electrolysis at V'=-0.7 V (Figure S3.10).
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Figure 3.9. Optical micrographs of the resultant Li-Ti—O crystals grown with different applied

voltages V' =-0.4, -0.6, and —0.65 V.
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Figure 3.10 shows the PXRD patterns of the as-grown Li—Ti—O crystals. All the reflections for the
needle-like crystals grown with ' = —-0.4, —0.6, and —0.65 V are assignable to ramsdellite-type
Li2+Ti307 belonging to the orthorhombic Pnma space group (Li2TizO7, ICSD #202897). The

formation reactions for Li2+Ti3O7 may be written as:

WE: 3TiO2 + 1/202 + (2 + x)Li* + (2 + x)e~ = Li2wTi307 (7)
CE: (2 +x)/2M00s* — (2 + x)e” + (2 + x)/2Mo0O3 + (2 + x)/40; (8)
Overall: 3TiO2 + (2 + x)/2Li2Mo0O4 —

LizTi307 + (2 + x)/2MoOs + x/40, ©)
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Figure 3.10. PXRD patterns for the nonpulverized Li2+Ti307 crystals grown with V'=-0.4, —0.6, and

—0.65 V. The simulated pattern for LizTi3O7 (ICSD #202897) was taken from the ICSD database.
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The crystal structure of Li>«Ti307 is schematically illustrated in Figure 3.11. The structure consists
of double-chains of edge-shared (Ti,Li)Os octahedra. Each double-chain connects to one another at
the corners of the octahedra to form 1D tunnels with a (1 x 2) rectangular-shaped cross-section along
the b-axis. This structural model has widely been recognized, but some researchers claimed based on
their neutron diffraction and °Li/’Li MAS-NMR studies that all Li atoms reside in the 1D tunnels,
and hence defective (Ti,[J) Os (I = vacancy) octahedra are present in the framework *”* In fact, a
protonated derivative (H2Ti3O7) was successfully obtained via complete Li*/H* ion exchange on

Li2Ti307 in an HNO3 solution > °

Figure 3.11. Schematic illustration of the crystal structure of Liz+Ti307 viewed along the b-axis.
Green, blue, and red spheres represent Li, Ti, and O ions, respectively. The Ti ion, which lies in the

center of the octahedron, is partially replaced by the Li ion, forming a (Ti,Li)Os octahedron.
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The A0/ reflections preferentially appear in the PXRD profile; therefore, the longitudinal direction
of the needle-like crystals should correspond to the b-axis parallel to the 1D tunnels. While lattice

parameter changes with varying Li contents have been reported in the literature, ***!

a systematic trend
in the lattice parameters is not observed for the sample series obtained herein, probably because of
the poor accuracy of diffraction angles caused by misalignment of crystals. As shown in Figure $3.11,
the octahedral-shaped crystals grown at ' = —-0.65 V are identified as spinel-type Lis+.TisO12
(Lis3sTisO12, ICSD #163862). Because this compound crystallizes in a face-centered cubic (fcc)
lattice having well-developed {111} faces, the strongly preferred orientation seen in the PXRD profile
is reasonably explained. Meanwhile, the flake-like crystals grown at J'= —0.7 V are assigned to
layered lithium molybdenum oxides such as LizM04O13 (ICSD #6134), Lio.33MoO3 (ICSD #201959),
and Lio.7sMoO2 (ICDD PDF 80-6069), see Figure S3.12. This suggests that the Li2MoQOs melt has a
narrower potential window than the K2MoO4 melt.

Akimoto et al. reported crystal growth of ramsdellite-type Li»TiOz (x = 0.5) via a direct reaction of
lithium metal and TiO: in a sealed iron vessel ** Interestingly, the thus-grown crystals are black in
color, suggesting that the compound is electrically conductive. They also reported that the Li content
(x) in the Li;TiOz crystals gradually decreases upon exposure to air over a long period, reflecting their
highly reactive nature in air.* Also, Kuhn et al. observed color evolution from black to gray
accompanied by an Li-content decrease for their polycrystalline Li,TiO2 sample.** These findings
imply that the lithium titanate crystals with high Li contents are also air-sensitive, resulting in
immediate re-oxidation when exposed to air at the last process of the crystal growth.

For the ramsdellite-type crystals, only titanium and oxygen are detected by EDX (lithium is
undetectable; see Figure S3.13). On the other hand, the spinel-type crystals contain a large amount of

molybdenum, see Figure $3.14. The Mo/Ti molar ratio is approximately 0.66 and thereby a nominal

composition may be written as Lis+TisM02012. The cationic compositions of the ramsdellite-type
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3.4.4.2. Optical Properties

Figure 3.12 shows UV-vis—NIR diffuse reflectance spectra of the green Liz+Ti307 crystals (with
x = 0.25 grown at = -0.4 V) and the lithium-stoichiometric (i.e., x = 0) Li2Ti3O7 powder prepared
by the solid-state reaction (SSR) method. The Li>Ti307 powder solely absorbs UV light because of
the steep absorption edge located at ~350 nm. Contrastingly, the absorption edge of the Liz+TiaO7
crystals exhibits two increases near 360 and 460 nm. The short-wavelength side should correspond
to absorption beyond the intrinsic optical band gap, whereas the long-wavelength side may be
associated with impurity states created by oxygen vacancies, as discussed in the previous reports. *>4¢
The weak absorption band centered at about 660 nm can be attributed to the d—d (*T2s — %E,)
electronic transition of Ti** (d') centers.*” The green color of the Li>+TizO7 crystals surely stems from

d electrons doped into the crystal lattice.
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Figure 3.12. UV-vis-NIR diffuse reflectance spectra of the Li2.2sTi307 crystals and Li;TizO7 powder.
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3.4.5. Structural Chemistry

The different geometries of the 1D tunnels in the three titanates (K:TigOis, Na2+TisO13, and
Li2+,Ti307) can be understood in terms of the ionic size of the alkali metals incorporated; the
structures of three titanates are compared in Figure 3.13. Kesson and White proposed a modified
tolerance factor (fg) for hollandite-type 4/(By(Cs-y)O16 compounds, where B cations are usually of
lower valence than C cations.* The tolerance factor is expressed as:

L
B [(?‘A-ir ro)’ - %(IB,C + ?‘0)2]2

\E (re,c+ 10)

(10)

43

where ra and ro respectively represent the ionic radius of the 4 cation for eight-fold coordinates and
the O anion for six-fold coordinates (1.40 A (ref 49)). In addition, r5.c denotes the mean ionic radius
of B and C cations for six-fold coordinates calculated according to the chemical formula. In the ideal
hollandite-type compounds with tetragonal /4/m symmetry, fu is equal to unity. Most of the tetragonal
hollandites satisfy 7= 0.93—1.16."® The stoichiometric K2 TisO16 phase (i.e., Ko(Ti2*, Tis*)O16) gives
fu = 1.02, indicative of a stable hollandite-type structure. Given hypothetical lithium and sodium
titanium hollandites (Li2TisO16 and NazTigO1¢), the 7 values are calculated to be 0.74 and 0.87,
respectively, suggesting that these cations are too small to be stabilized at the center of the (2 x 2)
octahedral tunnel. Lithium and sodium titanate hollandites are obtained indirectly by topotactic Li
and Na intercalation into the hollandite-type TiO2 using a chemical or an electrochemical route.?'=**
> However, the crystallographic sites of the intercalated Li and Na are distinct to the K position in
K;TisO1s, and a structural change from tetragonal (/4/m) to monoclinic (/2/m) symmetries takes place
in heavily Li- and Na-intercalated compounds.?"->? Another example is tetragonal NaxC;xTigthm (x

~ 1.7),%® where the #u value, 0.88, is considerably smaller than unity. This observation is partly taken
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into account by unusual Na cation distribution in the 1D tunnel; in particular, some of the Na cations

form a square-planar oxygen coordination.**

Li,,, Ti;0, Na,,, TigO43 K, TigO4
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Figure 3.13. Comparison of the structures of the K, TisO16, Na2+TisO13, and Li2+Ti307 compounds.
Larger alkali cations result in compounds with larger 1D tunnels. The tunnel size of each compound

is represented based on the number of TiOg (or (Ti,Li)Os) units forming the 1D tunnel structure.
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3.5. Concluding Remarks

This chapter demonstrated the electrochemical crystal growth of K, TizsOi1s (hollandite-type),
NazxT16013, and LizTi307 (ramsdellite-type) by employing high-temperature electrolysis of a
molten mixture of TiO; and 42MoO4 (4 = Li, Na, and K) um:'ier constant-voltage conditions. This
allowed us to know how the ionic size of incorporated alkali metals affects the crystal structure of
alkali-metal ftitanates in the electrochemical crystal growth. Needle-like single crystals were
successfully grown with different applied voltages, and remarkably, the resultant K.TizO1s and
Liz+:TiaO7 crystals showed obviously distinct appearances, which suggested different chemical
compositions.

The author has attempted preparation of large hollandite-type TiO2 crystals starting from the grown
KTisO16 crystals by means of topotactic K deintercalation. Sizable hollandite-type TiO2 crystals are
noteworthy in the research field of optoelectronics. Besides, Na*/Li*/H' ion exchange experiments
en millimeter-sized single-crystalline samples of NazwTisO1z and LizTi307 are of great interest.
While their ion exchange capability is widely known, most of the ion-exchanged derivatives are, to

the author’s knowledge, in a polycrystalline form.
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Abstract

The author reports on the growth of single crystals of an electron-doped titanium oxyflueoride,
Li»Ti(O,F)s, employing high-temperature electrolysis of TiO; with a eutectic Lio2MoQOs—LiF melt.
Greenish octahedral-shaped crystals (<30 um in size) with a cubic rocksalt-type structure were
successfully obtained by precisely tuning the applied voltage. The temperature-dependent magnetic
susceptibility data revealed a paramagnetic behavior at low temperatures, ensuring the presence of
Ti*" ions (mean valence number of +3.78; F/Ti ~ 0.15). The crystals exhibited clear visible-light
absorption and produced Hz from water in the presence of a sacrificial reagent under UV-light
irradiation. LizTi(O,F); more efficiently produced Hz compared with a nondoped oxyfluoride
LisTi2O6F, likely due to the doped electrons for the former. This chapter highlights a promising

electrochemical approach toward growing electron-doped oxyfluoride crystals.
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4.2. Introduction

In recent years, great efforts have been devoted to the exploration of multiple-anion-containing
inorganic compounds with novel/better properties and functionalities.! Oxyfluorides, where O*" and
F~ anions coexist in a single component, have been extensively investigated for versatile applications

2 dielectrics,” proton conductors,* batteries,” phosphors,® scintillators,’

in superconductors,
photocatalysts,® and so on. Especially, titanium-based materials are attracting considerable attention,
mostly because of their superior optical properties. For example, Mn**-activated BaTiOFs works as
a red-emitting phosphor that would promise applications in LED backlighting” Aurivillius-type
Bi,TiO4F2 exhibits high photocatalytic activities for degradation of Rhodamine B (RhB) and phenol
under UV-light irradiation.'” A recent discovery on excellent photocatalytic activities for water
reduction/oxidation and CO; reduction in pyrochlore-type Pb2Ti20s 4F1 2 has stimulated researchers’
interest because of the unprecedented visible-light response arising from the simultaneous presence
of metal-oxide (M-0) and metal—fluoride (M-F) bonds.'"!2

To date, several synthetic approaches have been established to realize the desired oxyfluoride
compounds. Polycrystalline samples of oxyfluorides are usually accessible via the following routes:
(1) direct solid-state reactions between oxide and fluoride reagents, including conventional ceramic,
high-temperature/pressure, and mechanochemical synthesis methods;***%11-15 (2) low-temperature
topochemical fluorination reactions starting from oxide precursors with fluorinating agents, such as
NH4F, MF> (M = Cu, Zn, Ni, or Ag), XeF, F2 gas, NF3 gas, poly(vinylidene fluoride) (PVDF), and
polytetrafluoroethylene (PTFE);*!%!7 (3) hydro/solvothermal reactions;™'%!'®!° (4) oxidation of

fluoride precursors using an H20; solution;?*%?

and (5) electrochemical fluoride ion intercalation into
oxide precursors.”® By contrast, growth methods to obtain sizable single crystals of oxyfluorides are

limited mostly to solution processes, such as a flux™**?" and a hydrothermal method®**’ with fluoride
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starting materials or an HF solution. Meanwhile, crystal growths of few oxyfluorides, such as
BaCasCus012(01Fx)2 (ref 36) and SroFeOsF (ref 37), were achieved by utilizing a high-
temperature/pressure technique. Well-formed single crystals facilitate us to investigate the intrinsic
properties of the compounds. Accordingly, novel approaches toward growing sizable oxyfluoride
crystals have been highly demanded.

High-temperature molten salt electrolysis has been used by Greenblatt and others to synthesize a
wide variety of oxide single crystals.***° This technique is also effective in growing single crystals
of electron-doped titanium oxides, such as spinel-type LiTi2O4 (ref 41), pseudobrookite-type CaTi2O4
(ref 42), and hollandite-type Cs:TigO16 (ref 43). Recently, the author demonstrated the crystal growth
of Cs,TisO16 with controlled electronic properties employing high-temperature constant-voltage
electrolysis of TiO2 with molten CssMoOy4 (ref 44). Needle-like Cs;TigO1¢ crystals (maximum length
of ~2 mm) with distinct properties, either electrical insulator with optical transparency or
semiconductor with metallic luster, were successfully obtained upon varying the applied voltages.**
This technique was subsequently employed for the crystal growth of lithium-, sodium-, or potassium-
containing titanium oxides with 42MoQ4 (4 = Li, Na, or K) melts.** Consequently, needle-like crystals
of Li2Ti307 (ramsdellite-type), Naz+.TicO13, and K, TisO1s (hollandite-type) were successfully
grown.* These oxides unexceptionally crystallize in one-dimensional (1D) tunnel structures, and the
tunnel shapes strongly depend on the ionic size of alkali metals incorporated.

On the basis of the above research background, the author anticipated that fluoride-containing
melts might be applicable to the electrochemical crystal growth of electron-doped oxyfluorides.
Alkali fluorides have been employed frequently as fluxes for the growth of oxide crystals because
they are capable of dissolving oxide starting materials, where the fluoride works as a mineralizer,*®
In addition, alkali fluorides melt at relatively low temperatures and are soluble in water. Electron

doping will significantly impact optical properties and often result in visible-light absorbing materials,
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providing the possibility of applications in photocatalysts. Herein, the author presents the
electrochemical crystal growth of a lithium titanium oxyfluoride by using constant-voltage
electrolysis of TiO2 with a eutectic LiaMoO4—LiF melt. Single crystals of rocksalt-type Li2Ti(O,F)3
were successfully grown by precisely tuning the applied voltage. Magnetic and optical studies
indicate that the resultant oxyfluoride crystals are slightly electron-doped, most likely involved with
O*-to-F~ replacements in the parent oxide Li,TiOs. The electron-doped Li>Ti(O,F)s crystals are
capable of producing Hz from an aqueous methanol solution under UV irradiation. Noticeably, the
amount of Hz gas produced by the oxyfluoride crystals is larger than the oxide crystals (Li2TiO3-4)
formed upon varying the applied voltages, emphasizing the role of multiple anions in enhancing the

photocatalytic activity.

112



Chapter 4—Lithium Titanium Oxyfluorides

4.3. Experimental Section

4.3.1. Materials

Li2CO3 (99.99%), MoOs (99.98%), and TiO: (anatase, 99%) were purchased from Kojundo
Chemical Laboratory. LiF (99.9%) was purchased from FUJIFILM Wako Pure Chemical. All the
materials were used as received without further purification. LiaMoO4 was obtained by firing a

stoichiometric mixture of Li2CO3 and MoOs3 at 600 °C for 12 h in air.

4.3.2. Electrochemical Crystal Growth

Crystals of titanium oxyfluorides were grown by means of high-temperature constant-voltage (i.e.,
potentiometric) electrolysis of TiO2 with a eutectic LizMoO4—LiF melt (62:38 mol %, eutectic point
= 617 °C*"), employing a method similar to that reported previously.***> The Li-MoQs powder was
mixed homogeneously with LiF by using an agate mortar and a pestle to prepare the eutectic
LiaMoO4—LiF mixture. This mixture (10 g) was loaded into a Pt crucible (30 cm?® in volume) as a
reaction vessel. To perform high-temperature electrolysis, three Pt wires (0.5 mm in diameter)
connected to an external potentiostat (Hokuto Denko: HZ-5000) were introduced into the Pt crucible
in a programmable box furnace. The working and pseudoreference electrodes (WE and PRE,
respectively) were placed near one another. A 0.1 g powder of TiO2 was put in the vicinity of the
counter electrode (CE) to prevent undissolved TiOz from being incorporated into grown crystals on
WE.

Cyclic voltammetry (CV) was performed to determine applied voltages for the subsequent
constant-voltage electrolysis. The voltage range and scan rate were —1.2 V < J'< 0V (vs Pt PRE) and
100 mV s | respectively. It should be noted that the target compounds containing reduced titanium

species (Ti** ions) will form at negative voltages with respect to PRE. The electrolysis was performed
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at 1050 °C for 5 h in air. The furnace was heated to 1050 °C in 2.5 h (heating rate: 7 °C min™") and
then kept at this temperature for 30 min to stabilize the melt prior to the electrolysis. Voltages applied
were set at J'=-0.4, —-0.8, and —1.0 V, taking into account the onset potentials of reduction waves in
the CV plot (Figure S4.1 in the Supporting Information). At the end of each run, the applied voltage
was switched off, and then the Pt electrodes were immediately lifted above the melt and removed
from the furnace to be rapidly cooled to room temperature. Electrolysis for 5 h resulted in crystal
growth at the surface of WE (Figure S4.2), while no crystals grew on CE. Crystals deposited on WE
were immersed in distilled water at room temperature overnight to dissolve the solidified residue.
The crystals were mechanically isolated from WE with tweezers, washed with distilled water several
times, and then allowed to dry at room temperature. Optical micrographs of the resultant crystals were

taken by a digital microscope (Keyence: VHX-7000).

4.3.3. Characterization

Powder X-ray Diffraction (PXRD). Phase identification of the resultant crystals was conducted
by using a powder X-ray diffractometer (Rigaku: Ultima IV Protectus; Cu Ka radiation; A= 1.5418
A) equipped with a silicon strip detector (Rigaku: D/teX Ultra2). As-grown crystals were evenly
spread on a “non-reflection” sample holder made of an obliquely cut silicon crystal and analyzed in
0.02° increments over a 2@range of 5°-90° at a rate of 5° min~! (operating condition: 40 kV, 40 mA).

Single Crystal X-ray Diffraction (SCXRD). Structure refinement for the crystals grown with V
=—0.4 V was performed based on SCXRD data collected at 295(2) K on a four-circle diffractometer
(Rigaku: XtalLAB Pro; Mo K @ radiation; A= 0.71073 A). Diffraction data were processed by using
the CrysAlisPro software*® and corrected for absorption effects by means of the multiscan procedures.
The structure was solved by direct methods and refined by full-matrix least-squares methods on F*

by using SHELXL-2018.* Attempts were made to collect high-quality SCXRD data on the crystals
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grown with = —0.8 V; however, a publishable structure solution could not be obtained due to
severely twinned nature of the crystals.

Chemical Analyses. Elemental analysis was performed on the single crystals by using a scanning
electron microscope (SEM; Hitachi High-Tech: SU-5000) equipped with an energy-dispersive X-ray
spectrometer (EDX; Bruker: XFlash Detector 630M). Selected crystal pieces were mounted on carbon
tape, and analysis was performed with an accelerating voltage of 15 kV and an accumulation time of
5 min. Measurements were made for Ti, O, and F along with Mo and Pt as possible contaminants.
The Li/Ti ratio was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-
AES; Thermo Fisher Scientific: iCAP 6500 Duo).

Magnetic Property Measurements. The magnetic susceptibilities (y) of the crystals grown with
V'=-0.8 and —0.4 V were measured by a superconducting quantum interference device magnetometer
(SQUID; Quantum Design: MPMS). Temperature vs susceptibility data were collected from 2 to 300
K under a magnetic field () of 10 kOe with a field-cooled (FC) condition.

Ultraviolet—Visible-Near Infrared (UV-Vis—-NIR) Diffuse Reflectance Spectroscopy. Diffuse
reflectance spectra were acquired for the crystals grown with J'=—0.8 and —0.4 V. The measurements
were performed in a wavelength window of 200—1000 nm by using a UV—-vis—NIR spectrophotometer
(JASCO: V-670) equipped with an integrating sphere. The reflectance spectrum of a BaSO4 powder
was used as a baseline. The reflectance data were converted to absorbance data by employing the
Kubelka-Munk function,”® F(Re) = (1-Re)*/2Re0, whete Reo is the relative reflectance (Rymple/Rpaso,)-
Some titanium compounds a-Li2TiO3, f~Li2TiOs, and LisTi2O6F were used as references. Phase-pure
samples were synthesized (Figures S4.3 and S4.4) similarly to previous reports.>' 3

Photocatalytic Activity Tests. Photocatalytic H2 evolution reactions were conducted at room
temperature by using a Pyrex test tube with a capacity of 8 mL. Approximately 1 mg of pulverized

crystals was dispersed in 4 mL of an aqueous solution containing 10 vol % of methanol as a sacrificial
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electron donor. A Pt cocatalyst was deposited on the crystals at 0.1 wt % through in situ
photodeposition using HoPtClg as a precursor.’* Prior to irradiation, the suspension was purged with
Ar for 20-30 min. A 400 W high-pressure Hg lamp (SEN) without solution filter was used as a light
source unless otherwise stated. The evolved H, was analyzed by a gas chromatograph (GL Sciences:
Model GC323) with a thermal conductivity detector (TCD). To investigate the effect of electron
doping on photocatalytic Hz evolution activity, the LisTi2OsF powder as a nondoped reference was

also tested in the same manner.
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4.4. Results and Discussion

4.4.1. Crystal Growth

Electrochemical crystal growth was conducted at three voltages of V'=-0.4, —0.8, and —1.0 V. The
appearance of the resultant crystals is greatly dependent on the applied voltages. As seen in optical
micrographs of Figure 4.1, pinkish platelike crystals (~50 pum) and greenish octahedral-shaped
crystals (~30 um) are obtained when J'=-0.8 and —0.4 V are respectively applied. Meanwhile, crystal
growth at "= —1.0 V led to lustrous black crystals with a platelet morphology (Figure S4.5). These
crystals are distinct from the needle-like Liz+TizO7 crystals with an LiF-free melt,* revealing the
significant impact of the melt compositions on the grown crystals. Attempts with zero electric field
always resulted in the absence of sizable crystals on the Pt electrodes even with the same temperature

sequence. This fact undoubtedly indicates that the electrical potential is important for crystal growth.

Figure 4.1. Optical micrographs of the resultant crystals grown with J'= —0.8 V (left) and -0.4 V

(right).
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PXRD patterns for the as-grown (i.e., nonpulverized) crystals obtained at /"= —0.8 and —0.4 V are
presented in Figure 4.2. All the reflections of the V= —0.8 V crystals are indexable with monoclinic
Li2TiO3, the so-called f-phase belonging to the C2/c space group (ICSD #9058). Depicted in Figure
4.3a is the crystal structure of A-Li>TiO3, which adopts a cation-ordered rocksalt-type arrangement
with alternating Li~O and Li-Ti—O layers along the c-axis direction.’® Within the Li-Ti—O layer, an
Li ion resides at the center of the six-membered ring of TiOs octahedra (see Figure 4.3a, right). The
presence of the interstitial Li site in the Li—O layer was recently suggested by neutron diffraction.’’
Because the 00/ reflections preferentially appear in the PXRD pattern, the well-developed faces of
the platelike crystals can be indexed as {001}. The lattice parameters are @ = 5.062(1) A, b = 8.788(6)
A, ¢ =9.750(2) A, = 100.1(0)°, and V = 426.9(3) A3, in good agreement with the reported

values 3%°7-38
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Figure 4.2, PXRD patterns for the nonpulverized crystals grown with (a) /'=-0.8 V and (b) -04 V.
Forthe '=-0.4 V crystals, an extra reflection assigned with 002 of #-Li;TiOs is marked with asterisk
(*). Simulated patterns for (¢) A-Li2TiO3 (ICSD #9058) and (d) LiTiOs (ICSD #261235) were

taken from the ICSD database.
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Figure 4.3. Crystal structures of (a) f-Li2TiOs and (b) @/~Li2TiOs. Note: both @- and »Li2TiOs
adopt a similar cubic structure (Fm3m), but the jephase appears only at high temperatures. The image
(b) was drawn with the structural model of the a~phase. Green spheres, Li ions; blue spheres, Ti ions;
red spheres, O ions. TiOg octahedra are shown as blue polyhedra. The right image in (a) depicts the
honeycomb-like framework formed by the Ti ions as viewed down the c-axis (for simplicity, the Li—
Ti-O layer is solely shown). The boxes indicate the unit cell of each structure. These illustrations

were generated by the VESTA software.*
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For the J'=-0.4 V crystals, most of the reflections are assigned as cation-disordered rocksalt-type
Li>TiO3 belonging to the Fm3m space group (ICSD #261235). An extra reflection is seen at 26 =
18.2° (marked with asterisk). The extra reflection is assignable to 002 of S-Li>TiOs that formed as a
byproduct even at J' = —0.4 V. Given the strong preferred orientation of the S-Li2TiOs crystals, the
actual amount in the /' = ~0.4 V crystals could be negligible. Figure 4.3b shows the crystal structure
of cubic o/ ~Li2TiO3, with a statistical distribution of Li and Ti ions at one equivalent site and O ions
at another site.’® The intensities of the 111 and 222 reflections are considerably higher than those in
the simulated pattern, signifying that the dominant facet of the octahedral-shaped crystals is the {111}
plane. The lattice parameters are calculated to be a = 4.138(0) A and ¥ = 70.84(1) A®, which are
comparable to those reported previously.’®>® As shown in Figure S4.6, crystals grown with /"= —-1.0
V were mainly composed of Li-Mo—O compounds such as Li(Lio313Moo.687)O2 (ICSD #160656) and
LisMoOs (ICSD #109089), indicating that the larger negative voltage is prone to yielding Mo-

containing compounds caused by deep reduction of the TiO2/LizMoQ4 mixture.

4.4.2. Chemical Composition and Structural Chemistry

The distinct appearances of the resultant crystals would be associated with the oxidation numbers
of titanium arising from different chemical compositions. Figure 4.4 displays the SEM-EDX images
of the grown crystals. The J'=-0.8 and —0.4 V crystals show well-developed {001} and {111} faces,
respectively. Surprisingly, elemental analyses on the two crystal pieces revealed completely different
anion compositions. While the /7= —0.8 V crystal was composed of titanium and oxygen, the J =
—0.4 V crystal contained fluorine along with those elements (lithium is undetectable by EDX). The
average F/Ti ratio for the V' = —0.4 V crystals was 0.15 based on the measurements for more than
three crystals. The Li/Ti ratios determined by ICP-AES were 1.90 and 1.74 for the oxide (J'=-0.8

V) and oxyfluoride (-0.4 V) crystals, respectively, where these values include approximately +5%
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experimental errors. The oxyfluoride crystals thus appear to be slightly Li deficient. For simplicity,
the author denotes the chemical compositions as Li2TiOsz-s (oxide) and Li2Ti(O,F): (oxyfluoride),
although some degree of Li deficiencies is suggested. The magnetic susceptibilities of the oxide and
oxyfluoride crystals showed paramagnetic temperature dependencies (Figure S4.7). The averaged
oxidation numbers of titanium (J1;) were estimated at +3.97 (oxide) and +3.78 (oxyfluoride) by
Curie-Weiss fitting of the y—7"plots. These results indicate that both the crystals are slightly electron-

doped. Details of the fitting results are listed in Table S4.1.

Figure 4.4. SEM-EDX images of the crystals grown with J'=—-0.8 V (left) and —0.4 V (right). Any
extraneous elements, such as platinum from the electrodes and the crucible as well as molybdenum

from the melt, were not detected within the detection limits of the instrument.
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Li>TiOs crystallizes in three types of structural modifications: &, £, and »Li»TiO3.°® While the
monoclinic f-phase (C2/c) is the most stable form at low temperatures, the compound transforms to
7-phase with a cubic rocksalt-type structure (Fm3m) at about 1155 °C. The metastable a-phase,
formed by low-temperature hydrothermal reactions, also adopts the cubic structure (Fm3m), which
transforms irreversibly to the f-phase above 300 °C. Upon heating, the o~/ biphasic region is
observed in a temperature window of 300-500 °C, and the /-y region appears around 1100 °C. Of
these polymorphs, the f-phase has a wide range of promising industrial applications, including a solid
tritium breeder material for fusion reactors,®’ a cathode material of lithium-ion secondary batteries
(LIBs),*! a microwave dielectric,** and a CO» absorbent.®*

It is worth noting that the growth temperature in these experiments (1050 °C) is close to the
biphasic region on the high-temperature side. Given that the crystals having S~ and o/)<Li;TiO3
structures were grown with different applied voltages, it is reasonable to assume that the stable region
of each phase is affected by not only temperature but also the chemical composition. The author
tentatively suggests that fluorine-substituted compounds may be subjected to structural disorder,

giving rise to the preference of the high-entropy cubic phase.

4.4.3. Structure Refinements and Description

The oxide and oxyfluoride crystals were structurally characterized by single-crystal X-ray
diffraction. The oxide crystals were severely twinned, although several crystal pieces were examined,
making the structure refinement unsuccessful. The oxyfluoride crystal crystallizes in the cubic space
group Fm3m with a lattice parameter of @ = 4.13842(14) A. Crystallographic data and structural
parameters are provided in Tables 4.1 and S4.2, respectively. The SCXRD data were readily refined
assuming a cation-deficient rocksalt-type structure, [(Lio.s1Tios500.04)(0095F0.05)] (O = vacancy),

with the atomic ratio taken from the analyzed composition and fixed during the refinement cycles.
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The structure refinement was converged reasonably, with reliability factors of R; = 0.0184 and wR, =
0.0492. Figure 4.5 depicts the local coordination environment around the cation site. The cation site
(Li/Ti/0) is surrounded by six O~ and F~ anions, forming regular octahedral coordination geometry.
The averaged Li/Ti/CJ-O/F interatomic distance is 2.06921(8) A, which is somewhat shorter than the
sum of Shannon’s ionic radii of 6-coordinated Li* (0.76 A) and O* (1.40 A),** which reflects the
partial occupation of the smaller Ti**/Ti** and F~ ions. No extra spots originating from long-range

ordering were observed.

Table 4.1. Crystallographic data for the oxyfluoride.

formula Lio.61Ti0.3500.95F0.05
formula weight 37.27

crystal system cubic

space group Fm3m (no. 225)
temperature / K 295(2)

crystal size / mm? 0.02 x 0.02 x 0.02
alA 4.13842(14)
v/A3 70.877(7)

Z 4

Deatc / g cm™ 3.493

1Mo Kea)/ mm™ 3.892

F(000) 71

Tin, Tmax 0.898, 1.000
Hrange / deg. 8.553-36.507

no. of measured reflections 913

no. of unique reflections 18

no. of observed reflections [/ > 20 (/)] 18
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Table 4.1. continued.

Rint 0.0337

hkl —6<h<6,-6<k<6,-6<1<6
final R indices [/> 2o (])]° Ry =0.0184, wR, = 0.0492

R indices (all data)” R1=0.0184, wRy = 0.0492
goodness-of-fit (GOF) 1.666

largest difference peak and hole /e A= 0.273, -0.204

R = Z|Fo|-|F|/ZIFo|, wRy = [EW(F*~FDEw(FHV% w = 1/[0X(Fo?)+0.2856P], where P =
(Fo2F3)/3.

O/F (95/5%)

2.06921(8) A

90°

Li/Ti/O3
(61/35/4%)

Figure 4.5. Local coordination environment around the cation site in the oxyfluoride
Lio.61Ti03500.95F0.0s. Color scheme: Li in green, Ti in blue, O in red, F in gray, and vacancy in white;

pie charts signify the occupancies of the sites.
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4.4.4. Optical Properties

Figure 4.6 shows the UV-vis—NIR diffuse reflectance spectra for the nonpulverized oxide (pinkish)
and oxyfluoride (greenish) crystals. Both of the crystals exhibit clear visible-light absorption at
wavelengths longer than 400 nm, in contrast to their parent oxides (&//-Li2TiO3) and oxyfluoride
(LisTi206F), where steep absorption edges appear in the UV region (Figure S4.8). Interestingly, the
spectral shapes of the oxide and oxyfluoride crystals are completely different from one another. While
the former possesses a broad absorption band with an edge at ~750 nm, the absorption spectrum for

the latter is featured with two separated absorption bands centered at 410 and 625 nm.
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Figure 4.6. UV—vis—NIR diffuse reflectance spectra for the oxide (}'=—-0.8 V) and oxyfluoride (0.4

V) crystals.
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For the oxide crystals, the broad absorption band is likely associated with the d—d (*T2e — E)
electronic transition of Ti** (d') centers. A broad absorption band split into two components at 520
and 570 nm was similarly observed in LaMgAl1019:Ti** single crystals.®® For the oxyfluoride crystals,
the absorption band at 410 nm may be attributed to the ligand-to-metal charge transfer (LMCT).*
Meanwhile, the absorption band at 625 nm can be ascribed to the d—d transition of Ti**, as previously
observed in K3Ti**Fs.°” Most of the Ti**-containing oxides are dark blue-black in color, albeit small
Ti** contents (e.g., TisOis; Vi = +3.75).%% Unlike the typical Ti**-containing oxides, synthetic
pyroxene (NaTi**Si2O¢) (ref 69) and a mineral Ti-fassaite [Ca(Mg, Ti**, Ti*t Al)(Si,Al)20¢] (ref 70)
display light or dark green color. Hence, the author concludes that the visible-light absorption for both

the crystals most likely originates from Ti** ions in the structure.

4.4.5. Photocatalytic Activities

The visible-light absorption of the oxide and oxyfluoride crystals is fascinating for uses as
photocatalysts. Table 4.2 summarizes the rates of Hz evolution over the crystals modified with a Pt
cocatalyst under UV-light irradiation along with LisTi,O6¢F for comparison. All the photocatalysts
produce Ha from an aqueous solution containing methanol as a sacrificial reagent. The oxyfluoride
crystals show the highest H; evolution activity among the three.

The author suggests that the high activity of the oxyfluoride crystals results from a higher content
of Ti** ions than the others. Fluorine-for-oxygen substitutions enabled the oxyfluoride crystals to be
more electron-doped than the oxide crystals with oxygen deficiencies. A recent study by Nishioka et
al. demonstrated that oxygen-defect-engineered strontium titanates (SrTiOsz-s) exhibit enhanced
photocatalytic activities for the individual H»/O: evolution reactions, originating from the prolonged
lifetime of photogenerated electrons and the reinforced driving force for water oxidation.”" Such an

electron-doping effect on photocatalytic activities may be taken into account also in the crystals
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obtained herein, and more electron doping found in the oxyfluoride crystals than in the oxide could

explain its higher photocatalytic activity.

Table 4.2. Photocatalytic H> evolution activities (under UV light”) of the oxide (J' = —-0.8 V) and

oxyfluoride (0.4 V) crystals along with the LisTi2O6F reference.

photocatalyst amount of evolved H2?/ ymol
LizTiO3-s(V'=-08V) 0.11
Li2Ti(O,F); ('=-04V) 0.12
LisTi2O¢F® 0.04 (£0.01)
blank® n.d.*®

“Reaction conditions: catalyst, ~1 mg (0.1 wt % Pt photodeposited in sifu); reactant solution, 10 vol %
aqueous methanol solution (4 mL); light source, 400 W high-pressure Hg lamp without solution filter;
reaction vessel, Pyrex test tube (8 mL capacity). “Synthesized via a solid-state reaction. “Only a Pt

source. “Reaction time: 24 h. “Not detected.

Besides the degree of electron doping, the author assumes that the Hz evolution activity of the
catalysts tested herein is also affected by the presence of F~ ions to some extent. It has been reported
that an Aurivillius-type oxyfluoride Bi2TiO4F2 shows higher photocatalytic activities for degradation
of organic compounds than a related oxide BisTi3012."° Fluoride ions are capable of trapping
photogenerated electrons and promote the separation of electron—hole pairs, thus leading to higher
photocatalytic activities,'’ although excessive F~ ions are harmful because F~ ions also serve
recombination centers of photogenerated carriers.”>™ In the present case, the F/Ti ratio of the

oxyfluoride crystals (F/Ti ~ 0.15) is much lower than that of LisTi2O6¢F (F/Ti = 0.5). The moderate
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concentration of F~ ions may partly be responsible for the high activity of the oxyfluoride crystals.
Unfortunately, the author was unable to measure wavelength-dependent photocatalytic activities due
to an insufficient amount of the grown crystals. Hence, future works will focus on optimizing crystal
growth conditions (e.g., melt compositions and electrode shapes) to obtain larger amounts of the

crystals, facilitating to conduct more detailed characterizations.

4.5. Concluding Remarks

Utilizing an electrochemical technique, the author has successtully grown single crystals of an
electron-doped titanium oxyfluoride LizyTi(O,F) (F/Ti ~ 0.15) that adopts the cation-diserdered
structure. This material was obtained employing high-temperature electrolysis of TiO; with the
eutectic LizMoOs~LiF melt involving the optimized applied voltage. With the clear visible-light
absorption, the Li2Ti(O,F)s crystals exhibited much higher photocatalytic activity for sacrificial Hz
evolution than the nondoped oxyfluoride LisTi2O6F under UV light. The high activity of the former
seems to be attributable to the higher content of Ti** ions than the latter. Stable electron doping into
the crystals was accomplished by F~-for-O* substitutions in the parent oxide LizTiOs. The author
foresees that the described synthesis method based on electrochemistry becomes a promising strategy
for the crystal growth of electromdop.ed oxyfluorides and may shed light on novel materials with

intriguing electronic/magnetic properties as well as higher photocatalytic activity.
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Accession Codes

CCDC 2086905 contains the supplementary crystallographic data for this chapter. These data can be
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data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12
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Chapter 5—No/Mo/F-Codoped CaliQOs

5.1. Abstract

The author has succeeded in growing crystals of Na/Mo/F-codoped CaTiO3z with an orthorhombic
GdFeOs-type perovskite structure employing high-temperature constant-voltage electrolysis of TiO;
with an NaxMoOs—NaF-CaMoO4 melt. This chapter will offer a possibility to grow a wide variety of

titanium oxyfluorides using the electrochemical technique.
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5.2. Introduction

Calcium titanate (CaTiO3) is a prototype of perovskite compounds formulated as ABX3, where A4 is
a 12-coordinated larger cation, B is a 6-coordinated smaller cation, and X is an anion. At room
temperature, CaTiOj crystallizes in a GdFeOs-type structure that adopts an orthorhombically distorted
perovskite lattice with lattice parameters of @ ~ v2ay, b ~ V2ap, and ¢ ~ 24, (in the Phnm setting),"
where ap denotes the cubic primitive cell, although the Sr and Ba analogs crystallize in cubic and
tetragonal perovskite structures,” respectively. The crystal structure of CaTiOs is depicted in Figure
5.1* (the VESTA software® for visualization). The compound has a long history of research arising
from its structural, dielectric, photoluminescence, and photocatalytic properties.” '

Fluorine doping into titanate perovskites improves various properties. For example, K/F-codoped
BaTiO; (Ba—K.TiO3-F:) exhibits much higher piezoelectric and dielectric constants at room
temperature than nondoped BaTiO3 and Pb(Zr, Ti)O3 (PZT).!'"** F-doped SrTiO; is a visible-light-
driven photocatalyst capable of decomposing NO and producing Hz from aqueous methanol, '
although nondoped SrTiO3 is photoactive only under UV irradiation.'*!® As far as the author knows,
however, fluorine doping into the CaTiOs perovskite had not been reported.

In this chapter, the author attempted the crystal growth of F-doped CaTiOs by a high-temperature
constant-voltage electrolysis method. This method has recently been proved useful for growing single
crystals of electron-doped titanium oxyfluoride Li»Ti(O,F):.!” As a consequence, crystals of
Na/Mo/F-codoped CaTiO3; (CaTiO3:Na,Mo,F) were successfully obtained by the electrolysis of TiO2
with an NazMoOs—NaF-CaMoO4 melt. The results reveal that the electrochemical method may be

applicable to the crystal growth of various titanium oxyfluorides.
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(b)

Figure 5.1. Projections of the crystal structure of CaTiO3 [crystal system: orthorhombic; space group:
Pbnm (no. 62); lattice parameters: a = 5.388(1) A, b = 5.447(1) A, ¢ = 7.654(1) A', along the (a) a-
axis (slightly oriented) and (b) c-axis directions. Octahedral tilting of the TiOs units (shown as blue
polyhedra) is clearly visible; the Glazer’s notation® is represented as a @ ¢*. Orange spheres, Ca
ions; blue spheres, Ti ions; and red spheres, O ions. These illustrations were generated by the VESTA

software
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5.3. Experimental Section

5.3.1. Materials

TiO2 (anatase, 99%), CaCOs (99.99%), and MoO3z (99.98%) were purchased from Kojundo
Chemical Laboratory. NaxMoO4:2H20 (99.0%), NaF (99.0%), and K2CO3 (99.5%) were purchased
from FUJIFILM Wako Pure Chemical. Ethylenediaminetetraacetic acid disodium salt dihydrate
(EDTA-2Na; >99.5%) was purchased from Dojindo. One of the melt components, CaMoQ4, was

prepared by firing a 1:1 molar mixture of CaCO3 and MoOs at 800 °C for 12 h in air.

5.3.2. Electrochemical Crystal Growth

Calcium titanium oxyfluoride crystals were grown by electrolytic reduction of TiO2 with a mixed
NaxMoOs—NaF-CaMoO4 melt having an 8:2:1 molar ratio. The 10 g mixture consisting of Naz2MoO4
(weighed as a dihydrate form), NaF, and CaMoQ4 was loaded into a Pt crucible (30 cm® in volume)
as a reaction vessel. To perform high-temperature electrolysis, three Pt wires (0.5 mm in diameter)
connected to an external potentiostat (Hokuto Denko: HZ-5000) were introduced into the Pt crucible
in a programmable box furnace. The working and pseudoreference electrodes (WE and PRE,
respectively) were placed near one another. A 0.1 g powder of TiO2 was put in the vicinity of the
counter electrode (CE) to prevent undissolved TiO from being incorporated into grown crystals on
WE.

The electrolysis was carried out at 1050 °C for 5 h. The furnace was heated to 1050 °C with a
heating rate of 7 °C min~!, and kept for 30 min to stabilize the rhelt prior to the electrolysis. Voltages
applied were set at J'=—0.6, —0.8, and —1.0 V, on the basis of the onset potentials of reduction waves
in the CV plot (Figure S5.1 in the Supporting Information). At the end of each run, the applied voltage

was switched off, and then the Pt electrodes were immediately lifted above the melt and removed
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from the furnace to be rapidly cooled to room temperature. Electrolysis for 5 h resulted in crystal
growth at the surface of WE (Figure S5.2), while no crystals grew on CE. Crystals deposited on WE
were immersed in an aqueous solution containing 5 wt % of K2COs and 2 wt % of EDTA-2Na at
room temperature overnight to dissolve the coating solidified residue. The crystals were mechanically
isolated from WE with tweezers, washed with distilled water several times, and then allowed to dry
at room temperature. Optical micrographs of the resultant crystals were taken by a digital microscope

(Keyence: VHX-7000).

5.3.3. Characterization

Powder X-ray Diffraction (PXRD). Phase identification of the resultant crystals was conducted
by using a powder X-ray diffractometer (Rigaku: Ultima IV Protectus; Cu Ka radiation; 4= 1.5418
A) equipped with a silicon strip detector (Rigaku: D/teX Ultra2). As-grown crystals were evenly
spread on a “non-reflection” sample holder made of an obliquely cut silicon crystal and analyzed in
0.02° increments over a 2@range of 5°-90° at a rate of 5° min~! (operating condition: 40 kV, 40 mA).

Elemental Analysis. Analysis was performed on the single crystals by using a scanning electron
microscope (SEM; Hitachi High-Tech: SU-5000) equipped with an energy-dispersive X-ray
spectrometer (EDX; Bruker: XFlash Detector 630M). Selected crystal pieces were mounted on carbon

tape and analyzed with an accelerating voltage of 15 kV and an accumulation time of 5 min.
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5.4. Results and Discussion

5.4.1. Crystal Growth

Electrochemical crystal growth of calcium titanium oxyfluorides was examined Ey high-
temperature electrolysis of TiO2 with the NazMoOs—NaF-CaMoO4 melt. Optical micrographs of the
crystals grown with /'=-0.6, —0.8, and —1.0 V are shown in Figure 5.2. Most of the grown crystals
are highly aggregated, and notably, the appearances strongly depend on the applied voltage values:
brown for }J'=-0.6 V, dark-brown for J'=-0.8 V, and black for J’=-1.0 V. Crystal growth with larger

negative voltages resulted in higher product yields.

V=-06V

Figure 5.2. Optical micrographs of the resultant crystals grown with V' = —0.6 (top), —0.8 (bottom

left), and —1.0 V (bottom right).
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PXRD patterns of the nonpulverized crystals (Figure 5.3) reveal the formation of orthorhombic
perovskite-type CaTiOs (ICSD #71916) for all batches. The 220 reflection is strongly preferred; the
well-developed face should be {#k0}. The lattice parameters of each crystal are the following: a =
5391(3) A, b =5.452(2) A, and ¢ = 7.663(5) A for V'=-0.6 V, a=5.389(2) A, b =5.451(1) A, and
c=7.656(3) A for V=-0.8V;and a=5.392(3) A, b=5.468(3) A, and c = 7.676(8) A for '=-1.0
V, all of which are somewhat larger than the literature values.! This suggests a partial reduction of
Ti* to Ti** with a larger size (0.605 A for Ti** vs 0.670 A for Ti** in six-fold coordination'®) and the

possible incorporation of Na and/or Mo ions.
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Figure 5.3. PXRD patterns for the nonpulverized crystals grown with '=-0.6, 0.8, and ~1.0 V. The

simulated pattern for CaTiOz (ICSD #71916) was taken from the ICSD database.
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The chemical compositions of the crystals were analyzed by SEM-EDX (Figure 5.4). Electron
irradiation during EDX measurements led to a slight charging effect only for the /"= —-0.6 V crystal,
indicative of its low electrical conductivity. Calcium, titanium, sodium, and molybdenum were
observed for all the crystals, whereas fluorine was detected for the /= —0.6 V and —0.8 V crystals.
The Ca/Na/Mo/F/Ti ratios for the V' = —0.6, —0.8, and —1.0 V crystals were estimated to be
1.18/0.13/0.01/0.12/1, 1.03/0.10/0.02/0.08/1, and 1.16/0.08/0.05/0.00/1 (ratios normalized by Ti),
respectively, where oxygen is not shown for its poor accuracy. The calcium content looks somewhat
excessive, which may be due to analytical errors of the measurements. Taking into account the ionic
radii of the constituent elements,'® the Na and Mo ions partially substitute the Ca and Ti sites,
respectively. The Mo and F contents seem to relate to the applied voltages, but the Na content does
not. Crystals grown with larger negative voltages tend to show higher Mo and lower F contents. The
author assumes that the introduction of oxygen defects into the crystals could be promoted at larger
negative voltages, which may hinder fluorine doping. Similar results have been observed in the
previous study on the crystal growth of lithium titanium oxyfluorides (see also: Chapter 4)."

Finally, the author would like to comment on a possible application of the Na/Mo/F-codoped
CaTiO; crystals as a high-performance photocatalyst. Metal doping into titanate perovskites is one of
the most effective strategies to improve their photocatalytic activities. For example, Fe**- or Cu®*-
doped CaTiOs3 and La**/Cr**- or Eu**/Na*-codoped CaTiO3 exhibit higher activities than nondoped
CaTiOs for the degradation of methylene blue (MB) and hydrogen evolution from an aqueous
methanol solution.’” In the case of strontium titanate perovskite SrTiOs, the codoping of Na* and
Mo®" ions has been reported to improve the hydrogen evolution activity.?* These enhanced
photocatalytic activities are mainly responsible for visible-light absorption caused by metal doping,
although both nondoped CaTiO3 and SrTiO; are only capable of absorbing UV light. As can be seen

in Figure 5.2, the Na/Mo/F-codoped CaTiOs crystals obtained herein are obviously colored,
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evidencing the visible light absorbing nature. Moreover, as mentioned in 5.2, fluorine doping into
titanate perovskites is also effective in improving their photocatalytic activities.!*'® Fluoride ions can
trap photogenerated electrons and inhibit the recombination of electron—hole pairs, which lead to
higher photocatalytic activities.”> However, excessive F~ ions have been demonstrated harmful
because F~ ions also serve recombination centers of photogenerated carriers.”*?’ Investigation on
photocatalytic activities of the Na/Mo/F-codoped CaTiOs crystals is thus fascinating—this theme will

be pursued in future works.

Figure 5.4. SEM images of the crystals grown with "= -0.6 (top), —0.8 (bottom left), and —1.0 V

(bottom right). EDX analyses were performed within the yellow boxes.
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5.5. Concluding Remarks

To summarize, crystals of Na/Mo/F-codoped CaTiOs; with an orthorhombic perovskite-type
structure were successfully grown by means of high-temperature constant-voltage electrolysis of TiO;
with the NaoMoOs—NaF-CaMoO4 melt. Controlling applied voltages was a key factor in growing the
crystals. This chapter demonstrated that the electrochemical technique may be applicable to the
crystal growth of various titanium oxyfluorides. Further investigation on the resultant crystals (e.g.,

photocatalytic activities) is attractive because the crystals exhibit clear visible-light absorption.
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gestions for Future

In this dissertation, single crystals of various titanium oxides and oxyfluorides were grown
employing high-temperature constant-voltage electrolysis of TiO2 with 42Mo04 (4 = Li, Na, K, or
Cs)-based melts. Structural, electronic, magnetic, and optical properties, and photocatalytic Hz
evolution activities of the resultant crystals were exiensively investigated. Clearly, the described
method is highly effective in obtaining eleciron-doped titanium oxides and oxyflucrides with
precisely controlled chemical compositions and crystal structures. Throughout the dissertation, the
author emphasizes that crystals obtained herein are never obtained by any other techniques, and the
doped d electrons significantly impact the properties of the materials. The dissertation will propagate
the utility of the electrochemical technique for the research on solid-state chemistry and physics.

In Chapter 2, needle-like crystals of hollandite-type Cs.TisO1s were successfully obtained by
constant-voltage electrelysis of TiO2 with the CsoMoQ4 melt. The resultant crystals exhibit distinct
properties, either electrical insulators with optical transparency or semiconductors with metallic luster,
depending on the applied voltages. This chapter revealed that the constant-voltage mode is more
advantageous than the constant-current mode, which had been widely used in previous studies, for
the crystal growth of titanium oxides with different electron-doping levels.

In Chapter 3, the electrolysis method was extended to the crystal growth of lithium-, sodium-, and
potassium-containing titanium oxides. With 42MoO4 (4 = Li, Na, or K) melts, single crystals of
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LizT1307 (ramsdellite-type), NaznTi6013, and K, TizO16 (hollandite-type) were grown. These
compounds unexceptionally crystallize in one-dimensional tunnel structures built from corner- and
edge-shared TiOs (or (Ti,Li)Os for Liz+Ti307) octahedra, with various tunnel shapes depending on
the alkali metals incorporated. The Liz.Tia07 and Naz+.TisO1s crystals showed clear visibie-light
absorption resulting from the d electrons doped along with the excess Li and Na ions, contrary to the
lithium- and sodium-stoichiometric (i.e., x = 0) samples. This chapter further established the utility
of molten salt electrolysis for the crystal growth of electron-doped titanium oxides containing various
alkali metals.

In Chapter 4, electrochemical crystal growth of titanium oxyfluorides was accomplished for the
first time. Using the eutectic LioMoOs—LiF melt, light-green crystals of cubic rocksalt-type
LizTi(O,F)s were successfully obtained. The crystals exhibited much higher photocatalytic H»
evolution activities than the LisTi2O6F (d°) reference under UV light, possibly originating from the
doped electrons for the former. The success in synthesizing the Li;Ti(O,F)s crystals motivated the
exploration of new titanium oxyfluoride phases using this technique.

In Chapter 5, the author explored F-doped CaTiO; as a second example of electrochemical crystal
growth of titanium oxyfluorides. Na/Mo/F-codoped CaTiQs crystals were grown using the
NasMoOs—INaF-CaMoQOs melt, with the necessity of controlled applied voltages. This chapter
provided a possibility that crystals of varicus titanium oxyfluorides can be grown by the
electrochemical technique,

Future perspectives for subsequent studies are as follows: (1) detailed investigation on the
formation mechanism of each compound, and (2) search for other transition metal oxyfluorides. The
first perspective would be indispensable because the growth mechanisms of the crystals obtained
herein still remain unclear. Analysis of ionic species in molten salts may shed light on redox reactions

on the electrodes. The second perspective is also significant for the exploration of novel materials
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with intriguing properties and functionalities, although this work focused solely on titanium-based
compounds. In the preliminary experiments, attempts to synthesize vanadium oxyfluoride crystals
were unsuccessful. This is possibly due to the difficulty of controlling oxidation states of vanadium
ions, which accommodate a wide range of oxidation states from +2 to +5. The use of more stable
transition metals against electrochemical reductions, such as niobium and tantalum, is of great interest
in achieving the above purpose. Specifically, given the successful synthesis of Li2Ti(O,F)s, crystals
of electron-doped rocksalt-type lithium niobium (or tantalum) oxyfluorides might be grown because

polycrystalline samples of nondoped rocksalt-type LisMO4F (M = Nb, Ta) have already been

synthesized.!?
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Figure 85.1. Cyclic voltammogram of the molten mixture of TiO2, NasMoQs, NaF, and CaMoOg4 at
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Figure S2.1. Optical micrograph of the resultant Cs;TigOi1s crystals grown with constant-current

conditions (/= -1 mA).

Figure S2.2. SEM images of the crystals grown with different applied voltages of (a) V'=-0.6 V and

(b)-1.0V,
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Figure S2.3. EDX mapping images of the ground crystals: (a) V'=-0.6 Vand (b) -1.0 V.
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Text S2.1: ICP-MS Analysis. The Cs/Ti ratios of the crystals grown with J'=-0.6 Vand -1.0 V
were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS). The Cs.TisO1s crystals
were dissolved in a 3:1 mixed solution of H28O4 and HNOs3 in a Teflon container. The sample
quantities were 14 and 120 pg for the J'= -0.6 V and —1.0 V crystals, respectively. The resultant
solutions were made up to 50 mL, and then diluted ten times with distilled water. Data acquisition for
Cs/Ti signals were repeated three times for each solution. The values of the Cs/Ti ratio are
summarized in Table S2.1. These values include approximately +£5% of experimental errors such that
the Cs contents (x) of the both crystals cannot be distinguished within the limited accuracy of the

ICP-MS experiment.

Table S2.1. Cs/Ti ratios of the crystals grown with "= -0.6 V and 1.0 V analyzed by ICP-MS.

applied voltage / V Cs/Ti ratio
-0.6 0.171
-1.0 0.163
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Text S2.2: XPS Spectra of the Grown Crystals. To investigate the valence state of titanium in
the grown crystals, X-ray photoelect;'on spectroscopy (XPS) measurements were performed. XPS
spectra were collected with monochromatic Mg K« radiation (operating condition: 400 W, 15 kV).
As-grown crystals were placed on a conductive carbon tape. In Figure S2.4, Ti 2p core-level spectra
of the crystals grown with V' =-0.6, —1.0, and —1.8 V are presented, together with that of anatase-
type TiO2 as a reference material. Measurements for the /' = —1.4 V crystal were unsuccessful,
because of an insufficient amount of the crystals used for the measurement. The binding energies (£g)
of each spectrum were calibrated with the O 1s peak at 529.9 V5!

The spectra of the Cs,TigO16 crystals evidence a negative chemical shift with respect to the TiO2
reference. However, the grown crystals were subject to large contact resistance, and no special effort
was made to minimize the charging effect, implying that possible extrinsic £p shifts caused by the
charging effect cannot be ruled out. According to the literature, the peak separated by 1.5 eV from
Ti* state can be ascribed to the Ti** state.* To examine the presence of reduced Ti species, Gaussian
fits to the spectra were attempted. It appears that each of Ti 2p3/2 and 2p1.2 peaks can be fitted with
two peaks, and the component at lower Ep gets enhanced as the negative voltage during the
electrolysis is increased. While the evolution of the low-£p component is consistent with a simple
consideration that the larger voltage would lead to strongly reduced products, the intensity of this
component is too large to be simply assigned as Ti’** species.

In summary, while the negative chemical shifts as well as the low-£p component are both consistent
with the existence of reduced Ti species, the present XPS result is too preliminary to be analyzed

quantitatively. Further studies will be necessary to discuss the valence state of titanium in detail.
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Figure S2.4. Ti 2p core-level spectra of the crystals grown with J' = -0.6, —1.0, and —1.8 V. Solid

curves represent Gaussian fits and the broken curves the resulting spectral envelopes.
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Text S3.1: Syntheses of Li2Ti307 and Naz2TisO13 Reference Materials.

Polycrystalline samples of LizTisO7 (ramsdellite-type) and NazTisO13 were synthesized via
conventional solid-state reactions. Li2TizO7 was prepared by firing a 1.05:3 molar mixture of Li2CO3
(99.99%, Kojundo Chemical Laboratory) and TiO2 (anatase, 99%, Kojundo Chemical Laboratory).
An excess amount of Li2CO3 (5 mol %) was added to the starting mixture to obtain a phase-pure
product. The mixture was put into an alumina crucible and calcined in air at 750 °C for 12 h, followed
by heating at 1050 °C for 12 h with an intermediate grinding. Na;TisO13 was obtained by firing a
mixture of Na2COs (99.8%, FUJIFILM Wako Pure Chemical) and TiO; (anatase, 99%, Kojundo
Chemical Laboratory) with a 1:6 molar ratio at 800 °C for 50 h in air. Both of the compounds were
obtained as white (colorless) powders (Figure S3.1). Phase purity of each compound was checked by

PXRD (Figure S3.2).

Figure S3.1. Photoghaph of the (left) Li»Ti3O7 and (right) Na,TisO13 powders.
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Figure S3.2. PXRD patterns for the Li2Ti307 and Na;TisO13 powders, showing the formation of

phase-pure materials.
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Figure S3.3. (a) Optical micrograph and (b) PXRD pattern of the nonpulverized K2+TisO13 crystals
grown with /'=-0.85 V. In (b), the simulated pattern for K;TisO13 (ICSD #25712) is also shown. (¢)

Schematic illustration of the structure of K2+:TisO13 viewed along the b-axis.
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Mo

not detected

Figure S3.4. EDX mapping images of the K. TisOi¢ crystals grown with (a) J'=-0.6 V and (b) -0.85

V.

Figure S3.5. EDX mapping images of the Naz+TisO13 crystal grown with V'=-0.75 V.
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Figure S3.7. PXRD pattern for the crystals grown with /"= -0.3 V in flowing Ar gas.
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(b)

Figure S3.8. EDX mapping images of the (a) Na2+TisO13 crystal and (b) metallic particle grown with

V'=-0.3 Vin flowing Ar gas.
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Figure S3.9. Optical micrograph of the Lis+Tis012 crystals grown with /"= -0.65 V.

Figure S3.10. Optical micrograph (left) and SEM image (right) of the mixture mainly consisting of

layered Li-Mo—O compounds grown with }'=-0.7 V.
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Figure S3.11. PXRD pattern for the nonpulverized Lis+.TisO12 crystals grown with /' =-0.65 V.

The simulated pattern for Lis35TisO12 (ICSD #163862) is also shown.
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Figure S3.12. PXRD pattern for the mixture of layered Li-Mo—O compounds grown with ' =—0.7

V.
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Figure S3.13. EDX mapping images of the Liz+:Ti1307 crystal grown with }'=-04 V.

Figure S3.14. EDX mapping images of the Li4+TisO12 crystal grown with J'=-0.65 V.
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Text S4.1: Electrochemical Measurement of Molten Salt. Figure S4.1 shows a cyclic
voltammogram of the molten mixture of TiO2, Liz2Mo0Q4, and LiF at 1050 °C. A small current with a
negative sign arises when the applied voltage reaches approximately V' = —0.4 V in the forward
(cathodic) sweep, indicating that a reduction of TiO: starts at —0.4 V. The negative current shows a
stepwise increase at —0.60, —0.80, and —0.94 V, and finally reaches —30 mA at —1.2 V. In the backward
(anodic) sweep, the negative current steadily decreases and overshoots the horizontal axis at —0.95 V.
Then, the positive current forms an oxidation peak at —0.77 V, followed by small humps at —0.66 and
—0.57 V, and eventually converges to 0 mA. The wide hysteresis suggests that crystals deposited on

the working electrode (WE) in the forward sweep are electrochemically oxidized.

20 — - . - T

10

Current / mA
=)

scan rate (v): 100 mV s~

-1.2 -0.8 -0.4 0
Potential / V vs Pt PRE

Figure S4.1. Cyclic voltammogram of the molten mixture of TiO2, LizMo00Q4, and LiF at 1050 °C in

air. This plot was recorded at v = 100 mV s with 0.5 mm-diameter Pt wire working, counter, and

pseudoreference electrodes. Arrows mark the potential-scan direction. The horizontal broken line is

a guide of 0 mA.
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Figure S4.2. Typical photographs of the crystals deposited on WE at J'=—-0.4 V: (a) before and (b)

after washing away the solidified residue with distilled water.
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Text S4.2: Syntheses of a-Li2TiOs3, f-Li2TiOs3, and LisTi2OF Reference Materials.

a~Li2TiO3 was synthesized via a hydrothermal reaction according to a procedure reported by Liu
et al.5 To begin with, 3.3568 g (80 mmol) of LiOH-H20 (98.0-102.0%, FUJIFILM Wako Pure
Chemical) was completely dissolved in 40 mL of Milli-Q water (18 MQ c¢cm, Millipore) in a Teflon
beaker. Then, 3.1948 g (40 mmol) of TiO: (anatase, average grain size < 5 um, 99.9%, FUJIFILM
Wako Pure Chemical) was added into the solution under continuous magnetic stirring. After vigorous
stirring at room temperature for 20 min, the slurry was transferred into a Teflon-lined stainless-steel
autoclave with a capacity of 100 mL. The autoclave was sealed, directly placed in a furnace preheated
at 180 °C, and held for 24 h without stirring. Once completed, the autoclave was taken out from the
furnace and cooled down to room temperature. The resultant solid product was isolated by vacuum
filtration, washed with Milli-Q water and ethanol several times, and finally allowed to dry at 80 °C
for 15 min in an oven.

[Li2TiO3 was synthesized using a conventional solid-state reaction technique as described in the
previous report by Kataoka et al.5 A stoichiometric mixture of Li2CO3 (99.99%, Kojundo Chemical
Laboratory) and TiO; (rutile, 99.9%, Kojundo Chemical Laboratory) was put into an alumina crucible
and calcined at 1000 °C for 12 h in air.

LisTi2O6F was prepared according to the previously reported method by Zhang et al.,>® but the
procedure was slightly simplified. A powder mixture of Li2COs; (99.99%, Kojundo Chemical
Laboratory), TiOz (anatase, 99%, Kojundo Chemical Laboratory), and LiF (99.9%, FUJIFILM Wako
Pure Chemical) with a 2:2:1 molar ratio was put into an alumina crucible with a lid and calcined at
700 °C for 2 h in air. The calcined powder was ground and fired at 840 °C for 2 h in air.

All the targeted materials were obtained as white (colorless) powders (Figure S4.3). The formation
of phase-pure materials was checked by PXRD (Figure S4.4): while A-Li2TiOs crystallizes in a cation-

ordered rocksalt-type structure, both o-Li2TiO3 and LisTi2O6F adopt a cation-disordered rocksalt-
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type structure.

Figure 84.3. Photoghaph of the (left) a~Li2TiO3z, (middle) f-Li2TiOs, and (right) LisTi2O¢F powders.
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Figure S4.4. PXRD patterns for the o~Li2TiO3, fLi2TiOs, and LisTi2OsF powders, showing the

formation of phase-pure materials.

S-20



Supporting Information

Figure S4.5. Optical micrograph of the crystals obtained at '=-1.0 V.
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Figure S4.6. PXRD pattern for the well-pulverized "= —1.0 V crystals, revealing the formation of

Mo-containing compounds as major products.
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Text S4.3: Magnetic Properties. To study the oxidation states of titanium, the temperature
dependences of the magnetic susceptibility (y) of the oxide (V7 =—-0.8 V) and oxyfluoride (-0.4 V)
crystals were measured at 2-300 K in an applied field of 10 kOe (Figure S4.7). Both of the crystals
exhibit paramagnetic behaviors in the whole temperature range measured. For the oxide crystals, yis
almost temperature-independent at 25-300 K, but exhibits a slight increase below 25 K. The upturn
behavior likely originates from the localized unpaired electrons of Ti** ions, implying an oxygen-
deficient composition (i.e., Li2TiO3-6). The formation of oxygen deficiencies possibly hinders F~-for-
O* substitutions and hence the growth of F-free crystals.

On the other hand, the magnitude of y for the oxyfluoride crystals is larger than the oxide crystals
over the whole temperature range: notably, the y value at 2 K is about ten times larger for the former
than that for the latter. For both the crystals, no evidence of a magnetic ordering was observed down
to 2 K. The y~T plots are fitted with a modified Curie-Weiss law, y = 7, + C/(T - @), where z,, C,
and ® denote the temperature-independent constant susceptibility, the Curie constant, and the Weiss
temperature, respectively. Fitted values are summarized in Table S4.1. The small Weiss temperature
values (—0.835 K and —0.716 K for the V= -0.8 V and —0.4 V crystals, respectively) suggest weak
magnetic interactions in these crystals.

The C values yield effective magnetic moments () of 0.229 14, fu.~! and 0.697 s fu.~! for the
oxide and oxyfluoride crystals, respectively. There values lie between the theoretical spin-only values
of Ti** (1.73 p45; S = 1/2) and Ti* (0.00 z4; S = 0), proving mixed-valent Ti**/Ti*". The averaged
oxidation numbers of titanium (V1) are calculated at +3.97 (oxide) and +3.78 (oxyfluoride). Taking
into account the charge neutrality condition and estimated composition ratios of F/Ti and Li/Ti, the
chemical compositions are readily estimated to be LiiooTiO294 and Li174TiO260F0.15
[(Lio.s1Tio350J0.04)(Oo0.95Fo.05)], respectively. It should be noted that the F1; value for the oxide crystals

is greater than that for the oxyfluoride crystals despite the larger negative voltage for the former that
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is likely to lead to a stronger reductive condition. As the most plausible interpretation, the oxide
crystals may be oxidized by atmospheric oxygen gas to form a less reduced phase (i.e., with a lower
Ti** concentration) upon cooling to room temperature at the last process of the crystal growth. A
reoxidation reaction in the oxyfluoride crystals is negligible because such a reaction is unlikely in
(oxy)fluorides without anion deficiencies. Judging from the light colors and the magnetic properties

of the crystals, both the crystals could be slightly electron-doped and electrically insulating.
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Figure S4.7. Temperature-dependent magnetic susceptibilities (¥) of the oxide (' = —-0.8 V) and
oxyfluoride (—0.4 V) crystals measured in an applied field (H) of 10 kOe. The green/pink circles

represent the data, and solid black lines are modified Curie—Weiss fit results (see the text for details).

The inset shows an enlarged plot in a lower y region.
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Table S4.1. Magnetic parameters for the oxide (/= —0.8 V) and oxyfluoride (0.4 V) crystals. These

values were determined based on least-square calculations for the y—7 plots (Figure S4.7).

applied voltage / V %,/ emumol™ Oe™! C/emu K mol™ Oe™ ®/K
0.8 1.93 x 1074 6.55 x 1073 -835x%x 107!
0.4 222 x 10~ 6.07 x 1072 —7.16 x 107!

Table S4.2. Atomic coordinates and isotropic atomic displacement parameter (Uiso) for the

oxyfluoride.
atom site g X ¥y z Lhisad A%
Li 4a 0.613 0 0 0 0.0112(6)
Ti 4a 0.352 0 0 0 0.0112(6)
O 4b 0.947 1/2 172 1/2 0.0121(8)
F 4b 0.053 1/2 1/2 1/2 0.0121(8)

“Occupancy factors, g, were fixed at the analyzed composition.
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Figure S4.8. UV-vis diffuse reflectance spectra for the o~Li2TiO3, f-Li2TiOs, and LisTi2O6F powders.

All the materials exhibit typical d” semiconducting nature.
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Figure S5.1. Cyclic voltammogram of the molten mixture of TiO2, Na;MoOs, NaF, and CaMoOj at
1050 °C in air. This plot was recorded at v = 100 mV s~ with 0.5 mm-diameter Pt wire working,

counter, and pseudoreference electrodes. Arrows mark the potential-scan direction. The horizontal

broken line is a guide of 0 mA.

Figure S5.2. Typical photographs of the crystals deposited on WE at (a) V"= —0.6, (b) —0.8, and (¢)
-10V.
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