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A Branch-and-price Approach with MILP Formulation to Modularity Density Maximization on Graphs *!

Keisuke SATO*

1 Introduction

Identifying communities in graphs is a very important task in data analysis,
and has a wide range of applications in diverse fields such as social networks,
the Web, biology and bioinformatics. Roughly speaking, a community is a sub-
set of a graph which are tightly connected internally while loosely connected
externally. Numerous approaches to community detection have been proposed
so far, most of which aim to optimize a certain objective function defined on a
graph.

Triggered by the seminal work by Newman and Girvan [23] in the literature
of the community detection, maximizing the modularity function has exten-
sively been studied. Let G := (V, E) be an undirected graph with the set V' of
n vertices where n > 2 and the set £ of m edges. The degree of vertex 7 € V'
is denoted by d;. We say that IT := {C", ..
k is a partition of V if V. = Ulglep, Cp # Sforanypand Cp NCpr = @

., Cy } for some positive integer

for any distinct pair p and p hold. Each member C), of a partition is called a
community. The set of edges that have one end-vertex in community C' and the
other end-vertex in community C” is denoted by E(C,C”). When C = C’,
we abbreviate E(C, C”") to E(C) for the sake of simplicity. Then the modu-
larity, denoted by Q(II) for partition IT of V/, is defined as

QD =Y (IE(C) B (Zieodi)z)

cen m 2m

where | - | is the cardinality of the corresponding set.

The modularity maximization is now one of the central subjects in this field,
while it receives serious criticism from mainly two viewpoints: degeneracy
(Good et al. [12]) and resolution limit (Fortunato and Barthélemy [10]). Degen-
eracy means presence of several partitions with high modularity which makes
it difficult to find a global optimal partition. Resolution limit refers to sensitiv-
ity of modularity to the total number of edges in a graph, which leaves small
communities not identified and hidden inside larger ones. Even in a schematic
case where a graph consists of multiple replicas of an identical clique which
are connected by a single edge, Fortunato and Barthélemy [10] showed that
maximizing the criterion results in regarding two or more cliques connected as
a community when the number of cliques in the graph is larger than the square
root of the number of edges. This narrows an application area of the modu-
larity maximization since most of real networks may contain tightly connected
groups with different scales.

To avoid the resolution limit issue, Li et al. [17] proposed a new function,
called modularity density, and their theoretical analysis with respect to maxi-
mizing the function leads to detecting communities with different scales (we

should note that, based on comments on this paper by Costa [4], errata by Li
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et al. [18] were released). The modularity density, denoted by D(II) for parti-

tion IT, is defined as

D(IT) = Y

Cell

<2E(C)| —YXcremcy 1E(C, C’))
IC] '

We refer to each term of the outer summation in Q(II) or D(II) as the contri-
bution of the community to the modularity or the modularity density.

Since this function takes account of the number of vertices in each commu-
nity, the modularity density maximization is straightforwardly formulated as a
binary nonlinear fractional programming problem. This feature indicates that
development of any exact solution method for the modularity density maxi-
mization seems to be more challenging than that for the modularity maximiza-
tion, which has promoted development of heuristic algorithms. In fact, Li et al.
[17] fixed the number of communities and solved the continuous relaxation
problem. Although Karimi-Majd et al. [16] presented an improved formula-
tion that does not require the number of communities to be known, it is still
a binary nonlinear fractional programming problem. To date, several meta-
heuristic approaches have been developed: ones based on a genetic algorithm
by Liu and Zeng [19], a memetic algorithm with simulated annealing in its
local search phase by Gong et al. [11] and biological operations by Karimi-
Majd et al. [16]. Costa et al. [6] proposed hierarchical divisive heuristics based
on repetitive resolutions of an integer linear programming (ILP) problem or a
mixed integer linear programming (MILP) problem to split a community into
two. Santiago and Lamb [25] presented seven scalable heuristic methods, and
compared them with the metaheuristic algorithms mentioned above as well as
the heuristics by Costa et al. [6]. Izunaga et al. [ 14] formulated the problem as a
variant of a semidefinite programming problem called 0-1SDP. Their reformu-
lation has the advantage that it does not require the number of communities in
advance, while any method to exactly optimize 0-1SDP has yet been unavail-
able. Instead, they solved an ordinary semidefinite programming relaxation
problem to obtain an upper bound solution and created a feasible solution from
it by dynamic programming.

On the other hand, there are a few approaches to exactly maximize the mod-
ularity density. The exact formulation proposed by Li et al. [17], Karimi-Majd
et al. [16] or Izunaga et al. [14] has not yet been solved to optimality due to its
nonlinearity. Costa [5] presented several MILP reformulations, which enables
us an application of general-purpose optimization solvers to the problem. In
the reformulations, however, the number of communities must be fixed in ad-
vance. They reported a result that their best MILP formulation gave optimal
solutions of instances with at most 40 vertices. The models require the upper
bound value of the contribution of a community as input, which was calculated
by solving a binary nonlinear fractional programming problem in the paper.
Costa et al. [7] discussed MILP reformulations of the upper bound calculation,
providing the whole modularity density maximization process completely ex-
pressed as MILP problems. Izunaga et al. [14] calculated the upper bound in

their numerical experiments for comparison by the parametric algorithm by



Dinkelbach [9] in which a series of ILPs was solved.

Very recently, and independently of our work, de Santiago and Lamb [26]
have considered the clustering problem as the set-partitioning problem and
have presented its ILP formulation (refer, for instance, to Nemhauser and
Wolsey [22] on the set-partitioning and related problems as well as their ILP
formulations). They have solved the problem by column generation (refer,
for instance, to Desrosiers and Liibbecke [8] on column generation), in which
framework an initial set of columns is given by heuristics that has stochas-
tic behavior. The column generation subproblem is also solved by different
stochastic heuristics. When no column is found by the latter heuristics, the
subproblem is formulated as an integer quadratic programming (IQP) problem
and is solved to optimality to decide whether the linear programming (LP) re-
laxation of the set-partitioning problem is optimal or not even though the LP
has a limited set of columns. Although they have reported optimal solutions
for instances having 62 and 105 vertices, the computation time has varied con-
siderably for each trial due to the stochastic nature of the two heuristics. For
several trials, these instances have not been solved in ten hours. Another re-
mark should be made that they have only solved instances whose LP optimal
solution is integral and have not presented a detailed procedure for a case where
the LP optimal solution is fractional. Hence, their approach may not provide
an optimal solution for a particular unsolved instance.

In this paper, independently of the work by de Santiago and Lamb [26],
we regard the modularity density maximization as the set-partitioning prob-
lem and present its ILP formulation, which enables us to devise an efficient
algorithm to provide an optimal solution for the modularity density maximiza-
tion. To be specific, we develop an algorithm based on a branch-and-price
framework, i.e., column generation in a branch-and-bound framework, to truly,
exactly optimize the modularity density function value (refer to Barnhart et al.
[2] as well as Desrosiers and Liibbecke [8] on branch-and-price). We also
incorporate two existing techniques into the algorithm: the set-packing relax-
ation proposed by Sato and Fukumura [27] *2, which was originally applied to
a set-partitioning-based scheduling problem, and the multiple-cutting-planes-
at-a-time by Izunaga and Yamamoto [15], which was originally done to the
modularity maximization, to accelerate the column generation process within
the algorithm. The former substitutes the set-partitioning constraint of the LP
relaxation problem with the set-packing constraint for all the vertices, and dy-
namically restoring it for a necessary subset of the vertices in the column gener-
ation process. We expect that the contribution of the majority of communities
detected as an optimal solution will take a positive value, and therefore that
the set-packing constraint will suffice for a large part of the vertices. The lat-
ter can provide us with two or more columns that have no common element in
each column generation phase, and therefore we expect that these columns will
coexist in a good feasible solution of the original or the LP relaxation of the
set-partitioning/set-packing problem.

Our contributions in this paper can be summarized as follows:

1. We give a branch-and-price framework for the exact modularity den-

sity maximization problem expressed as the ILP formulation of the set-

*2 More accurately, they presented the set-covering relaxation since they
aimed to solve a minimization problem.
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partitioning problem. For Protein p53 test instance having 104 vertices,
we show that column generation at the root node of the branch-and-bound
tree provides a fractional upper bound solution and that our algorithm
finds an integral optimal solution after branching.

2. We formulate the column generation subproblem to be solved repeatedly
as a simpler MILP problem than the quite recently proposed IQP prob-
lem. This formulation lets us provide another complete MILP framework
for the whole modularity density maximization process.

3. The set-packing relaxation and the multiple-cutting-planes-at-a-time ac-
celeration techniques combined with the MILP formulation of the col-
umn generation subproblem enable us to optimize the modularity density
for famous test instances including Graph, Dolphins, Les Misérables and
AO00 main in addition to Protein p53, which have not yet been solved.
Instances with over 100 vertices are solved with a proof of optimality in
around four minutes by a PC. Our solution method is deterministic and

the computation time is not affected by any stochastic behavior.

The rest of the paper is organized as follows: in Section 2, we present the
set-partitioning formulation of the modularity density maximization and col-
umn generation for that, referring to the recently proposed IQP formulation
of the column generation subproblem by de Santiago and Lamb [26]. In Sec-
tion 3, we propose a solution framework based on branch-and-price. It in-
cludes a MILP formulation of the column generation subproblem as well as
the set-covering relaxation and the multiple-cutting-planes-at-a-time accelera-
tion techniques. In Section 4, we report numerical experiments on the proposed

framework. Finally, conclusions and future work are presented in Section 5.
2 Set-partitioning and column generation at root node

2.1 Set-partitioning ILP formulation

Any feasible solution to the modularity density maximization as well as
the modularity maximization is a partition of the vertex set. Hence, as it was
done to the modularity maximization by Aloise et al. [1], we can regard the
modularity density maximization as the set-partitioning problem. The problem
is widely formulated as an ILP problem.

The set of all possible communities is 2\ {@}, and we let it be C. Any
possible community C' € C satisfies @ C C' C V, i.e., C consists of some
members of V. Given C' € C, its contribution fc to the modularity density is

calculated by

_AEO)] = Yiec di

a e} '
Let constant a;¢ be one if vertex ¢ € V is in possible community C' € C and
be zero otherwise. Also, we let uc be a binary variable indicating whether C' €
C is selected for a community or not. Then the set partitioning formulation (P)

of the modularity density maximization is as follows:

max. Z fouc

cec

Z a;cuc = 1

ceC

®)| st VieV
uc € {0,1} VC eC.

The main advantage of this approach is that we do not need to give the optimal
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number of communities in advance.
2.2 Subproblem as IQP in column generation at root node

It is natural to rely on column generation to solve (P) since |C|, which is
equivalent to the number of variables, becomes extremely large as the number
of vertices n gets larger. This makes the problem intractable. Here let us intro-
duce what we call column generation “at the root node,” which has also been
presented by de Santiago and Lamb [26] quite recently. In the column genera-
tion process, (P) is called the master problem, and a restricted master problem
of (P) is commonly given by substituting subset of C and continuously relaxed
uc. Let £ € {1,2, ..., } be an iteration counter of the column generation, and

the restricted master problem at the root node (RP(y)) is given by

max. Z fouc
CEC(@)
(RPg)) | s.t. Z acuc =1 YieV
CEC(g)

uc >0 VC € C(g)

where C(y) C C for each ¢. Possible community C' € C is called a column in
this context. Let (RD(y)) be the dual of (RP(z)) and A; for vertex i € V' be

the dual variable. Then the problem is written as

min. Z i
9%
(RD(Z)) S.t. Z aicNi > fc VC € C(Z)
eV

NER  VielV

Note that de Santiago and Lamb [26] have generated 30 columns to form the
initial column set C(1) by heuristics that has stochastic behavior.

In the column generation process, we solve (RP(;)) or (RD(y)) for each £,
and try to generate column Cec \C( ¢) which has the possibility of improving
the objective value of (RP([)) or equivalently cutting the optimal solution to

(RD()) by adding Co C(gy- We define A7, fori € V as the dual price of

:(6)
the constraint for 7 at an optimal solution to (RP(D) or as an optimal solution
to (RD(p)). Let us focus on the dual problem, and column Cec \ C(¢) to cut

the optimal solution must satisfy the following inequality:

> weh o < Je

i€V

Now let us introduce binary variable x; which takes one if 7 be-

longs to a column to be added and zero otherwise. The vector of

xz;’s is denoted by @. Then the search for such a column called the

column generation subproblem at the root node (S(Z)) is given by
find z € {0,1}V\ {OV}

43 T,ri —
{i,jyeE v
- Aoy > 0.
Siev Ti Z i,(€)

To find any solution to this problem, de Santiago and Lamb [26] have

(Seey)

ZGV

such that

presented different stochastic heuristics. In case of the failure, they have given

the following equation:

4 Ger ity — ey di Z .
7,(£)*
Diev Ti = o
4 dtigyer Tt = Dicy GiTi = Xicy Dpey A (o T

ZieV i

and have focused on its numerator. They have introduced variable w;; for
each (i,7) € E which takes one if x; = z; = 1 and zero otherwise, and
have defined the exact formulation of the subproblem at the root node as the

following 1QP:

max. 4 Z Wij — Zdzxz — Z Z )\;‘,(e)xixif
{i,j}€E i€V ieVi'eV
(s'(%;’) s.t. wij <@y v{i,j} € FE
Wi ij V{L]} ek
x; € {0, 1} VieV
wyy € {01} ¥{i,j} € E.

They have called the problem (AP-II), and have solved it to optimality. Note
that (Sl(%P ) is a maximization problem and therefore that w;; = 1 holds when
x; = xj = 1 at an optimal solution. Although its objective function is non-
convex, it can be cast as an equivalent convex programming problem (refer, for
instance, to Billionnet and Elloumi [3]). Several solvers automatically perform
the conversion, hence can handle (Sl(%) )

If any  is found that satisfies the condition of (Sy)), set C' := {i €
V | x; = 1} is identified as a new, generated column. It is added to C(g),
which forms C(y11y. Then (RP(4)) or (RD(y)) for £ + 1 is solved. In the
former problem, the variable uz as well as the column vector [al, GLTGV has
been generated. In the latter problem, the constraint Ziev a5\ > f &
which can be regarded as a cutting plane, has been added. If there is no such
x, we have an optimal solution to the LP relaxation of (P). For each of the
instances which have been solved by de Santiago and Lamb [26], the solution
is integral, thereby indicating that it is an optimal solution to the modularity

density maximization.

3 Branch-and-price with acceleration techniques

3.1 Branch-and-price framework

Let us consider the possibility, for a particular unsolved instance, that the
column generation at the root node presented in the previous section provides
a fractional solution. Then the solution is of course infeasible in terms of the
original ILP problem, or an integral solution obtained by solving the ILP set-
partitioning problem given the set of columns which have been generated until
then has not been proven to be exactly optimal in general. This possibility
necessitates a branch-and-price framework, or column generation combined
with branch-and-bound.

We follow the standard “identical restrictions on subsets” branching rule for
the set-partitioning problem by Barnhart et al. [2], which dates back to Ryan
and Foster [24]. Letb € {0,1,...,} be a node ID of the branch-and-bound

tree where O denotes the root node, 2b’ + 1 the left branch node of tree node

bl



b’ and 2b’ + 2 the right branch node. An unvisited node set of the tree during
the branch-and-bound process is denoted by B. At tree node b, we define W,
as Wy, C {{4,i'} | 4,4’ € V'},i.e., asubset of all unordered pairs of the graph
vertices. When {z‘l, ’iz} € Wb, we impose the left branching rule that 77 and
2 must belong to an identical possible community. Similarly, we define W,
and impose the right branching rule for {i1,i2} € % that 47 and i must
belong to a different possible community.

3.2 Set-packing relaxation of restricted master

Straightforward column generation applied to the set-partitioning problem
unfortunately requires much computation time for large instances due to de-
generacy (in the LP context), as Liibbecke and Desrosiers [20] pointed out.
For a set-partitioning-based minimization problem in the field of scheduling,
Sato and Fukumura [27] gave the set-covering relaxation to overcome the dis-
advantage. This technique first replaces the set-partitioning constraint with
the set-covering constraint for all elements of the set. When the column gen-
eration converges, the technique focuses on the solution to the set-covering-
relaxed LP and the set-covering-relaxed constraint set. For each element of the
set, the constraint is reset if the value of its left-hand side exceeds that of its
right-hand side, and then the column generation process is resumed. It is re-
peated until the column generation for a combination of the set-partitioning and
the set-covering constraints converges and all the elements are exactly covered.
Although this approach is much simpler than stabilized column generation pro-
posed by Merle et al. [21], it contributed to enough computation time reduction
for their scheduling problem instances.

In this study, we apply the set-packing relaxation to the set-partitioning
problem (P) in our branch-and-price framework (since we discuss a maximiza-
tion problem). We expect that the contribution of the majority of communities
detected as an optimal solution will take a positive value, and therefore the
set-packing constraint will suffice for a large part of the vertices. Let (b, £)
be the ¢-th iteration at branch-and-bound tree node b. We also let C(3, ¢y and
V(; 0 be subsets of C and V, respectively. Then we define the set-packing

relaxation (Rbey Z)) as follows:

max. Z fouce
CEC([LZ)
S.t. Z a;icuc =1 Vie V(f’e)
(Rpé,g)) CeCp,0
> aicuc <1 VieV\ Vi,
CEC(b)g)
uc >0 VC e C(b)g).

We should note here, for every (b, £), that C(b,¢) must not contain any column
which does not satisfy the left and right branching rule given by W}, and W
Let us recall here the original set-partitioning problem (P) and consider the

following problem (P(;, ¢)) that substitutes C(y, ¢ for C:
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max. Z fouc

CEC(b’g)

Z G, cuc = 1

CeC,0

(Pw,o)) | s.t. VieV

uc € {0, 1} VC e C(b@.

If the problem is feasible, which is expected to be true for Cj ¢y consisting
of a sufficient amount and variations of columns, its optimal value is clearly a
lower bound of (P).
3.3 MILP subproblem and multiple cutting planes as columns

Let (RD(gb’ o)) be the dual of (RP(Sb’ 2
variable. Then the problem is written as

min. Z Ai
i€V
- st Y aichi > fo VO E€Cuy

RD7
(RDG ) v

) and \; for vertex ¢ € V be the dual

A ER
Ai >0

Vi€ Vi
VieV\ Vo)

We can see that the set-packing relaxation restricts the dual variables in sign,
and removes the restriction for a subset of V' at some (b, £). Such techniques
are also reviewed in Liibbecke and Desrosiers [20].

We define )‘Z(b, 0 for ¢ € V as the dual price of the constraint

’ . . < . .
for ¢ at an optimal solution to (RP(*b, [)) or as an optimal solution to

(RD(Sb Z)). Then the column generation subproblem (S, ¢y) is given by
find x e {0,1}V\ {0V}
A3 e p Ty — Y ey ik
{i,j}eE ] eV Yt *
such that “d S ‘ - Z/\i,(b,é)‘ri >0
(Se.)) iy i eV

Tip — T, =0 V{LI,LQ} EW[)
Ty, +xi, <1 V{ihig} S %
Note that the last two constraints correspond to the branching rule. The

former constraint indicates, for a pair of vertices in Wb, that any column to be
generated is not allowed to contain exactly either one of them since they must
belong to an identical possible community. The latter constraint shows, for a
pair in W}, that any column to be generated is not allowed to contain the both
at the same time since they must belong to a different possible community.

Adding not merely one column, or one cutting plane, but multiple ones at
(b, £) which may complement well each other will more likely contribute to fast
convergence of the whole column generation process. Izunaga and Yamamoto
[15] introduced the multiple-cutting-planes-at-a-time technique for its column
generation subproblem of the modularity maximization. This technique first
solves the original subproblem and obtain a column. It then removes the ver-
tices included in the column from the whole vertex set of the subproblem, and
solves the subproblem again. This procedure is repeated until the subproblem
does not provide any column which may improve the objective function value
of the corresponding restricted master problem or all the vertices are removed.
This simple approach dramatically improved computation time of the modu-
larity maximization for large instances solved in their paper.

We solve (S ) by formulating it as a MILP problem, and

apply the multiple-cutting-planes-at-a-time technique to the formu-
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lation. Let ¢ € {1,2,...,} be an iteration counter of finding
a column and (b,¢,q) be the ¢-th iteration at (b,?). We give
the column generation optimization subproblem (S?’L‘!—;q)) below:
max. 4 Z wij — Z d;y; — Z A (b0 Ti (1)

{ijyeE i€V i€V
s.t. Z y; =1 2)

icV

0<s—y; <l—a; VieV 3)
Yi < x; VieV 4)
wij <y Y{i,j} € E 5)
(Shre.o)) wiy <y; Vi, j}€E ©6)
Ty — Tiy = V{iy,is} € Wy (7
2, + g, <1 V{i1 iz} € Wy ®)
2 €{0,1} VieVAVY, )
r; = Vie Vi, (10)
¥ >0 YieV (1n
wi; €R V{i,j} € E (12)
seR. (13)

To discuss the relationship between (S(; ¢)) and (SM}”‘ZP@), let us consider

the case with ¢ = 1, which means V(%,em = . The constraints (3), (4),
(9), (11) and (13) imply that y; = sx; holds; if z; = 1 then s = y; and
otherwise 0 < y; < x; = 0. This fact along with the constraint (2) implies
s =1/ >,y i, and therefore y; = x;/ >,y ; holds. Note that z; = 0
for all © € V is not a feasible solution. From the constraints (5), (6) and (12)
as well as the objective function to be maximized, w;; = min{y;, y;} holds

at an optimal solution to the problem or to its linear relaxation problem, which

is equivalent to w;; = x;x;/ > ;o\ ;. Hence we can say that solving
(S?Ab”_epq)) answers (S(3,¢)) for ¢ = 1, and we can find another solution, if it

exists, for ¢ > 2 (which means V(Ob,e,q) # @). If two or more columns are
generated by this approach, they have no common vertex. Hence, we expect
that these columns will coexist in a good feasible solution of the original or
the LP relaxation of the set-partitioning/set-packing problem.
3.4 Overall procedure

Our branch-and-price approach is displayed in Procedure 1. Subroutine 1 is
called from the main procedure, and Subroutine 2 is done from the preceding
subroutine.  Operations 1 and 2 of Procedure | are initialization. Let V=
be a subset of V' and also let ¢ € V= denote that the constraint for ¢ is the
set-partitioning one at the beginning of the column generation for each b. If
we substitute V= := V for V= := @, then the restricted master problem has
the standard set-partitioning constraints only. Two symbols II and LB indicate
an incumbent solution and its objective value, respectively. In our numerical
experiments carried out in Section 4, we take C(g 1y := {{4} | i € V'} as the
initial set of columns. Also, we pick branch-and-bound tree node b according
to a depth-first rule at Operation 4. The left node is chosen before the right
node is done. At Operation 5, Subroutine 1 returns fully generated column set
C(p,¢) as well as upper and lower bound information on (P(;, ¢y). An optimal
solution vector to the linear relaxation problem of (P(; ¢y) and its objective
value are denoted by uVb* and UBy,. Similarly, a lower bound solution vector
to (P(b’[)) and its objective value are given by u*»* and LBy,. The set V= is
Lp*

also updated in the subroutine. The vector w is integral, whereas u't* is

Procedure 1 BRANCH-AND-PRICE-TO-DENSITY-

MAXIMIZATION(G)

I: B := {0}, (Wo, Wp) := (2,9),V=:= 2, (II,LB) := (&, —c0)
2: C(p,1) = initial set of columns
3: while B # @ do
4: b := B.removeone() according to any branch-and-bound node selec-
tion rule

(C(byg),uub*,UBb,uLb*,LBb,V:) =
RELAXATION(G, b, Wy, Wy, C(,1y, V=)

W

SET-PACKING-

6: if UB, < LB then > (bounding)

7 continue

8: if LB, > LB then > (new incumbent solution)

9: (IL,1B) := ({C € Cppy | ut™ =1}, 1LBy)

10: if UB;, > LBy then > (branching)

11: {7,'1,1'2} 1= any {i,’i/} € V2 such that a;c,a;cr, a0 = 1,
ayc =0,0< u%”*,u[g’,* < 1forsome C,C" € Cy o

12: (Wapg1, Wapp1) := (Wp U {in,ia}, Wa)

13: Ciavs1,1) 1= {C € Cv,0) | (i1 € CAig € C)V (i1 & CNia &
)}

14: (Wapt2, Wapt2) = (Wy, Wy, U {i1,i2})

15: Cab2,1) = {C €Cpp | i1 € C Viz g C}

16: B.add(2b + 2,2b+ 1)

17: return IT

fractional if UB;, > LBy, holds, i.e., there is a gap between the upper and lower
bound. Operation 11 starts the branching scheme described in Subsection 3.1.
In our experiments, we simply search the relevant lists from their heads. We
first do the vector list uUs* from its head, and add the corresponding column to
a temporal list for each variable whose value is fractional. Next, for the double
loop of the temporal list and for the vertex set list, we check if the currently
selected vertex is contained in both of the currently selected column pair or
in only one of them. At Operations 13 and 15, we prepare initial column sets
C2b41,1) and C(2p12,1) for nodes 20 + 1 and 2b + 2, respectively. Only
the columns satisfying the “identical restrictions on subsets” branching rule
are selected. When the whole procedure terminates, IT is output as an optimal
solution.

Subroutine 1 corresponds to the content of Subsection 3.2. At Operation 1,

we let the set V>~ .| which appears in the restricted master problem (RP(Sb 1’.))

(b,1)
be V'=. After solving the restricted master problem at Operation 3, we let
u* and )‘zb, 5 be its optimal primal and dual solution vectors at Operation 4.

We solve (RP(SIJ,[)) by an optimization solver in our numerical experiments.
Note that an interior point method is applied to this problem according to an
indication by Vanderbeck [28] that fewer iterations are required for column
generation to terminate if an analytic center of the optimal face is provided as
the solution. At Operation 5, columns are generated by Subroutine 2 and the
generated column set is denoted by C. It any column is generated, then we
update the column set of (RP(Sb’ Z)) and solve it again. Otherwise, we define set
¥ and focus on each of the set-packing constraint set as well as the solution
value u* at Operation 1 1. If the value of its left-hand side is less than that of its
right-hand side, the vertex index which corresponds to such constraint is col-
lected in V. We make the set-packing constraint for each of the elements of Vv
the equality one, and go to Operation 3. If Vis empty, then it shows that all the
vertices are exactly covered. Recall here that C'is also empty at this iteration,
i.e., there is no unknown column which may contribute to the improvement of

the objective value of (RPS

o [)). The two facts indicate the convergence of the



Subroutine 1 SET-PACKING-RELAXATION(G, b, Wy, Wy, C, 1), V™)

1: 0:= 1,V<§’1> =V=
2: loop

<
3: Solve (RP(_b,Z))

4: (u*, )\Z‘b’ 2)) := primal and dual optimal solution to (RP(Sb’ Z))
5: C:= MULTIPLE-CUTTING-PLANES(G, b, Wy, Wy, £, Albe))
6: if(?;é & then

7: C(E’Z+1) = C(ED uc

8: Vibern = Voo

9: l:=0+1

10: else

11: Vi={i e VAVg, | oec,,, uicus < 1}

12: if V # @ then

13: Vi = ViUV

14: (=041

15: else

16: V==V,

17: (u"b*, UBy,) := objective solution and value of (RP(Sb,z))
18: ifut™ € {0,1} VC € C(y) then

19: (ul* 1By) := (u'b*,UBy)
20: else
21: Solve (P(4,¢))
22: (ut®*, LBy,) := objective solution and value of (P, ;))
23: return (Cp, gy, u”o*, UBp, w0, LBy, V=)
Subroutine 2 MULTIPLE-CUTTING-
PLANES(G, b, Wy, Wy, £, )\E‘M))

1: q:= l’v(b,e,l) =0,C: =0

2: loop

3: Find any solution Z to (S’E/llJLZPq)) with positive objective value
4: if Z is found then

5: C:ZCU{{iGV\V(%Lq)|§i:1}}

. 0 .— 10 ; 0 = —

6 Vintarr) = Vi VTEEVAVG ) [ 70 =1}

7: g:=q+1

8: else R

9: return C

column generation at the branch-and-bound tree node b, and the upper bound
of (P(p,¢)) is obtained at Operation 17. If «”6* is an integral solution, then
we have fortunately found the optimal solution to (P(b’[)) at b. There is no
gap between the upper and lower bound. Otherwise, we solve (P(b, g)) to find
an integral solution at Operation 21. The problem is also solved to optimality
by the optimization solver. Finally, the column set at the termination of the
column generation, the upper bound solution as well as its objective value and
the lower bound solution as well as its objective value at the branch-and-bound
tree node are output.

The content of Subsection 3.3 is coded in Subroutine 2. At Operation 1, let
C be a set to which we add new columns. At Operation 3, the column gener-
ation MILP subproblem (S’E/I')','{rq)) is solved by the optimization solver in our
numerical experiments. Note that any solution to (S'E’I')"qu)) with a positive ob-
jective value, denoted by Z, suffices as a new column to be added to (RP(Sb’ e))‘
We add, in our experiments, the first incumbent solution with a positive objec-
tive value found in the branch-and-bound process of the MILP. Here it is fair
not to rely heavily on heuristics implemented in the solver to find a feasible

mixed integer solution, hence we tune its parameters and expect an LP optimal
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Table 1 Instances.
ID Name n m Best-known
D) , |1
01  Strike 24 38 8.86111, 4°
02 Galesburg F 31 63 8.28571, 3°
03 Galesburg D 31 67 6.92692, 3°
04 Karate 34 78 7.8451 , 3°
05 Korea 1 35 69 10.9667 , 5°
06 Korea 2 35 84 11.143 , 5°
07 Mexico 35 117 8.71806, 3°
08 Sawmill 36 62 8.62338, 4°
09  Dolphins small 40 70 13.0519 , &°

10  Journal index 40 189 17.8 , 4°

11 Graph 60 114 957875, 7
12 Dolphins 62 159 12.1252 , 5°
13 Les Misérables 77 254 245339, 9
14 A00 main 83 125 13.3731, 11
15  Protein p53 104 226 129895, 8
16 Political books 105 441 219652, 7°
17 Adjnoun 112 425 7.651 , 2
18  Football 115 613 44340 , 10

®: proven optimal solution.

solution satisfying the integral constraint at a branch-and-bound tree node of
the MILP. This approach requires less computation time than searching for an
optimal solution. On the other hand, it may increase the total number of the
column generation iterations ¢. This discussion will be meaningless if there
exists no solution with a positive objective value; in such case we have to opti-
mize (S?’Z')"qu)) to prove the nonexistence. After solving (S'(‘"b'!-Zq)) we remove
all the element of Z from the formulation, and solve the problem again. We
get out of the loop if there exists no solution with a positive objective value or

all the vertices in V' are removed. The set of columns to be added at the next

column generation iteration is returned as the output.

4 Numerical Results

4.1 Instances and computational environment

We solve several real graph instances seen in the literature by our exact
branch-and-price approach. For comparison, we also solve them by the best
MILP formulation called MDB by Costa [5], and by our branch-and-price al-
gorithm in which the column generation subproblem is (SLQZ)P ) modeled by
de Santiago and Lamb [26] with the branching constraints (7) and (8). We cal-
culate the upper bound value of the contribution of a community required as
input of MDB by the parametric algorithm by Dinkelbach [9], as Izunaga et al.
[14] did.

Table 1 summarizes the instances. They are from Costa [5] (IDs 01-10),
Costa et al. [6] (IDs 11, 13-15), de Santiago and Lamb [26] (IDs 12, 16) and
Santiago and Lamb [25] (IDs 17, 18), respectively. For each proven optimal
(IDs 01-10, 12, 16) or best-known heuristic (IDs 11, 13-15, 17, 18) solution,
its objective value and the number of detected communities are indicated as
“Best-known D(II)” and “Best-known |II|.”

The programs are implemented in Python 3.5.2, calling the Python API
of Gurobi Optimizer 7.0.2 (developed by Gurobi Optimization [13]) to solve
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Table 2 Solutions by our approach.

ID #b Optimal
D, |
01 1 8.86111, 4
02 1 8.28571, 3
03 1 6.92692, 3
04 1 7.84510, 3
05 1 10.96667, 5
06 1 11.14301, 5
07 1 8.71806, 3
08 1 8.62338, 4
09 1 13.05195, 8
10 1 17.80000, 4
11 1 9.75238, 7*
12 1 12.12523, 5
13 1 24.54744, 8*
14 1 13.48249, 12*
15 5 13.21433, 9*
16 1 21.96515, 7
17 -°
18 -°

*: newly found solution.
©: timeout of 3,600 seconds.

the LP, ILP, MILP and IQP problems. The instances are solved on a 64-bit
Windows 10 PC having a Core i7-6700 CPU (fore cores, eight threads, 3.4—
4.0 GHz) and 32 GB RAM (the actual usage is less than 3 GB). We stop the
algorithms after 3,600 seconds (one hour) if the corresponding instance is not
solved within the time limit. In a case where our Procedure 1 reaches the limit,
we collect all columns generated until then and solve (P(b, g)), giving a lower
bound solution.
4.2 Solved instances

Table 2 shows an optimal modularity density value and the corresponding
number of communities obtained by our Procedure 1 for each instance. We
let “#b’ in the table be the number of branch-and-bound tree nodes processed.
We have found new and optimal solutions for Graph (ID 11), Les Misérables
(ID 13), AOO main (ID 14) and Protein p53 (ID 15) instances. Above all, the
result for the last instance is remarkable; the column generation at the root node
of the branch-and-bound tree has provided a fractional upper bound solution
and five branch-and-bound tree nodes have been processed. Figure 1 shows
the branch-and-bound tree. This result justifies the necessity of our branch-
and-price approach. The instances having up to 105 vertices have been solved.
Instances IDs 17 and 18, which consist of 112 and 115 vertices respectively,
have been shown to be intractable after 3,600 seconds of the computation.
4.3 Computation time

The computation time depending the solution methods is summarized in
Table 3. The symbol ‘MDB’ means the best formulation by Costa [5],
‘BP—(S'(%D )” our branch-and-price approach combined with the column gen-

eration subproblem formulation by de Santiago and Lamb [26] and ‘BP-

MILP
(S(bvl,q

last approach, ‘SRP’/‘No-SRP’ and ‘MCP’/*No-MCP’ indicate that the set-

>)’ our approach with the MILP subproblem formulation. In the

packing relaxation and the multiple-cutting-planes-at-a-time techniques are en-

Branching strategy

UBp = 13.22153
LBg = 13.21122

0 e < [uBy = 1322153
)T 1y = 13.21122

UBs = 13.21433 G UBe = 13.19581
186 = 13.19581

LBs = 13.21433

UB; = 13.19581
LBy = 13.19581

Fig. 1 Branch-and-bound tree of Protein p53 instance (ID 15).
Table 3 Computation time (in seconds).

ID MDB BP—(S'%D ) BP-(SPT )

SPR SPR SPR No-SPR No-SPR

MCP MCP  No-MCP MCP No-MCP
01 0.6 0.9 0.4 0.3 1.0 1.5
02 0.5 3.7 0.7 0.6 34 5.0
03 1.1 4.5 1.0 1.0 4.8 7.3
04 0.5 4.3 1.3 1.0 7.9 8.9
05 8.8 11.3 1.0 0.9 6.0 10.8
06 88.1 3.8 1.3 1.2 6.2 10.0
07 9.6 12.5 3.2 3.5 119 20.7
08 34 7.0 0.8 0.8 3.8 12.2
09  2848.4 15.8 0.8 0.6 5.1 154
10 651.0 6.4 4.7 3.1 25.3 44.3
11 - 11944 54 7.8 46.5 190.4
12 - —° 184 18.6 84.2 419.3
13 - - 71.6 60.7 154.6 335.0
14 - —° 3.8 15.6 82.5 1436.5
15 - -° 2235 134.4 1227.5 -°
16 - - 2428 498.2 - —°
17 _© _© _< _° _© _<
18 _< _< _© _< _© _<

©: timeout of 3,600 seconds.

abled/disabled, respectively. The best result for each instance is marked in
bold. Note that the computation time of MDB includes that of the upper bound
calculation by the parametric algorithm, which has been solved instantly for
each of all the instances. As a whole, column generation to the modularity den-
sity maximization has outperformed MDB for the instances having 40 or more
vertices (IDs 09-16), and the MILP formulation of the column generation sub-
problem has been easier to solve than the IQP formulation has been. Note here
that our branch-and-price approach as well as MDB is deterministic and the
computation time is not affected by any stochastic behavior. The set-packing
relaxation has dramatically reduced the computation time for the instances hav-
ing 60 or more vertices (IDs 11-14) and has enabled us to solve the instances
having over 100 instances (IDs 15 and 16) within the time limit. The multiple-
cutting-planes-at-a-time technique applied to the standard set-partitioning col-
umn generation process has been shown to be quite effective, as it was shown
on the modularity maximization by Izunaga and Yamamoto [15]. On the other
hand, the positive effect of this techniques when combined with the set-packing
relaxation has depended on the instances. We should note, nevertheless, that
the largest Political books instance (ID 16) among the successfully solved ones
has been optimized in around four minutes by applying the both techniques.
Table 4 shows details of our column generation results with the MILP
subproblem formulation. In this table, we let “Y_ £’ be the total number of
the column generation iterations over all the branch-and-bound tree nodes,

> C(b,0)|" the total number of columns generated over all the nodes and



Table 4 Column generation iteration results.

C T,

SPR SPR No-SPR No-SPR

MCP No-MCP MCP No-MCP

L3 Ch.nl IVED 6> [Ch.pD)
0l (1, 52, 1) (34, 56, 1) (64, 104) (120,  143)
02 25, 72, 1) (36, 65, 1) (153, 205) (331, 361)
03 36, 76, 1) 48, 77, 1) (202, 260) (432, 462)
04 40, 83, 1) (55, 87, 1) 317, 377) (481, 514)
05 35, 84, 3) (55, 88, 3) (217, 295) (562, 596)
06 31, 84, 1) 45, 78, 1) (231, 300) (499, 533)
07 46, 89, 2) (57, 90, 2) (325, 384) (635, 669)
08 (25, 87, 0) 48, 83, 0) (164, 244) (688, 723)
09 (21, 90, 0) 47, 86, 0) (189, 285) (850, 889)
10 35, 84, 1) 42, 80, 1) (483, 560) (1056, 1095)
11 (64,169, 7) (134,192, 7) (663, 878) (3222, 3281)
12 (77,188, 5) (147,207, 5) (953, 1107) (5140, 5201)
13 107, 227, 12) (171, 245, 12) (809, 960) (2925, 3001)
14 (47,189, 1) (135,216, 1) (907, 1145) (10234, 10316)
15 (143,329, 1) (231,331, 1) (2086, 2554) (14381, 14484)°
16 (117,311, 6) (327,430, 6) (4497, 5372)° (10527, 10631)°
17 (112, 223, 0)° (112, 223, 0)° (6284, 6424)° (8372, 8483)°
18 ( 60,191, 0)° (98,212, 0)° (4135, 4392)° (7991, 8105)°

©: timeout of 3,600 seconds.

‘V'=" the total number of vertices whose corresponding set-packing constraint
has been changed to the set-partitioning constraint in the algorithm, respec-
tively. The best result in terms of less numbers of >~ ¢ or 3 [C 4| for
each instance is marked in bold. The set-packing relaxation or the multiple-
cutting-planes-at-a-time technique has dramatically reduced the number of col-
umn generation iterations and generated columns. When it comes to the total
number of generated columns, the positive effect of the combination of the
techniques has depended on the instances. A low percentage of the vertices
have required the set-partitioning constraint, which supports the set-packing
relaxation. Here let us focus on the unsolved instance ID 17 even though we
have applied the set-packing relaxation. With or without the multiple-cutting-
planes-at-a-time technique, (RP(Sb, [)) has been solved instantly for every (b, £)
and (SMILP

(b,¢,q)
q when we have enabled the multiple-cutting-planes-at-a-time). The column

) in short time until (b, ¢) has reached (0,111) (and for every

generation subproblem for (b,¢) = (0,112) (and for ¢ = 1), however, has
not been able to find even a solution with a positive objective value in almost
(b0 i.e., the dual solution of
(Rbe Z)), that is obtained by an interior point method. We have also tried a

one hour. This is caused by the value of A7

dual simplex method, which in turn has caused an extremely slow improvement

of the objective value of (RP(Sb, 0

solution values has not resolved the issue. A similar result has been observed

) over (b, £). The midpoint of the two dual

for instance ID 18.

Figure 2 plots, for Les Misérables instance (ID 13), the objective value of
(RP(SEJ’ é)) for each iteration counter value £ (b = 0 since the instance has
been solved to optimality at the root node). The numbers in parentheses in-
dicates ‘7 in Subroutine 1, i.e., the number of vertices whose corresponding
constraint has been changed from the set-packing to the set-partitioning one at
¢ + 1. This figure clearly indicates the positive effect of the set-packing relax-
ation. For this case, our algorithm with the set-packing relaxation and without
the multiple-cutting-planes-at-a-time has required the least computation time

in spite of more iterations than that with the both techniques. That is since
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Fig. 2 Column generation for Les Misérables instance (ID 13).

Table 5 Lower bound values calculated after timeout of
3,600 seconds.

D CG-(SQ’;,[';Zf’q))
SPR SPR No-SPR  No-SPR
MCP No-MCP MCP  No-MCP
17 —33.63636 —33.63636 6.63063 6.63063
18 27.05238 13.50693 3.57018  3.57018

(S?Ab”_épq)) is solved only once for each ¢, whereas the multiple-cutting-planes-

at-a-time technique has to show that no column to be added is left for some
q’ after removing the vertices found at ¢ = 1...,¢’ — 1 unless no column is
found at ¢ = 1. We have observed a similar result for instance ID 15. For in-
stance ID 13, the set-partitioning constraint set VE 0 has been updated twice

as it is depicted in the figure. We note that V-

(.0) has been updated at most

once for all the other solved instances.
4.4 Column generation as heuristics

For the unsolved instance IDs 17 and 18 applied to our branch-and-price
framework, (P(b’ 4)) is solved instantly after the timeout. Table 5 shows lower
bounds of the objective value obtained in this way. The best result for each
instance is marked in bold. These values have not exceeded those obtained
by Santiago and Lamb [25]. This fact shows that the column generation is
not necessarily a better heuristic method than the state-of-the-art heuristics for

instances that cannot be exactly optimized.

5 Concluding Remarks

This paper has presented an exact algorithm for the modularity density max-
imization to provide a clustering solution of an undirected graph. The problem
can be modeled as the ILP formulation of the set-partitioning problem, and
we have proposed a branch-and-price framework for that. The acceleration
techniques called the set-packing relaxation and the multiple-cutting-planes-
at-a-time, combined with the newly introduced simpler MILP formulation of
the column generation subproblem which is solved repeatedly, have enabled

us to find the new and optimal solutions for the famous test instances: Graph,
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Les Misérables, AOO main and Protein p53. Political books as well as Protein
p53 instances that have over 100 vertices have been optimized in around four
minutes by a PC. Our solution method is deterministic and the computation
time is not affected by any stochastic behavior. For Protein p53 instance, col-
umn generation at the root node of the branch-and-bound tree has provided a
fractional upper bound solution and our algorithm have found an integral opti-
mal solution after branching, which justifies the branch-and-price.

Future work would include a combination of heuristics and our formula-
tions with the acceleration techniques to find a column in the column genera-
tion phase for unsolved instances that have over 110 vertices. Such heuristic
methods may avoid much computation time that is necessary if we try to find
a column by solving our MILP or possibly any other optimization-based prob-
lems, for a given particular dual solution value of the restricted master problem.
Nonetheless we must optimize the column generation subproblem expressed by
any form at some iteration when we decide whether we can terminate the col-
umn generation or not. It is unclear if the optimization problem at that iteration

is easy to solve.
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