### ■原 著■

# 二型性葉緑体の微細構造に注目した C4 植物トウモロコシと その類縁種の系統学的研究

鈴木季直<sup>1,2,3</sup> 福田千春<sup>1</sup> 河田直美<sup>1</sup> 永井 慎<sup>1</sup> 岡島 崇<sup>1</sup>

A Phylogenic Study on the Relationship between C<sub>4</sub> Plant Maize and Its Wild Relatives with Special Reference to Fine Structures of Dimorphic Chloroplasts

Suechika Suzuki<sup>1, 2, 3</sup>, Chiharu Fukuda<sup>1</sup>, Naomi Kawada<sup>1</sup>, Makoto Nagai<sup>1</sup> and Tskashi Okajima<sup>1</sup>

<sup>1</sup> Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan

<sup>2</sup> Research Institute for Integrated Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan

<sup>3</sup> To whom correspondence should be addressed. E-mail: suechika-bio@kanagawa-u.ac.jp

**Abstract**: To provide information on the phylogenic relationship between maize and its wild relatives, fine structures of dimorphic chloroplasts in those plant leaves were observed by electron microscopy. Examined plants were a cultivated maize, two kinds of annual teosinte, Zea luxurians (Ames 21876 and PI441931), two kinds of perennial teosinte, Zea diploperennis and Zea perennis, a tripsacum, Tripsacum dactyloides, and Job's tears, Coix lacryma jobi. Bundle sheath chloroplasts of all plants were agranal, although the rudimentary grana piled up with a few thylakoids were frequently found in cultivated maize and annual teosinte, Z. laxurians. They always contained a large number of starch grains. Cell walls of bundle sheath cells were well constructed with a suberized lamella in all plants, and thickness of cell walls was the largest in tripsacum. In mesophyll chloroplasts of all plants examined, no difference was found in the internal membrane system. However, the starch content of mesophyll chloroplasts was conspicuously different among the plants examined. In cultivated maize and annual teosinte, mesophyll chloroplasts had uncommonly a few small starch grains, whereas those of perennial teosinte, Z. perennis, and tripsacum contained relatively numerous large starch grains. These results indicate that the starch content of mesophyll chloroplasts is a valid index to estimate the phylogenic relationships among maize and its wild relatives, and that annual teosinte is closely related to cultivated maize. Structural features of dimorphic chloroplasts of Job's tears closely resemble those of tripsacum, suggesting a phylogenic relationship.

Keywords: C<sub>4</sub> plants, maize, phylogenic relationship, dimorphic chloroplasts, starch grains

# 序論

サトウキビやトウモロコシなど、光合成における C<sub>4</sub> 経路の脱炭酸酵素がNADP-リンゴ酸酵素 (nicotinamide adenine dinucleotide phosphate -malic enzyme) である典型的なNADP-ME型のC<sub>4</sub> 植物の緑葉では、維管束鞘細胞とその周囲の葉肉細 胞は形態的に異なる二種の葉緑体(二型性葉緑体) を含むことが知られている<sup>1.2</sup>。維管束鞘細胞の葉 緑体は発達したグラナを欠き多量の大きなデンプン 粒を持つのに対して、葉肉細胞の葉緑体は良く発達 したグラナを持つがデンプン粒は殆どないか、あっ ても小さく、量もわずかである。さらに、発生過程 における明瞭な維管束鞘葉緑体内のグラナの退化も



Fig.1. Plants examined by electron microscopy. A. Cultivated maize. B. Tripsacum grown in experimental field of Kanagawa University. C. Annual teosinte *Zea luxurians* (Ames21876) grown from the seed in a greenhouse. D. Job's tears *Coix lacryma-jobi* grown wild.

含めて二型性葉緑体の構造分化は、C<sub>4</sub> 植物の機能分 化や系統分化と相関している可能性が示されており <sup>3-5</sup>、二型性葉緑体の微細構造を比較することで植物 間の類縁関係を考察することができると考えられる。 この観点から、本研究では、典型的なC<sub>4</sub> 植物である 栽培種トウモロコシ、その祖先野生種とされるテオ シント4種(1年生2種、多年生2種)、野生類縁種 のトリプサクム、およびトリプサクムに近縁と思わ れるジュズダマ<sup>6</sup>の緑葉細胞と二型性葉緑体の微細 構造を観察して比較検討した。

# 材料と方法

実験材料としたトウモロコシとその類縁種は、市 販の栽培種トウモロコシ Zea mays L.、2種の一年 生テオシント Zea luxurians (Durieu and Asherson) Bird (Ames21876, PI441933)、2種の多年生テ オシント Zea diploperennisItlis Iltis, Doebley and Guzman (PI441931) & Zea perennis (Hitchcock) Reeves and Mangelsdorf (Ames21869)、トリプサ クム Tripsacum dactylodes L. である (図 1A-C)。 ト リプサクムに近い日本の植物とされるジュズダマ *Coix lacryma-jobi L.* も参照植物として観察した(図 1D)。テオシントの種子とトリプサクムの株は京都 大学農学部の植物生殖質研究施設から提供されたも のを用いた。シャーレの底に敷いた脱脂綿に水を含 ませてその上に種子を播き、20℃の培養器中に置い た。発芽後鉢に植えかえ、25℃の温室内で育てた。 約2ヶ月後の第二葉または第三葉の先端部から葉片 を採集した(図1C)。株分けされたトリプサクムを 神奈川大学湘南平塚キャンパス内の実験圃場に植え、

成長した植物(図1B)の緑葉を採集した。参照植物のジュズダマは神奈川大学湘南平塚キャンパス近隣の川端に自生しており(図1D)、この緑葉を採集した。

緑葉から1×3 mm<sup>2</sup>の小片を細切し、0.1 M リン 酸緩衝液 (pH 7.2) で希釈した 6% グルタルアルデ ヒド液に浸漬し、4℃で24 時間前固定した。同燐酸 緩衝液と蒸留水で洗浄した後、蒸留水で希釈した 2% 四酸化オスミウム液により 4℃で24 時間後固定し た。その後、試料をアセトン系列で脱水し、Epoxy 樹脂に包埋して熱重合させた。ウルトラミクロトー ム (Reichert Ultracut-N) で樹脂包埋試料から厚さ およそ 70 nm の超薄切片を作製し、酢酸ウランとク エン酸鉛で二重染色して透過型電子顕微鏡 (JEOL JEM2000EX) で観察した。

葉緑体、特に葉肉細胞葉緑体内のデンプン量の違いを定量的に比較するために、細胞や細胞内構造容積の変化を評価できるモンタージュ法<sup>7-10</sup>を適用した。撮影された葉肉細胞葉緑体の電子顕微鏡写真(デンプン含有率計測対象写真)を対象にし、葉緑体の断面積およびその中に含まれるデンプン粒の断面積を画像処理ソフト Image J で測定し、葉緑体断面積当たりのデンプン粒断面積の割合(%)を求め、植物間での差異を比較検討した。

#### 結果

トウモロコシの緑葉には既に良く知られているよう な典型的な二型性葉緑体が観察され、葉肉細胞の葉 緑体は、C<sub>3</sub>植物と同様に、グラナとインターグラナ チラコイドからなる内膜系を含んでおり(Fig. 2A)、



Fig.2. Dimorphic chloroplasts in the green leaves of maize. A. Chloroplasts of mesophyll cells, containing well developed grana and no starch grain. B. Chloroplasts of bundle sheath cells, showing agranal structures and a numerous number of large starch grains. Scale bars,  $1 \mu m$ .

一方、維管束を取り囲む維管束鞘細胞の葉緑体は C<sub>3</sub> 植物の葉緑体より大きく、その内膜系においてはグ ラナを欠いていた(Fig. 2B)。一般的に二型性葉緑 体は内膜系におけるグラナの有無により特徴づけら れているが、典型的な C<sub>4</sub>植物では葉緑体に含まれる デンプン粒の有無または多少によっても区別されて いる。本観察でも、実際に、維管束鞘細胞葉緑体に は多数の大きなデンプン粒が含まれていたが、葉肉 細胞葉緑体には全く含まれていないか、あっても小 さく、数も数個以内であった。デンプン含有率計測 対象写真内で観察された全葉肉細胞葉緑体 124 個中、 少量ながらもデンプン粒が含まれていたものは 9 個、 およそ 7.3%であった。

トウモロコシの祖先野生種とされる4種のテオシ ントの緑葉に含まれる二型性葉緑体の微細構造を観 察した (Fig. 3)。一年生テオシントは Z. luxurians (Ames21876) および Z. luxurians (PI441933) の 2種を観察した。Fig.3A と Fig.3B は、それぞれ、Z. luxurians (Ames21876)の典型的な葉肉細胞葉緑体 と維管束鞘細胞葉緑体を示している。維管束鞘細胞 葉緑体は大きなレンズ型で、グラナを欠く内膜系を 持つ特徴はトウモロコシのそれと同じであり、また、 多数の大きなデンプン粒を含んでいた。一方、葉肉 細胞に含まれる葉緑体の内膜系は非常に良く発達し た多数のグラナとインターグラナチラコイドからな り、トウモロコシのそれと特徴は一致した。Fig.3A の葉緑体のようにストロマ内に全くデンプン粒を示 さないか、観察されても、それらは、トウモロコシ の葉肉細胞葉緑体と同様に、極めて小さく数も僅 かであった。同じ一年生テオシントの Z. luxurians (PI441933)の二型性葉緑体もこれらと同じ微細構 造特徴を示した。Z. luxurians (Ames21876)では、 デンプン含有率計測対象写真で観察された全葉肉細 胞葉緑体 99 個中、デンプン粒が含まれていたものは 19 個、およそ 19.2%であり、この率はトウモロコシ より高かった。

多年生テオシントは二倍体の Z. diploperennis (PI441931) と四倍体の Z. perennis (Ames21869) の2種を観察した。Fig.3CとFig.3Dは、それぞれ、 Z. diploperennis の典型的な葉肉細胞葉緑体と維管束 鞘細胞葉緑体を示している。維管束鞘細胞葉緑体は、 トウモロコシのそれと同様に、内膜系は並走する単 ーのチラコイドからなり、グラナを欠いていた。チ ラコイド間のストロマには多数の大きなデンプン粒 が含まれていた。一方、葉肉細胞葉緑体がグラナと インターグラナチラコイドからなる内膜系を含むこ とはトウモロコシのそれと同様であったが、ストロ マ内には、少数ながらも、かなりの頻度でデンプン 粒が観察された。デンプン含有率計測対象写真で観 察された全葉肉細胞葉緑体 71 個中、デンプン粒が含 まれていたものは33個、およそ46.5%であり、ト ウモロコシや一年生のテオシントよりも高頻度で葉 緑体がデンプン粒を含むことが示唆された。

Fig.3E と Fig.3F は、それぞれ、四倍体テオシント Z. perennis の典型的な葉肉細胞葉緑体と維管束鞘細胞 葉緑体を示している。前者がグラナを含み、後者は それを欠くという内膜系の特徴はトウモロコシおよ び他のテオシントと同じであった。維管束細胞葉緑 体のストロマに多量のデンプンが含まれていること も同じであったが、トウモロコシや一年生テオシン



Fig.3. Dimorphic chloroplasts in the green leaves of various teosintes. A and B. Chloroplasts of mesophyll cells (A) and bundle sheath cells (B) in an annual teosinte *Z. luxurians* (Ames21876). C and D. Chloroplasts of mesophyll cells (C) and bundle sheath cells (D) in a perennial diploid teosinte *Z. diploperennis*. E and F. Chloroplasts of mesophyll cells (E) and bundle sheath cells (F) in a perennial tetraploid teosinte *Z. perennis*. Note starch grains found in mesophyll cell chloroplasts. Scale bars, 1  $\mu$ m.

トとは異なり、葉肉細胞葉緑体にはかなりデンプン 粒が出現する傾向があった。それは Z. diploperennis と同様であったが、出現頻度はそれより低く、デン プン含有率計測対象写真で観察された全葉肉細胞葉 緑体 127 個中、デンプン粒が含まれていたものは 41 個、およそ 32.3%であった。

トウモロコシ類縁の野生種と思われるトリプサク ムの緑葉に含まれる二型性葉緑体の微細構造を観察 した(Fig.4A, B)。トリプサクムも C4 経路をもつ植物であり<sup>5)</sup>、維管束鞘細胞内の葉緑体は、グラナを 欠いた内膜系とチラコイド間に多量の大きなデンプン粒を含んでおり、トウモロコシやテオシントと同 じ特徴を示した(Fig.4A)。一方、葉肉細胞の葉緑体は、 内膜系ではトウモロコシやテオシントと違いは認め られなかったが、ストロマ内に含まれるデンプン粒 の状況は顕著に異なっていた(Fig.4B)。葉肉細胞の



Fig.4. Dimorphic chloroplasts in the green leaves of tripsacum. A. Chloroplasts of mesophyll cells, containing well developed grana and a numerous number of relatively large starch grains. B. Chloroplasts of bundle sheath cells, showing agranal structures and a numerous number of large starch grains. Scale bars,  $1\mu$ m.



Fig.5. Mesophyll cells of tripsacum leaves, showing all chloroplasts contain a numerous number of relatively large starch grains. Scale bar,  $1 \mu m$ .

葉緑体内にはかなり大きなデンプン粒が多数含まれ ており、そのデンプン粒に関する微細構造的所見は NADP-ME型以外の C₄植物<sup>11)</sup> や典型的な C₃植物の 葉肉細胞内に見られる葉緑体に似ていた。デンプン 含有率計測対象写真で観察されたトリプサクムの全 葉肉細胞葉緑体 106 個中、デンプン粒が含まれてい たものは 86 個、およそ 81.1%であり、トウモロコ シや一年生のテオシントよりも高頻度で葉緑体にデ ンプン粒が含まれることが示唆された。これを反映 し、時には、葉肉細胞内に含まれる全ての葉緑体に 多数の大きなデンプン粒が含まれていた(Fig.5)。

トリプサクムに近縁と思われるジュズダマの緑 葉に含まれる二型性葉緑体の微細構造を観察した (Fig.6A, B)。維管束鞘細胞の葉緑体はグラナを欠い た内膜系を持ち、多数の大きなデンプン粒を含み、 観察された他のすべての植物のそれとよく似ていた (Fig.6A)。葉肉細胞のグラナを持つ葉緑体は、トリ プサクムの葉肉細胞葉緑体とよく似ており多数の大 きなデンプン粒を含んでいた(Fig.6B)。デンプン含 有率計測対象写真で観察されたジュズダマの全葉肉 細胞葉緑体 77 個中、デンプン粒が含まれていたもの



Fig.6. Dimorphic chloroplasts in the green leaves of Job's tears. A. Chloroplasts of mesophyll cells, containing well developed grana and a numerous number of relatively large starch grains. B. Chloroplasts of bundle sheath cells, showing agranal structures and a numerous number of large starch grains. Scale bars,  $1 \mu m$ .

は 69 個、およそ 89.6%で、殆どの葉緑体がデンプ ン粒を含むことを示した。

葉肉細胞葉緑体内のデンプン量の違いを定量的に 比較するために、撮影された電子顕微鏡像を無作為 に抽出し、デジタル画像に変換し、葉緑体および葉 緑体内デンプン粒の断面積を測定した。いずれの植 物でも、観察された葉肉細胞(各植物、n=20)には3 ~4個の葉緑体が含まれており、葉緑体が細胞に占 める割合は25~30%でほぼ同じ値を示した。一方、 澱粉粒が葉緑体に占める割合(%)は植物毎に異なっ ていた。Fig.7 はその結果をまとめたものである。以 下、平均値とその標準偏差(n=60)で表すと、トウ モロコシは 0.08 ± 0.26 % で最も低く、次いで一年 生テオシントが 0.25 ± 0.58%、四倍体の多年生テオ シントが 1.54 ± 2.48%、二倍体の多年生テオシント が1.68 ± 2.95%と順次高くなり、トリプサクムは 7.29 ± 5.75% で最も高かった。なお、ジュズダマは 6.27 ± 5.67%でトリプサクムに近い割合を示した。



Fig.7. Fractional volume (%) of starch grains to the whole mesophyll chloroplast, from the digital image analysis of electron micrographs. Zm: Z. mays, Zl : Z. luxurians, Zp : Z. perennis, Zd: Z. diploperennis, Tr: T. dactyloides, Co : C. lacryma-job.

# 討論

典型的な NADP-ME 型 C<sub>4</sub> 植物の緑葉に見られる葉 緑体の構造分化が機能分化や系統分化と相関してい る可能性に基づき、栽培種トウモロコシとその類縁 種の二型性葉緑体の微細構造を観察して比較検討し た。その結果、葉緑体の内膜系では種間の違いは認 められなかったが、葉肉細胞葉緑体のデンプン粒出 現状況に顕著な違いが生じていることが認められた。 デンプン粒が各葉肉細胞葉緑体に占める割合はトウ モロコシで最も低く、次いで、一年生テオシント、 多年生テオシント、トリプサクムの順に高くなって いた。

従来、トウモロコシの起源については多くの研究 がなされており、テオシントがトウモロコシの直接 の先祖であるとするテオシント説<sup>12,13</sup> や絶滅した野 生種とテオシントやトリプサクムとの交雑により進 化したとする三部説<sup>14)</sup>など諸説あったが、アイソザ イムや葉緑体 DNA の系統解析<sup>15,16)</sup>から、近年では トウモロコシに最も近い系統は一群のテオシントで あると考えられており、トウモロコシの起源にトリ プサクムが関与する可能性も否定されているようで ある<sup>17)</sup>。本研究でなされた葉肉細胞葉緑体のデンプ ン粒出現の比較において、トウモロコシは一年生テ オシントと最も良く似ており、トリプサクムやジュ ズダマとは顕著に異なっていたことはトウモロコシ の起源に関する前述の解釈とよく一致する。また、 葉肉細胞葉緑体におけるデンプン粒の出現状況はト ウモロコシの類縁について考察する上での有効な指 標となると考えられる。

トウモロコシの葉肉細胞葉緑体に全くデンプン粒 が見られないということはない。葉の成長過程や温 度条件によってはかなり明確なデンプンの蓄積が生 じ、デンプン粒が出現する<sup>4,18,19)</sup>。また、デンプン の合成酵素と分解酵素は共に葉肉細胞にも存在して いるが、合成酵素活性は、維管束鞘細胞で著しく高 く<sup>19,20)</sup>分解酵素の活性は葉肉細胞で高いことが知ら れている<sup>20)</sup>。おそらく、両細胞におけるこれらの酵 素の活性化の違いもまたトウモロコシとその類縁種 との相関を示す指標となりうると思われるので、活 性に関する細胞化学的研究が今後の課題として興味 深い。

## 謝辞

本研究を行うにあたり、研究材料のトリプサクムの 株とテオシントの種子をご提供下さいました京都大 学大学院農学研究科応用生物科学専攻栽培植物起源 学分野の河原太八博士に感謝致します。また、河原 太八博士をご紹介下さいました神奈川大学工学部の 大塚一郎博士に謝意を表します。

## 文献

- Laetsch WM (1971) Chloroplast structural relationships in leaves of C<sub>4</sub> plants. In: *Photo- synthesis and Photorespiration*. Hatch MD, Osmond GB and Slatyer RO, eds., Wiley-Interscience, New York. pp. 323-349.
- 2) Kanai R and Edwards GE. (1999) The biochemistry of C<sub>4</sub> photosynthesis. In: C<sub>4</sub> *Plant Biology*. Sage RF and Monson RK, eds., Academic Press, San Diego. pp. 49-87.
- Laetsch WM and Price I (1969) Development of dimorphic chloroplast of sugar cane. Amer. J. Bot. 56: 77-87.
- 4) Suzuki S and Ueda R (1974) Electron microscope studies on the morphogenesis of plastids in C<sub>4</sub>-plants.
  I. The relationship between development of plastids and leaf cell differentiation during germination in

Zea mays L.. Sci Rep. Tokyo Kyoiku Daigaku 15: 237-354.

- Dengler NG and Nelson T (1999) Leaf structure and development in C<sub>4</sub> plants. In: C<sub>4</sub> *Plant Biology*. Sage RF and Monson RK, eds., Academic Press, San Diego. pp. 133-172.
- 6) Sage RF, Li M and Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: C<sub>4</sub> *Plant Biol*ogy. Sage RF and Monson RK, eds., Academic Press, San Diego. pp. 551-584.
- Peachey LD (1965) The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25: 209-231.
- Suzuki S, Nagayoshi H, Ishino K, Hino N and Sugi H (2003) Ultrastructural organization of the transverse tubules and the sarcoplasmic reticurulum in a fish sound-producing muscle. J. Electron Microsc. 52: 337-347.
- 9) Aoki Y, Marumo S, Nishikata H, Kozuka M, Fukada M, Koura N, Hayatsu M and Suzuki S (2015) Ultrastructural changes and intracellular ion movements in tertiary pulvinous cells during the seismonastic response of *Mimosa pudica* L. Sci. J. Kanagawa Univ. 26: 53-69.
- 10) Ito S, Ono M, Hirose Y, Watanabe N, Utagawa C, Maeda N, Marumo S, Shimozono N, Shiozawa T, Ito S, Hayatsu M and Suzuki S (2018) Structural changes and intra- and extra-cellular ion movements in motor cells during leaf closure of insectivorous Venus flytrap. Sci. J. Kanagawa Univ. 29: 55-63.
- 11) Kashiwagi M, Yoshida K, Sakai M, Hamamoto C and Suzuki S (1939) Morphogenesis of chloroplasts

during the illumination in etiolated cotyledons of a C<sub>4</sub> plant *Amaranthus*. *Sci. J. Kanagawa Univ.* **19**: 57-65.

- 12) Beadle GW (1939) Teosinte and the origin of maize. J. Heredity **30**: 245-247.
- Iltis HH (1939) From teosinte to maize: The catastrophic sexual transmutation. *Science* 222: 886-894.
- Mangelsdorf PC and Reeves RG (1938) The origin of maize. Proc. Natl. Acad. Sci. USA 24: 303-312.
- 15) Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ and Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. *Proc. Natl. Acad. Sci. USA* **99**: 6080-6084.
- Matsuoka Y (2005) Origin matters: Lessons from the search for the wild ancestor of maize. *Science* 55: 383-390.
- 17) 福永健二 (2009) トウモロコシの起源 テオシント説 と栽培化に関わる遺伝子-. 国立民俗学博物館調査報 告書 84: 137-151.
- Hilliard JH and West SH (1970) Starch accumulation associated with growth reduction at low temperatures in a tropical plant. *Science* 168: 494-496.
- Downton WJS and Hawker JS (1973) Enzymes of starch ad sucrose metabolism in Zea mays leaves. Phytochemistry 12: 1551-1556.
- 20) Spilatro SR and Preiss J (1987) Regulation of starch synthesis in the bundle sheath and mesophyll of Zea mays L. Intercellular compartmentation of enzymes of starch metabolism and the properties of the ADPglucose pyrophosphorylase. *Plant Physiol.* 83: 621-627.