■原 著■ 2018年度神奈川大学総合理学研究所共同研究助成論文

紫外線照射下におけるケージドオレイン酸油滴封入ベシクルの 巨視的運動

鈴木健太郎^{1,2} 村山栄貴¹ 中山直之¹ 菅原 正¹ 山口和夫¹

Macroscopic Motion of Giant Vesicle Containing Oil-Droplets Composed of Caged Oleic Acid Under UV Irradiation

Kentaro Suzuki^{1, 2}, Hiroki Murayama¹, Naoyuki Nakayama¹, Tadashi Sugawara¹ and Kazuo Yamaguchi¹

¹ Department of Chemistory, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa 259-1293, Japan

 $^2\,$ To whom correspondence should be addressed. E-mail: suzuken@kanagawa-u.ac.jp

Abstract: For constructing a self-propelled giant vesicle (GV) containing a driving source inside, a phospholipid GV encapsulating oil-droplets composed of caged oleic acid, 2-nitrobenzyl oleate (NBO), was prepared the centrifugal precipitation. Encapsulation of several number of the NBO droplets in a unilamellar GV was confirmed under phase-contrast and fluorescence microscopy. Major dynamics of the GVs containing NBO droplets under UV irradiation were a self-propelled motion (76%, N = 84), and the migration direction was independent of the position of the UV light source, unlike in the free NBO droplet. The appearance of the phototriggered rupture of the GV containing a large number of NBO droplets suggested that the origin of the motion was anisotropic modulation of the surface tension of the vesicular membrane caused by dissolving the photo-generated oleic acid from the NBO droplet.

Keywords: self-propelled motion, giant vesicle, caged compound, oil-drople

序論

「動き」は、生命現象を特徴付ける重要なダイナミク スである¹⁾。たとえば、ボルボックスやミドリムシ のような光合成を行う水生微生物は、日差しの強い 環境に自ら移動することで、生育に有利な状況を自 ら作り出す²⁾。また、植物にもみられる小胞輸送では、 単純拡散では実現困難な能動的物質輸送を細胞内で 実現する³⁾。そこで生物を参考に、自ら動きを示す 人工の分子システムを実現することができれば、生 命現象を支える物理現象の理解が深まるだけでなく、 従来の物質科学にはない新しい方法論に基づく物質 輸送システムの構築につながり興味深い。

そのような観点から我々は、化学反応を起こす分子 からなる油滴が自らつくり出す「動き」に関する研 究を進めてきた⁴⁻⁶⁾。例えば、オレイン酸無水物を主 成分とする油滴では、油滴表面で起こる加水分解反 応により生じたオレイン酸が、油滴表面に表面張力 勾配を作り出し、これが方向性ある運動を引き起こ す⁵。また、紫外線照射下でのみ化学反応を行うケー ジドオレイン酸(図1a)を油滴構成分子として利用 することで、紫外線照射による動きの開始/停止の 制御だけでなく、その運動方向も制御できることが 確認された(走光性ダイナミクス)⁶(図1b)。

生物が作り出す動きは、一般に分子モーターのよ うな運動器官が作り出しており³、言い換えれば、 運動器官がその身体全体を動かし、さらには、他者 を動かすこともできる。それに対して既存の自走性 油滴系では、油滴全体が動きを作り出し、さらにそ の動きは自分自身を動かすことのみに使われる⁷。 もし、生物と同じように、駆動源が動きを作り出す 自己駆動系が実現されれば、幅広く動きを利用可能 な新しい分子システムの実現へと繋がる。

そこで本研究では、光照射下の分解反応によって オレイン酸を生じるケージドオレイン酸からなる油 滴を、駆動性のない標準的なリン脂質からなるジャ

図 1. (a) 紫外線照射下でオレイン酸を生ずるケージドオレ イン酸 NBO. (b) NBO 油滴の紫外線照射下での走光性. (c) 封入した NBO 油滴によるベシクルの駆動.

イアントベシクルの内水相に封入し、内封油滴を駆動 源する自己駆動ベシクルの実現を目指した(図1c)。 先に示したように、ケージドオレイン酸油滴単独で は、照射された紫外線の方向に自走する走光性ダイ ナミクスを示す[®]が、それと同時に、光分解生成物 であるオレイン酸が油滴周辺に溶出する。このオレ イン酸が、油滴を封入しているジャイアントベシク ルの膜状態を変調することで、ベシクル全体の動き が生み出される可能性がある。

材料と方法 ^{試薬}

ベシクル内部に封入する光応答性油滴の構成分子で あるケージドオレイン酸 NBO (オレイン酸 2-ニト ロベンジル)は、すでに報告した方法⁶⁰により合成 したものを用いた。蛍光染色用のクロロフィルは、 緑色植物抽出物(C0870,東京化成株式会社)より、 クロロホルム抽出したものを用いた。その他の試薬 おおび溶媒は市販のものをそのまま利用した。

遠心沈降法による油滴封入ベシクルの調製

ケージドオレイン酸油滴が封入されたジャイアントベ シクルの調製は、すでに報告している遠心沈降法[®]を 利用した二重ベシクル(内部に小ベシクルが封入さ れたジャイアントベシクル) 調製法[®]を参考に行っ た。オレイン酸(2 wt%)と抽出クロロフィル(1 wt%) を含む油状の NBO 1 µLを、1 mLのホウ酸塩 pH 標準液(JIS 規格, pH 9.2)に加え、緩やかに震盪す ることで、粒径数µmから数10 µmの NBO 油滴 を含む、o/w エマルションを調製した。この o/w エ マルション 100 µLを、4:1:1のモル比の1・パルミ トイル-2・オレオイル-sn-グリセロ-3・ホスホコリン (POPC)、1・パルミトイル-2・オレオイル-sn-グリセロ -3・ホスホグリセロール Na 塩 (POPG)、およびコレ ステロールを完全に溶解させた流動パラフィン (総 濃度 1 mM) 1 mL に加え震盪することで、NBO 油 滴封入水滴を流動パラフィン中に分散させた o/w/o エマルションを調製した。この o/w/o エマルション 300 µLを、容量 1.5 mL のエッペンドルフチューブ 中に入れたホウ酸塩 pH標準液(600 µL)上に浮かべ、 マイクロ遠心機 (1-16, sigma)を用いて約 20,000 g の遠心加速度を 15 分間印加し、下層の緩衝液中に、 油滴封入ジャイアントベシクルを形成させた。

油滴封入ベシクルへの紫外線照射とその観察

油滴封入ジャイアントベシクルの紫外線照射下にお けるダイナミクスの観察は、すでに報告している論 文の観察システム[®]を用いた。調製した油滴封入ベ シクル分散液を、内容量 26 μ Lのチャンバーに封入 した。これを、倒立型位相差顕微鏡(IX70,オリン パス)のステージ上に置き、試料側方から LED 型単 色 UV 光源(OminiCure LS405S, U-VIX)を用いて、 波長 365 ± 5 nm の単色紫外線(油滴位置での照度 30 mW cm⁻²)を照射した場合の挙動を、顕微鏡に 搭載された CCD カメラユニット(AdvanCam LP2, Advision)を用いて撮影し、動画および静止画とし てコンピュータ上に記録した。得られた画像データ の解析は、主に Power Point(Microsoft)上で行った。

結果と討論

NBO 油滴封入ジャイアントベシクルの調製

位相差顕微鏡観察により、粒径数µmの油滴が複数 個封入された、粒径数 10 μm のジャイアントベシ クルが形成されたことが確認された(図2a, c)。遠 心沈降法で形成されたジャイアントベシクルは、そ の原理上、ユニラメラベシクル(一層の脂質二分子 膜からなるベシクル)ができやすいことが知られて いる⁸。観察されたベシクル膜に関するコントラス トが小さいことは、今回形成されたベシクルが、ユ ニラメラベシクルかそれに近い薄い膜からなる膜構 造を持つことを示唆する。一方で、内水相に封入さ れた油滴は、ベシクル調製時に用いる流動パラフィ ン由来のものである可能性も考えられ、位相差顕微 鏡による観察だけからでは、目的通り NBO 油滴が 封入されているかを判断できない。そこで、NBO 油 滴を調整する際、NBOの光分解反応に適した波長 365 nm 付近の紫外線に対する吸光係数が小さいク ロロフィルで染色することで、NBO 油滴とそれ以外 の油滴とを区別できるようにした(図2b,d)。蛍光 顕微鏡により観察を行ったところ、ベシクルに封入 された油滴は、蛍光性のものとそうでないものとが

図2.(上段)NBO 油滴封入ジャイアントベシクルの位相 差顕微鏡像(a)および,油滴を染色した蛍光色素に基づく 蛍光顕微鏡像(b).(下段)各顕微鏡像における観察物を示 す模式図(c)(d).なお,図d中の破線で示された円形は, 位相差顕微鏡で観察されたベシクルおよび油滴の位置を示 す.位相差顕微鏡と蛍光顕微鏡での観察の間にはタイムラ グがあるため,ブラウン運動の影響により,同一油滴であっ ても両測定間に若干の位置のずれが生じる.

図3. 紫外線照射下における,NBO油滴封入ジャイアン トベシクルの位相差顕微鏡像(左),および,その画像中 のベシクル位置を示した図(右).(a)紫外線照射前,(b)紫 外線照射5分後,(c)紫外線照射10分後.図bおよびcの 右図中に示される破線で示される円形は,初期のベシクル 位置を示す.なお紫外線は,紙面右上方向より照射した.

混在することが明らかとなり、これらのうち前者は NBO油滴であり、後者は流動パラフィン油滴である と考えられる。従って、本方法により、目的とする NBO油滴が封入されたジャイアントベシクルが形成 されたことが確認された。

NBO 油滴封入ジャイアントベシクルの紫外線 照射下のダイナミクス

蛍光顕微鏡観察により、NBO 油滴の封入が確認さ れたジャイアントベシクルに対し、観測視野側方か らの紫外線照射を行った際の巨視的な変化を、位相 差顕微鏡により観察した(図3)。観測した84個の NBO 油滴封入ジャイアントベシクルのうち、64 個 (76%) については、10分程度の紫外線照射に対し て、初期位置からの移動が確認された。なお、アイ ンシュタイン·ストークスの関係式より、数10 µm 以上の大きさのベシクルに対するブラウン運動はベ シクル全体を動かすほど大きくないと見積もられる ことから、この光照射下にみられる動きは、ブラウ ン運動とは区別され、内部に封入された油滴による 影響であると考えられる。実際に、NBO 油滴を含ま ないベシクルに紫外線照射しても、運動性はみられ ない。ベシクルの移動速度は、サンプルごとのばら つきが見られるものの、概ね数 µm min⁻¹ 程度であっ た。ベシクルの運動には直線性がみられるが、その 方向は試料によって完全にランダムであり、この点 は、紫外線に対する走光性がみられる単独の NBO 油滴場合とは異なる。

NBO 油滴から生成されたオレイン酸のベシク ル膜への影響

光反応によって、ベシクル内部で油滴より生成した オレイン酸が、ベシクル膜へと与える影響を確認す るために、通常の約 10 倍量の NBO 油滴が封入さ れたジャイアントベシクルを別途調製し、このベシ クルに、他と同様の紫外線(波長 365 nm,照度 30 mW cm⁻²)を 10 分間照射したところ、ベシクルが 崩壊するダイナミクスが観察された。崩壊時間に幅 はあるものの、十分量の油滴が封入されたベシクル で、このダイナミクスは再現性よく観察された。

オレイン酸/オレイン酸ナトリウムは数 mM の臨 界ミセル濃度(cmc)を有することから¹⁰、光照射 により NBO 油滴上に生じたオレイン酸の一部は、 単分散分子あるいはミセルのかたちでベシクル内水 相に溶出できるものと考えられる。弱塩基条件で洗 剤としても利用されるオレイン酸は、リン脂質から なる脂質二分子膜に不安定化をもたらすことはよく 知られており、この崩壊は、内水相を介したオレイ

ン酸によるものと解釈される。

光分解反応で生成したオレイン酸がベシクル膜へ と与える影響を考慮して、比較的少数の NBO 油滴 が封入した際にジャイアントベシクルが見せる駆動 の発現機構を、以下のように推測した。光分解反応 により生じたオレイン酸は、内水相を介して脂質二 分子膜の内膜(インナーリーフレット)に達すると、 膜内で分子が反転するフリップフロップ機構¹¹⁾に よって、内膜から外膜(アウターリーフレット)へ とオレイン酸が移動する。一般的なリン脂質の場合、 フリップフロップの速度は数日の時定数を持つこと が知られているが¹²⁾、オレイン酸の場合は、酸解離 平衡により界面活性のあるオレートの状態と疎水性 のオレイン酸状態をとることができるので、速やか なフリップフロップが可能であると考えられる。外 膜に達したオレイン酸は、ベシクル外側の表面張力 を低下させるが、このとき、ベシクル中の油滴の位 置の中心からの偏りなどにより、表面のオレイン酸 濃度に不均一性が生じれば、他の自己駆動系同様に マランゴニ効果 5,6,13) による駆動が生じうると考えら れる。

結論

本研究において、光照射下で化学反応を行うことが できる油滴を駆動源として用いることで、動きを持 たないジャイアントベシクルを駆動させる新しい自 己駆動系の構築が実現しうることを示した。その駆 動の原因は、光反応により生成したオレイン酸が、 ベシクル内水相を介してベシクル膜に達し、これに よって生じた表面張力の偏りに関連付けられる。今 後は、ダイナミクス中での、ベシクル内外の水の動 きや分子移動などを明確にする実験を行い、より詳 細な機構の解明を目指すとともに、本系を利用して た物質輸送系の構築を行いたい。

謝辞

本研究は、JSPS 科研費 JP16K05759 および、研究課 題「内部での化学反応を利用して動くベシクルの構 築」に対する 2018 年度神奈川大学総合理学研究所 共同研究助成の助成金(RIIS201804)を受けて行われた。

文献

- Hanczyc MM (2014) Metabolism and motility in prebiotic structures. *Philos. Trans. R. Soc. London B*, 366: 2885-2893.
- Carlile MJ (1975) Primitive Sensory and Communication Systems, The Taxes and Tropisms of Micro-Organism and Cells. Academic Press, London.
- Soh S, Bytrska M, Landere-Grzybowska K and Grzybowski BA (2010) Reaction-diffusion system in intercellular molecular transport and control. *Angew. Chem. Int. Ed.* 49: 4170-4198.
- Suzuki K, Toyota T, Takakura K and Sugawara T (2009) Sparkling morphological changes and spontaneous movements of self-assemblies in water induced by chemical reactions. *Chem. Lett.* 38: 1010-1015.
- Hanczyc MM, Toyota T, Ikegami T, Packard N and Sugawara T (2007) Fatty acid chemistry at the oilwater interface: Self-propelled oil droplets. J. Am. Chem. Soc. 129: 9386-9391.
- Suzuki K and Sugawara T (2016) Phototaxis of oil droplets comprising a caged fatty acid tightly linked to internal convection. *ChemPhysChem* 17: 2300-2003.
- Ryazantesev YS, Velarde MG, Rubio RG, Guzmán E, Ortega F and López P (2017) Thermo- and solutecapillary: Passive and active drops. *Adv. Colloid Interf. Sci.* 247: 52-80.
- Pautot S, Frisken BJ and Weitz DA (2003) Production of unilamellar vesicles using an inverted emultion. *Langmuir* 19: 2870-2879.
- Suzuki K, Machida K, Yamaguchi K and Sugawara T (2018) Photo-triggered recognition between most and guest compounds in a giant vesicle encapsulating photo-pierceable vesicls. *Chem. Phys. Lipids* 210: 70-75
- Heß K (1942) Die röntgenographische und viskosimetrische Untersuchung von Seifenlösungen. *Fette Seifen Anstr.* 49: 81-88.
- 11) Israelachvili JN (2011) Intermolecular and Surface Forces, Third edition. Academic Press, Amsterdam.
- McConnell MH and Kornberg RD (1971) Insideoutside transitions of phospholipids in vesicle membranes. *Biochem.* 10: 1111-1120.
- Kitahata H, Yoshinaga N, Nagai KH, Sumino Y (2013) Dynamics of Droplets. In: *Pattern Formations and Oscillatory Phenomena*. Kinoshita S, ed., Elsevier, Amsterdam, pp. 85-118.