■原 著■

二層二重スリットでの量子干渉思考実験

行方幸希1 木村 敬^{1,2}

Theory of Bilayer Double-Slit Experiment for Quantum Coherence

Saki Namekata¹ and Takashi Kimura^{1, 2}

- ¹ Department of Physics and Mathematics, Faculty of Science, Kanagawa University, Hiratsuka city, Kanagawa 259-1293, Japan
- ² To whom correspondence should be addressed. E-mail: tkimura@kanagawa-u.ac.jp

Abstract: Herein, we used an ideal measurement to extend a single-layer double-slit gedanken experiment to a bilayer type, with the assumption that an ideal detector is used in the place of every slit; this detector detects a passing quantum with a certain probability. Similar to the single-layer case, we found that when the detector at the slit in front of the film always detects a passing quantum, the interference fringe caused by the quantum coherence on the film disappears. Moreover, a detector at the slit that is not from the film causes the replacement of the maximum interference fringe with the minimum, when the experimental parameters fulfill a certain conditions.

Keywords: quantum mechanics, quantum coherence, ideal measurement, bilayer double-slit experiment

序論

量子力学の観測問題の例題として、最も著名ものの 一つが二重スリットを通過する量子力学に従うミク ロの粒子(量子)の干渉である。図1のように、左 側の粒子源から放出される量子が2つあるスリット を経て右側のフィルムに衝突するという実験を考え よう。

図1. 電子の二重スリット実験の模式図. 左端の電子銃から放たれた電子は二重スリットを通過した後,球面波として伝搬し,右端のフィルム上に痕跡を残す.

量子は光子、電子、原子などミクロなスケールの ものならどのようなものでもよいが、互いに影響を 与えないように1個ずつ、十分時間をおいて粒子源 から放射されるとする。量子が最終的にフィルムに 到達したとき、フィルム上には量子の痕跡の点が残 るとしよう。量子が粒子源からフィルムに至るまで の途中で、「量子は粒子である以上、上のスリット か下のスリットをいずれか一方を通る」というのが 常識的な考え方だ。ところがこの実験を繰り返して いくと、フィルム上には量子の痕跡の点の集合とし て徐々に縞模様が現れる。そしてその縞模様は、波 としての光の干渉を表す Youngの実験と同じ縞模様 で、その間隔も Young の実験の場合と全く同様に、 「上下2つのフィルムを通った」古典的な2つの波の 干渉の問題として計算されたものと一致する。これ は量子が粒子性と波動性の両方の性質を合わせ持つ ことの現れである。この量子の粒子と波の二重性は、 理論的な予言に留まらず、光子¹⁾、電子²⁾、原子³に おいて実験で確認された。

図2は、日立基礎研究所で行われた有名な1電子 干渉実験²⁰でのフィルム上の電子の痕跡である。左 上、右上、左下、右下の順に10、2×10²、6×10³、1.4 ×10⁴と電子数が増えるに従い、徐々に干渉縞が現 れて来る。一方、浜松フォトニクスによる光子干渉 の実験¹⁰による電子と同様の結果は、Youngの実験 の干渉縞とは「一光子の実験をマクロな数の光子に

図2. 外村ら²⁰による電子の二重スリット実験の結果. 白 点はフイルム上の痕跡点である. 白点の個数は左上,右上, 左下,右下の順に10,2×10²,6×10³,1.4×10⁴である. (図は, 日立研究開発グループホームページ http://www.hitachi. co.jp/rd/portal/highlight/auantum/doubleslit/index.html よ り許可を得て転載.)

対して同時に行って集計したもの」であったことを 意味している。その後、同様な干渉縞が C₆₀ 分子⁴⁾ のような大分子、更には分子量が1万を超える巨大 分子⁵⁾に至るまで観測されており、どの程度のスケー ルまで量子力学による予想が成り立つのか興味が持 たれている。

さて、スリットを1つだけにしたらどうなるだろ うか。この場合、量子力学が教えるところであり実 験でも確認されていることだが、もはや干渉縞は生 じない。この事実を元に二重スリットの実験に話を 戻すと、二重スリットの場合は、量子は「自分自身 と干渉した」ということになる。即ち1個の量子が、 「上下2つのスリットを両方とも通った」のである。 我々の日常的な感覚からは非常識に思えるが、その ように理解する他はない^{6.7}。

それでは二重スリットがある場合、量子は常に両 方のスリットを通るのだろうか?答えは No である。 もし、両方のスリットの場所に量子の検知器を置け るとしよう。その検知器は量子を吸収せず、近くを 量子が通ったことだけを検知する理想的な非破壊測 定装置であるとする。このとき、仮に上のスリット に設置された検知器が反応したとすると、量子が上 のスリットを通り、下のスリットは通っていないこ とが確定する。従って、もう波は上のスリットを通 る一つしかなく干渉縞は生じない。観測によって、 下のスリットを通る波が消滅するのである。なお、「通 過スリットの特定による干渉縞の消失は位置測定の 反作用によって粒子の運動量が乱されることで説明 出来る」という、射影演算子に頼らない立場⁸にお いても、「粒子の通過スリットを確認すれば干渉縞が 消える」という結論自体は変わらない。

このような二重スリットの干渉及びその経路観測 による消滅を最も簡潔に式の上で記述するのが、次 章で詳しく説明する理想測定の理論による先行研究⁹⁰ である。本稿ではこの先行研究をもとに、二重スリッ トを二層にした系の干渉問題についての我々の試論 を紹介する。我々の計算結果は、フィルム直前の二 重スリット上での測定が干渉の有無を決めるという 自然な予想を確認するととともに、一層目の二重ス リットでの経路観測によって、フィルム上での量子 密度の極大、極小が入れ替わるという興味深い結果 が示すものになっている。将来的に先行研究の実験 が実現されれば、二層に拡張することも可能である と予想され、量子力学の観測問題において、一つの 検討の舞台となる可能性もある。

本稿では、以下のような構成を採る。「方法」の「理 想測定の理論」において、上述の理想的な非破壊測定 装置(以下これを「検出器」と呼ぶ。)を含む系の二 重スリットの干渉問題の定式化に関する先行研究⁹を 紹介する。「二層二重スリットの理論」では、二重スリッ トを二層にする我々の拡張理論を説明する。「結果と 討論」では、「二層二重スリットの理論」で解説され た理論式に基づいて、具体的な計算結果をグラフで表 し、それらの物理的解釈を説明する。

方法 理想測定の理論

図3のように量子の二重スリット実験において、上 (下)のスリットに検出器 D+(D-)を設置する。なお、 簡単のため本稿では実験系が平面上にあるとし、ス リットを実際の系での立体上の線ではなく平面上の 点のように扱うことにする。

まず、量子の波動関数を

$$|\psi\rangle = |\psi_+\rangle + |\psi_-\rangle \tag{1}$$

と表す。ここで|ψ₊〉(|ψ₋〉)は、上(下)のスリットを通る量子の波動関数である。ここで、上下のス リットには同位相の量子波が入射するとしている。

量子が D_+ (D_-)を通過すると、量子検出の結果 として検出器の状態が $|D_{\pm}\rangle$ から $|D'_{\pm}\rangle$ に変化するとし よう。量子と検出器両方を合わせた系全体の状態は、

図 3. 量子検出器を設置した量子の二重スリット実験の仮 想図. 上下のスリットにそれぞれ検出器 D₊と D₋ が設置 されている.

スリット通過前の

$$|\Psi\rangle = (\psi_{+}\rangle + |\psi_{-}\rangle) \otimes |D_{+}D_{-}\rangle$$
 (2)
から、通過後には

$$|\Psi'\rangle = |\psi_+\rangle \otimes |D'_+D_-\rangle + |\psi_-\rangle \otimes |D_+D'_-\rangle \tag{3}$$

と変化することになる。なおこの時点で、系全体の 初期状態を量子の状態と検出器の状態の直積で表せ るという暗黙の仮定を行っている。(この仮定は「シュ レーディンガーの猫」のパラドックスが議論される 際にも、しばしば暗黙のうちになされている。)系全 体の密度行列は

$$\rho_{\rm s} = |\Psi'\rangle\langle\Psi'| \tag{4}$$

である。ここで、検出器の取り得る状態について対 角和(trace)をとることで、量子系の密度行列を抜 き出すことが出来る。

$$\rho \equiv \operatorname{Tr}_{D}\rho_{s}
= \langle D'_{+}D_{-}|\rho_{s}|D'_{+}D_{-}\rangle + \langle D_{+}D'_{-}|\rho_{s}|D_{+}D'_{-}\rangle
= |\psi_{+}\rangle\langle\psi_{+}| + |\psi_{-}\rangle\langle\psi_{-}|.$$
(5)

上または下の検出器が反応したときの量子系 の密度行列がそれぞれ $\langle D'_{+}D_{-}|\rho_{s}|D'_{+}D_{-}\rangle$ と $\langle D_{+}D'_{-}|\rho_{s}|D_{+}D'_{-}\rangle$ と与えられ、その和が検出器の反 応の統計平均としての量子系のみの密度行列を与え るのである。この操作によって、量子状態は密度行 列が単一の波動関数で表される純粋状態(式(1))から混合状態5へと移った。検出器の状態についての 対角和をとる作用が通ったスリットを、(その上下の いずれかは別として)確定させる射影演算子の演算 と等価なためである。フィルム上の座標x(図4)で の波動関数はそれぞれのスリットから球面波として 伝わり、

$$\langle x|\psi_{\pm}\rangle \propto \frac{\exp[ikL_{\pm}(x)]}{L_{\pm}(x)}$$
 (6)

と与えらえる。ここで $k=2\pi/\lambda$ (λ は de Broglie 波長)

図 4. 二重スリットの配置図. *l*はスリットとフィルムの 間の距離, *s*はスリット間の距離, *x*はフィルム上の座標 を表している.

は量子の波数であり、 $L_{\pm}(x) \equiv \sqrt{l^2 + (x \mp s/2)^2}$ は上

(-)下(+)のスリットからフィルム上の座標 xま での距離を表す。これらより、フィルム上での量子 密度

$$\langle x|\rho|x\rangle \propto \frac{1}{L_{+}^{2}(x)} + \frac{1}{L^{2}(x)}$$
(7)

が得られる。予想されたように、検出器のおかげで 干渉縞を与える振動項は現れない。

それでは、干渉縞を復活させるにはどうすればよ いであろうか。そのために、スリットを量子が通っ たときの検出器の検出確率を導入しよう。検出器を 置いて量子を検出しなければ、検出器がない場合と 同じになるという仕組みである。具体的には、全系 の波動関数を

$$\begin{split} |\Psi\rangle &= |\psi_+\rangle \otimes (\alpha_1'|D_+'D_-\rangle + \alpha_1|D_+D_-\rangle) \\ &+ |\psi_-\rangle \otimes (\alpha_2'|D_+D_-'\rangle + \alpha_2|D_+D_-\rangle) \end{split} \tag{8}$$

とすれば、上(下)側の検出器の検出確率が $|\alpha'_1|^2$ $(|\alpha'_2|^2)$ 検出しない確率が $|\alpha_1|^2 = 1 - |\alpha'_1|^2$ $(|\alpha_2|^2 = 1 - |\alpha'_2|^2)$ と与えらえることになる。なお、一般性を失わずに α_1 や α_2 は正の実数にとれるので今後そのようにする。

式(5)と同様の密度行列の計算を実行すると、

$$\rho = \operatorname{Tr}_{D}\rho_{s}$$

$$= \langle D'_{+}D_{-}|\rho_{s}|D'_{+}D_{-}\rangle + \langle D_{+}D'_{-}|\rho_{s}|D_{+}D'_{-}\rangle$$

$$+ \langle D_{+}D_{-}|\rho_{s}|D_{+}D_{-}\rangle$$

$$= |\psi_{+}\rangle\langle\psi_{+}| + |\psi_{-}\rangle\langle\psi_{-}|$$

$$+ \alpha_{1}\alpha_{2}(\psi_{+}\rangle\langle\psi_{-}| + |\psi_{-}\rangle\langle\psi_{+}|)$$
(9)

となる。なお、検出器の状態についての対角和を とる際、両方の検出器とも量子を検出しない状態 $|D_+D_-\rangle$ が加わっている。また式 (9) には $\alpha_1 \alpha_2$ を比 例係数に伴って、 $|\psi_+\rangle \ge |\psi_-\rangle$ という上下の経路の 波動関数の積が現れており、その結果、フィルム上 の量子密度には

$$\langle x|\rho|x\rangle \propto \frac{1}{L_{+}^{2}(x)} + \frac{1}{L_{-}^{2}(x)} + \alpha_{1}\alpha_{2}\frac{\cos k[L_{+}(x) - L_{-}(x)]}{L_{+}(x)L_{-}(x)}$$
(10)

と、干渉縞を与える振動項(右辺最終項)が現れる(図 5)。振動項の比例係数 $\alpha_1 \alpha_2$ の存在は $\alpha_1 = 0$ または $\alpha_2 = 0$ 即ち $\alpha'_1 = 1$ または $\alpha'_2 = 1$ (従って、上下い ずれか一方の検出器の検出確率が1)ならば、量子 の通ったスリットが確定し、干渉縞が消えるという

図 5. 検出器を設置した二重スリットでのスリット上の量 子密度. 検出率に関係するパラメターとしては $\alpha_1 \alpha_2 = 0$, 0.5, 1 をとっている. また,二重スリット・フィルム間の 距離 l = 10,スリット間隔s = 9,波長= s/5(即ち,波数 $k = 2\pi/\lambda = 10\pi/s$)としている. なお,本図は正確には 式(10)の右辺を表したもので,量子密度の規格化は行って いない.

ことを表している。ここで、 $\alpha'_1 = 1$ かつ $\alpha'_2 = 1$ で ある(従って、両方の検出器とも検出確率が1)で ある必要はないことに注意しよう。一方の検出確率 1の検出器が検出しなければ、量子は他方の検出器 の置かれたスリットを通ったことが決まるからであ る。言い換えれば、干渉縞が現れるための必要十分 条件は、上下両方のスリットの検出確率がともに1 未満 ($\alpha_1 \alpha_2 < 1$)であることである。なお、スクリー ン上で量子波が強め合う明線の条件は、 $k(L_+(x) - L_-(x)) = 2m\pi$ であり、実験では多くの場合 $l \gg s, x$ なので $x \simeq m \lambda l/s \ge kx$ る。

また、干渉縞は検出器が検出しないことによって 弱められ、その大きさは $\alpha_1 \alpha_2$ で決められる。その ため $\alpha_1 \alpha_2$ は、先行研究では「純粋度」⁹と呼ばれて いる。なお、関連する量として、干渉縞の振幅の最 大(小)値 I_{max} (I_{min})から定義される

visibility = $\frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$ もよく用いられている。

二層二重スリットの理論

本章では前章で紹介した先行研究に基づき、図6の ように二重スリットを二層にした系についての我々 の理論を紹介する。なお、二重スリットを二層にし た場合、右側の二重スリット上で、スリット以外の 壁の部分に量子の大部分は衝突する。我々が問題と するのは、右側の二重スリットを通って最終的にフィ ルム上に達する一部の量子のみなので、実際に実験 をする場合には、二重スリット1枚のみの場合より も非常に多くの量子を必要とする。

図6では、前章で述べた一層目の(左側の)二 重スリットに設置された検出器 D_+ と D_- と同様に、 二層目の(右側の)二重のスリットにも検出器 Δ_+ と Δ_- がそれぞれ設置されている。それぞれの検出 率を $|\beta'_1|^2$ 、 $|\beta'_2|^2$ とするが、簡単のため $\beta'i$ 及び

図 6. 層二重スリットの模式図. 2枚の二重スリットを並 べている. いずれの二重スリットにも上下のスリットに 量子検出器が設置されている. 省略されている量子銃から フィルムに至るまでの量子の経路(上下のスリットの通り 方)は2×2=4通り存在する. 2枚の二重スリットは同 じスリット間距離sを持ち, 2枚の二重スリット間の距離 と右側の二重スリットとフィルム間の距離はともに1であ る.

 β'_i (*i* = 1, 2) を今後 $\beta'_i^2 + \beta_i^2$ を満たす正の実数と する (β'_i^2 は量子を検出しない確率)。図 6 で表さ れる量子の各経路に沿ったフィルム上の波動関数は

$$\langle x|\psi_{++}\rangle \propto \frac{\exp(ikl)}{l} \cdot \frac{\exp[ikL_{+}(x)]}{L_{+}(x)}$$

$$\langle x|\psi_{+-}\rangle \propto \frac{\exp(ik\sqrt{l^{2}+s^{2}})}{\sqrt{l^{2}+s^{2}}} \cdot \frac{\exp[ikL_{-}(x)]}{L_{-}(x)}$$

$$\langle x|\psi_{-+}\rangle \propto \frac{\exp(ik\sqrt{l^{2}+s^{2}})}{\sqrt{l^{2}+s^{2}}} \cdot \frac{\exp[ikL_{+}(x)]}{L_{+}(x)}$$

$$\langle x|\psi_{--}\rangle \propto \frac{\exp(ikl)}{l} \cdot \frac{\exp[ikL_{-}(x)]}{L_{-}(x)}$$
(11)

であり、量子全体のフィルム上の波動関数はこれら の和 $\psi = \psi_{++} + \psi_{+-} + \psi_{-+} + \psi_{--}$ である。 量子と検出器の合成系の波動関数は

$$\begin{split} |\Psi\rangle &= \psi_{++} \otimes (\alpha_1' | D'_+ D_- \rangle + \alpha_1 | D_+ D_- \rangle) \\ &\otimes (\beta_1' | \Delta'_+ \Delta_- \rangle + \beta_1 | \Delta_+ \Delta_- \rangle) \\ &+ \psi_{+-} \otimes (\alpha_1' | D'_+ D_- \rangle + \alpha_1 | D_+ D_- \rangle) \\ &\otimes (\beta_2' | \Delta_+ \Delta'_- \rangle + \beta_2 | \Delta_+ \Delta_- \rangle) \\ &+ \psi_{-+} \otimes (\alpha_2' | D_+ D'_- \rangle + \alpha_2 | D_+ D_- \rangle) \\ &\otimes (\beta_1' | \Delta'_+ \Delta_- \rangle + \beta_1 | \Delta_+ \Delta_- \rangle) \\ &+ \psi_{--} \otimes (\alpha_2' | D_+ D'_- \rangle + \alpha_2 | D_+ D_- \rangle) \\ &\otimes (\beta_2' | \Delta_+ \Delta'_- \rangle + \beta_2 | \Delta_+ \Delta_- \rangle) \end{split}$$
(12)

である。前章と同様に装置の状態について対角和を 取ることで、量子の密度行列が

$$\begin{aligned} \rho_e &= \mathrm{Tr}_D \mathrm{Tr}_\Delta |\Psi\rangle \langle \Psi| \\ &= |\psi_{++}\rangle \langle \psi_{++}| + |\psi_{+-}\rangle \langle \psi_{+-}| \\ &+ |\psi_{-+}\rangle \langle \psi_{-+}| + |\psi_{--}\rangle \langle \psi_{--}| \\ &+ \alpha_1 \alpha_2 (|\psi_{++}\rangle \langle \psi_{-+}| + |\psi_{-+}\rangle \langle \psi_{++}| \end{aligned}$$

$$+|\psi_{+-}\rangle\langle\psi_{--}| + |\psi_{--}\rangle\langle\psi_{+-}|) + \beta_{1}\beta_{2}(|\psi_{++}\rangle\langle\psi_{+-}| + |\psi_{+-}\rangle\langle\psi_{++}| + |\psi_{-+}\rangle\langle\psi_{--}| + |\psi_{--}\rangle\langle\psi_{-+}|) + \alpha_{1}\alpha_{2}\beta_{1}\beta_{2}(|\psi_{++}\rangle\langle\psi_{--}| + |\psi_{+-}\rangle\langle\psi_{-+}| + |\psi_{-+}\rangle\langle\psi_{++}|).$$
(13)

と、得られる。これにより、フィルム上の量子密度は、 そのフィルム上での規格化を行うと、

$$\begin{aligned} \langle x|\rho|x\rangle &= \frac{\langle x|\rho_e|x\rangle}{Z}, \quad Z = \int_{-\infty}^{\infty} \langle x|\rho_e|x\rangle \, dx, \\ \langle x|\rho_e|x\rangle \\ &= \left(\frac{1}{l^2} + \frac{1}{l^2 + s^2} + 2\alpha_1\alpha_2 \frac{\cos\left[k\left(\sqrt{l^2 + s^2} - l\right)\right]}{l\sqrt{l^2 + s^2}}\right) \\ &\times \left(\frac{1}{L_+^2(x)} + \frac{1}{L_-^2(x)}\right) \\ &+ 2\beta_1\beta_2 \Big\{\alpha_1\alpha_2\left(\frac{1}{l^2} + \frac{1}{l^2 + s^2}\right) \\ &+ 2\frac{\cos k\left(\sqrt{l^2 + s^2} - l\right)}{l\sqrt{l^2 + s^2}}\Big\} \frac{\cos k\left(L_+(x) - L_-(x)\right)}{L_+(x)L_-(x)} \end{aligned}$$
(14)

と与えられる。(なお、実際の実験では設定によって 量子がフィルム上に到達する確率は異なるはずなの で、この規格化は理論における便宜上、整理上のも のでしかない。)式(14)は積 $\alpha_1 \alpha_2 や \beta_1 \beta_2$ の関数 として与えられ、二重スリットが1枚のみの場合の 自然な拡張になっている。その一方で、両者の積 α_1 $\alpha_2 \beta_1 \beta_2$ に依存する新たな項も現れている。

結果と討論

本章では前節で得られた式(14)に基づいて、いくつ かのパラメター別の結果とそれらについての物理的 考察を述べる。

右側のスリットで量子を確率 1 で検出する場合 (β₁β₂ = 0 の場合)

この場合は、右側の二重スリットの上下どちらのス リットを通ったかが決まる。その後は量子波が干渉 する余地がないため、先行研究⁹で検出器の検出確 率が1の場合に帰着し、干渉縞は $\alpha_1 \alpha_2$ によらず消 失する(図7)。このことは、式(14)の $\langle x | \rho_e | x \rangle$ が

$$\langle x | \rho_e | x \rangle$$

$$= \left(\frac{1}{l^2} + \frac{1}{l^2 + s^2} + 2\alpha_1 \alpha_2 \frac{\cos\left[k\left(\sqrt{l^2 + s^2} - l\right)\right]}{l\sqrt{l^2 + s^2}} \right)$$

$$\times \left(\frac{1}{L_+^2} + \frac{1}{L_-^2}\right)$$
(15)

図7. 2枚目の二重スリットの上下いずれかのスリットで 量子が必ず検出される場合($\beta_1 \beta_2 = 0$ の場合)のフィル ム上の量子密度. この場合,結果は $\alpha_1 \alpha_2$ には依存しない (本文参照). 二重スリットと2枚目のフィルム間の距離(= 2枚の二重スリット間の距離) l=10, スリット間隔s=9, 波長 $\lambda = s/5$ (波数 $k=2\pi/\lambda = 10\pi/s$)を採っている.

となることからもわかる。なお、式(15) は $\alpha_1 \alpha_2$ に 依存する項とxに依存する項との積で書かれている ため、規格化を行った後の $\langle x | \rho | x \rangle$ はもはや $\alpha_1 \alpha_2$ に は依存しない。よって式(15)と式(7)は、規格化ま で考慮すれば完全に一致する。

右側のスリットで量子を全く検出しない場合 (β₁β₂=1の場合)

この場合には、他のパラメターによらず必ず干渉縞 が生じる。仮に量子が通った左側のスリットの上下 が確定しても右側の二重スリットの上下どちらを量 子が通ったかが確定せず、右側の二重スリットとフィ ルムの間では2つの進路の異なる波が存在するから である。なお、ここまでの説明だけからは左側の二 重スリットの検出器の役割が小さいように思えるか もしれないが、以下の小節で示すように左側の二重 スリットの検出器も一定の条件下で重要な役割を果 たす。

$a_1 a_2 = 1 の場合$

 $\alpha_1 \alpha_2 = \beta_1 \beta_2 = 1$ の場合は、全ての検出器がない 場合に対応する。図8は $\beta_1 \beta_2 = 0$ 、 $\alpha_1 \alpha_2 = 1$ の場 合の量子密度の結果を示している。ここで*s*につい て、後述する図9の $\alpha_1 \alpha_2 = 0$ のときとの比較のため、 図9と同じ3つのスリット間隔sの数値を採用して いる。結果は、古典的なヤングの実験を二層二重ス リットで行った場合と同様である。即ち、量子密度 はフィルム上の原点*x*=0 で強め合って最大値をと り、原点を対称とした干渉縞が形成する。

$a_1 a_2 = 0$ の場合

ところが、 $\alpha_1 \alpha_2 = 0$ の場合は話が変わって来る。 このとき、左側の二重スリット上での量子の経路は

図8. 両方の二重スリットとも量子を検出しない場合 (α_1 $\alpha_2 = \beta_1 \beta_2 = 1$ の場合)のフィルム上の量子密度. $\lambda = 1$ (波 数 $k = 2 \pi / \lambda = 2 \pi$), l = 10とし, $s = s_{\text{reverse}} \approx 3.20$ (実線: 赤), $s = s_{\text{same}} \approx 4.58$ (破線:緑) $s = (s_{\text{same}} + s_{\text{reverse}}) = 2 \approx 3.89$ (一 点破線:青)の3つのsのときの結果を示している.

図 9. 右側の二重スリット上では量子を検出しないが,左 側の二重スリット上では必ず量子を検出する場合($\alpha_1 \alpha_2 = 0$ かつ $\beta_1 \beta_2 = 1$ の場合)のフィルム上の量子密度. $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10 とし, $s = s_{\text{reverse}} \approx 3.20$ (実線:赤), $s = s_{\text{same}} \approx 4.58$ (破線:緑) $s = (s_{\text{same}} + s_{\text{reverse}})/2 \approx 3.89$ (一点破線:青)の3つのsのときの結果を示している. $s = s_{\text{reverse}}$ (実線)のときと異なり, $s = s_{\text{same}}$ (破線)のときは原点で量子密度が極小になっていることが分かる.

確定している。量子が仮に上のスリットを通ったと すると、その量子が右側の二重スリットの上のスリッ トを通過する場合と、下のスリット通過する場合 で、経路長はそれぞれ $\sqrt{l^2 + s^2}$ となる。まず経路差 $\sqrt{l^2 + s^2} - l$ が波長の整数 *m* 倍、即ち

$$s = \sqrt{m^2 \lambda^2 + 2m\lambda l} \quad (m = 0, 1, 2, \cdots) \tag{16}$$

のときは、右側の二重スリットにおける上下のスリット上での波は同位相で、それらがフィルムの原点に 来たときはお互いに強め合い、原点で最大をとる干 渉縞が形成され、 $\alpha_1 \alpha_2 = 1$ のときと同様となる。

しかし、 $\sqrt{l^2 + s^2} - l$ が波長 λ の半整数 (m + 1/2) 倍になるとき、即ち

$$s = \sqrt{\left(\frac{2m+1}{2}\lambda\right)^2 + (2m+1)\lambda l} (m = 0, 1, 2, \cdots)$$
(17)

のときは右側の二重スリットにおける上下のス リット上での波が逆位相となるため、フィルム の原点で波は弱め合い、量子密度は極小をと る。なお、実験系では多くの場合 $l \gg \lambda$ なので $s_{\text{same}} \approx \sqrt{2m\lambda l}, s_{\text{reverse}} \approx \sqrt{(2m+1)\lambda l}$ と条件式 が近似できる。

上記を図9により確認しよう。右側の上下のスリットで同位相になる場合(経路差が1波長: $s = s_{same} \equiv \sqrt{\lambda^2 + 2\lambda l}$)と逆位相になる場合(経路差が半波長: $s = s_{reverse} \equiv \sqrt{\lambda^2/4 + \lambda l}$))で、確かに原点での極大、極小が入れ替わることが分かる。参考のため両者の平均 $s = (s_{same} + s_{reverse})/2$ のときの結果も加えてある。このようにsによって、原点での極大と極小が徐々に入れ替わる。この極大と極小の入れ替わりは、二重スリット1枚だけでは生じず、2枚の二重スリットを考えることで初めて生じるものである。

なお、前小節の図8に戻ると、右側の二重ス リットのスリットの上下での位相差の効果が部分 的ながらすでに現れており、 $s = s_{same}$ (破線)、 $s = (s_{same} + s_{reverse}) = 2$ (一点破線)、 $s = s_{reverse}$ (実線)とい う順に、原点での密度の大きさが減少していること が分かる。

一般の a1 a2 の場合

前小節で量子密度が原点で極小になった場合(s = $s_{reverse} = = \sqrt{\lambda^2/4 + \lambda l}$))を考え、 $\alpha_1 \alpha_2 \approx 0$ から 1まで増加させていくと、原点での振る舞いが極小

図10. 右側の二重スリット上で量子を検出しない場合に(β_1 , $\beta_2 = 1$ の場合). 左側の二重スリット上での量子の検出率 を変えた場合の量子密度. $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10, $s = s_{\text{reverse}} = \sqrt{\lambda^2/4 + \lambda l^{\approx}} 3.20$ を採っている. 原点 での密度が低いグラフから高いグラフへの順に $\alpha_1 \alpha_2 = 0$, 0.9 (いずれも実線:黒), 0.99 (点線:赤), 0.999 (一点 破線:緑), 1 (二点破線:青)のときの結果を表している.

から極大へと移り変わることが確かめられるはずで ある。しかし、 $\alpha_1 \alpha_2 \le 0.9$ 程度まではほとんど変化 が見られず、 $\alpha_1 \alpha_2 = 1$ 近傍で驚くほど急に変化する。 図 10 では $\alpha_1 \alpha_2 = 0$ 、0.9、0.99、0.999、1 のときを 示しているが、このうち $\alpha_1 \alpha_2 = 0 \ge \alpha_1 \alpha_2 = 0.9$ の グラフはほとんど重なってしまっている。これは左 側の二重スリットで量子を検出する場合、フィルム 上の原点で弱め合いが起き得る条件下では、左側の 二重スリット上での検出確率がかなり低くなるまで その弱め合いが確認できることを示している。

「純粋度」について

二重スリット1枚のみの場合、干渉縞の強弱の強さ を決める「純粋度」は $\alpha_1 \alpha_2$ で定義されている。一 方で既に見たように、二層二重スリットの場合は、 フィルムの前にある右側の二重スリットの検出率に 関するパラメター $\beta_1 \beta_2$ がゼロでないときのみ干渉 縞が現れる。従って、純粋度に相当するパラメター は $\beta_1 \beta_2$ になるべきであろうと期待される。

実際に、前節で紹介した左側の二重スリットからの 波が右側の二重スリットの上下スリットの位置で同位 相になる場合、即ち $s = s_{same}$ の場合には、上記の予想 が当てはまる。図 11 は $\alpha_1 \alpha_2 = 0.5$ を固定し、 $\beta_1 \beta_2$ を変えた結果を示しているが、干渉縞の振幅が $\beta_1 \beta$ の 増加に伴って滑らかに大きくなる様子が見られる。一 方、逆に $\beta_1 \beta_2 = 0.5$ を固定し、 $\alpha_1 \alpha_2$ を変化させても、 ほとんどグラフの変化が見られない。図 12 では実 際には $\alpha_1 \alpha_2 \ge 0$ から1まで 0.2 刻みで変化させた 計 6 つのグラフが書かれているが、線幅の範囲内に その変化は収まっている。このように、 $s = s_{same}$ の場 合には二重スリットの1枚の場合の純粋度に相当す るはたらきを $\beta_1 \beta$ がし、逆に $\alpha_1 \alpha_2$ はそのはたらき をしないことが分かる。

図 11. $\alpha_1 \alpha_2 = 0.5$ を固定し, $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10, $s = s_{same} = \sqrt{\lambda^2 + 2\lambda} \approx 4.58$ を採った場合の $\beta_1 \beta_2$ 依存性を示したもの. 原点での量子密度の小さいも のから順に $\beta_1 \beta_2 = 0$ (黒), 0.2(赤), 0.4(紫), 0.6(緑), 0.8(青), 1.0(橙)のグラフである(全て実線).

図 12. $\beta_1 \beta_2 = 0.5$ を固定し,=1(波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10, $s = s_{same} = \sqrt{\lambda^2 + 2\lambda} \approx 4.58$ を採った場合の, $\alpha_1 \alpha_2$ 2依存性を示したもの。実際には $\alpha_1 \alpha_2 = 0$, 0.2, 0.4, 0.6, 0.8, 1.0 をプロットしているが,全てのグラフが線幅の範 囲内に収まっている.

図 13. $\alpha_1 \alpha_2 = 0.5$ を固定し、 $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10, $s = s_{\text{reverse}} \approx 3.20$ を採った場合の、 $\beta_1 \beta_2$ 依存性を示したもの、原点での量子密度の小さいものから順に $\beta_1 \beta_2 = 0$ (黒), 0.2(赤), 0.4(紫), 0.6(緑), 0.8(青), 1.0(橙)のグラフである(全て実線).

図 14. $\beta_1 \beta_2 = 0.5 \ \epsilon$ 固定し, $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$), l = 10, $s = s_{\text{reverse}} = \sqrt{\lambda^2/4 + \lambda l} \approx 3.20 \ \epsilon$ 採った場合 の $\alpha_1 \alpha_2 \ \epsilon$ 存性を示したもの. 原点での密度が低いグラフ から高いグラフへの順に $\alpha_1 \alpha_2 = 0, 0.9$ (いずれも実線:黒), 0.99 (点線:赤), 0.999 (一点破線:緑), 1 (二点破線:青) のときの結果を表している.

図 15. $\alpha_1 \alpha_2 = 0.5$ を固定し、 $\lambda = 1$ (波数 $k = 2 \pi / \lambda = 2 \pi$)、l = 10、 $s = (s_{same} + s_{reverse}) / 2 \approx 3.89$ を採った場合の、 $\beta_1 \beta_2$ 依存性を示したもの、原点での量子密度の小さいものから順に $\beta_1 \beta_2 = 0$ (黒)、0.2(赤)、0.4(紫)、0.6(緑)、0.8(青)、1.0(橙)のグラフである(全て実線).

一方で、前節で紹介した左側の二重スリットから の波が右側の二重スリットの上下スリットの位置で 逆位相になる場合、即ち $s = s_{\text{reverse}}$ のときは前小節中 で述べたように状況はやや複雑になる。まずα1α2を 固定して、 $\beta_1 \beta_2$ を変化させてみると、 $s = s_{same}$ の ときと同様に $\beta_1 \beta_2$ とともに振幅が大きくなる(図 13)。他方、 $\beta_1 \beta_2 = 0.5$ を固定して、 $\alpha_1 \alpha_2$ を変化 させると、前小節で $\beta_1 \beta_2 = 1$ を調べた場合と同様、 α1 α2 が1に近づくとき急激に干渉縞の極小と極大 が入れ替わる (図14)。その意味では、α1α2もβ1 β2の値によっては振幅を変える能力をもっていると いえる。 $\beta_1 \beta_2 = 0$ のとき、即ち確率1で右側の二 重スリットが量子を検出する場合には 4.1 節で既に 述べたように、干渉縞がスリット間隔 s やα1 α2 に よらずそもそも存在しなくなるので、α1α2が振幅 を大きく変えるのは、β1β2がある程度の大きさを もつときに限られるといえる。

また、中間的な $s = (s_{same} + s_{reverse})/2$ のときは $\beta_1 \beta_2$ 、 $\alpha_1 \alpha_2$ ともに振動の振幅を大きくする働きを示すこ とが、それぞれ図 15 と図 16 から見て取れる。

以上のことから、 $\beta_1 \beta_2$ は諸条件によらず常に振動の振幅を大きくするが、 $\alpha_1 \alpha_2$ も条件によって同様の働きをすることが分かる。従って、本研究の二層二重スリットの場合、 $\beta_1 \beta_2$ のみで純粋度が決まるわけではなく、 $\alpha_1 \alpha_2$ も役割をもつ場合があり、純粋度を定義するとしてもより複雑な定義にする必要があるだろう。

まとめ

今回我々は、二重スリットの量子干渉についての先 行研究[®]を拡張して二重スリットを二層にし、全て のスリット上に量子の通過を検出する検出器を設置

図 16. $\beta_1 \beta_2 = 0.5 \ \epsilon$ 固定し、 $\lambda = 1$ (波数 $k = 2 \ \pi / \lambda = 2 \ \pi$), l = 10, $s = (s_{same} + s_{reverse}) / 2 \approx 3.89 \ \epsilon$ 採った場合の、 $\alpha_1 \alpha_2 \ c$ 存性を示したもの. 原点での量子密度の小さいものから順に $\alpha_1 \alpha_2 = 0$ (黒), 0.2 (赤), 0.4 (紫), 0.6 (緑), 0.8 (青), 1.0 (橙) のグラフである (全て実線).

した系の量子干渉について理論解析を行った。その 結果、フィルム直前の右側の二重スリット上での測 定が干渉の有無を決めるという自然な予想を確認す るととともに、二層になることによる量子波の干渉 条件の変化と量子の経路の観測とを複合する効果に よって、フィルム上の干渉縞の極大、極小が入れ替 わるという興味深い結果を得た。

文献

- Tsuchiya Y, Inuzuka E, Kurono T and Hosoda M(1986) Photon-counting image and its application. *Adv. Electron. El. Phys.* 64 A :21-31.
- Tonomura A, Endo J, Matsuda T, Kawasaki T and Ezawa H (1989) Demonstration of singleelectron buildup of an interference pattern. *Am.J. Phys.* 57: 117.
- Carnal O and Mlynek J (1991) Young's doubleslit experiment with atoms: A simple atom inter-ferometer. *Phys. Rev. Lett.* 66: 2689-2692.
- Arndt M, Nairz O, Vos-Andreae J, Keller G, vander Zouw G and Zeilinger A (1999) Waveparticleduality of C60 molecules. *Nature* 401: 680-682.
- 5) Eibenberger S, Gerlich S, Arndt M, Mayor M and Tüuxen J (2013) Matter-wave interference of parti-cles selected from a molecular library with massesexceeding 10,000 amu. *Phys. Chem. Chem. Phys.* 15: 14696-14700.
- 6) 朝永振一郎 (1976) 光子の裁判. 講談社, 東京.
- 7) 細谷暁夫 (2014)「光子の裁判」再び:波乃光子 は本当に無罪か. 別冊日経サイエンス 2014. 日 経サイエンス社,東京. pp42-51.
- 8) M. Jammer (1974) *The Philosophy of QuantumMechanics*. Willey New York.
- 9) 小出功史 (1992) 量子力学における観測問題の現 状.物性研究 58: 418-442.