
Figure 3.2: The graph Gn for rule list R in Table 3.2. 

Table 3.3: Rewriting a non-included rule r3 to r3 and r3. 

Filter R 

r3 * 0 0 0 1 * 

r4 0 * * 0 1 * 

Filter R 
I 

r; 0 0 0 0 1 * 

叶 10001*

T4 0 * * 0 1 * 

The mean values of 10 trials are shown in Fig. 3.3. Clearly, the proposed method decreased the 

latency compared with the SGM [77) and SWBP [61) in all cases. In particular, the difference 

in latency between SGM and the proposed algorithm with 4000 and 5000 rule is greater than 

that with 1000 and 2000. Thus, the greater the number of rules, the more efficient the proposed 

algorithm becomes. 
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Figure 3.3: Latency of the proposed method, SGM [77), and the SWBP [61). 

52 



Table 3.4: Example of a rule list. 

Filter R IE(R,i)lu 

rf = * 0 * 1 4 

咽=0 0 0 0 1 

哨=0 * 0 0 1 

r『=0 * 1 * 3 

r『=* 1 * 1 3 

瑶=* * * 1 

゜rf = * * * * 4 

L(R,U) = 60 

3.2.2 Difference between Single-Machine Job Sequencing Problem and RORO 

Most of the time, the dependency relation determines the precedence relation, i.e., if r↑ and r? 

are dependent under i < j, r? generally cannot be placed ahead of r↑ • For r[ and r見inTable 

3.4, if rf is placed ahead of哨， thenpacket 0100 is evaluated as D, not P. Thus, rf depending 

on哨meansthat rf is placed behind哨.However, although rf andぷaredependent, rf can 

be placed ahead of吠when哨 isplaced ahead of rf. Only packet 0000 may cause a policy 

violation with respect to placing r『aheadof r『.However, if哨isplaced ahead of rf, because 

0000 is evaluated as P by哨 placingrf ahead of r『doesnot cause policy violation. Thus, r]匂

depending on庁 doesnot always mean that庁can not be placed ahead of八り

Avoiding this characteristic of RORO, we can obtain the optimal rule order, if the graph 

of dependency relations is a forest of oriented trees [34]. That is, by using the algorithm for 

single-machine job sequencing [34], we can achieve a better ORO solution, if the graph of 

dependency relations is a forest of oriented trees. 

53 



00  

Figure 3.4: Forest of oriented trees. 

3.3 Rewriting Rules to Oriented Trees 

3.3.1 Rewriting Rules 

The proposed rule rewriting algorithm begins with an empty rule list R1, obtains a rule from 

the input rule list, and inserts it intoだ fromr1 to r n. If inserting rule乃 intoR1 does not 

make the dependency graph of R into a forest of oriented trees, the algorithm expands乃 into

ri1, ri2, ... rik so that the graph of n'LJ {ri1, ri2, ... , 叫 becomesa forest of oriented trees. Note 

that the algorithm expands乃 sothat at least one rule in ri1, rゅ，..., rik is included in some rule 

in R1. For example, rules rf to r『inTable 3.4 form a forest of oriented trees as shown in Fig. 

3.4. Adding埒tothe rule list consisting of rf to哨violatesthe property that the dependency 

graph is a forest of oriented trees as illustrated in Fig. 3.5. The rewriting algorithm expands岱

to喝，喝，and点，asshown in Table 3.5 and inserts喘and喝intothe rule list. Because the 

set of packets matching喝isincluded in that of rf, i.e., r<: is redundant, rはisnot inserted 

into the rule list. The resulting graph of Table 3.5 is shown in Fig. 3.6 as a forest of oriented 

trees. 

3.3.2 Merging Rules 

Because expanding a rule consisting of many'*'generates a lot of rules, the algorithm attempts 

to remove such rules. If rules rf and rf satisfy all of the following conditions, they can be 

merged: 

1. the evaluation types of rf and r. are the same, 

2. r. can be placed just behind rf, 

3. (a) r ~ is included in r. or r. is included r ~ or 

(b) the difference in the conditions of rf and rf is just one bit. 
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Figure 3.5: Component of 1, 4, 5, and 6 is not an oriented tree. 

Table 3.5: Expand岨to喘，喝， and碍；．

Filter'R 

rf = 0 * 1 * 

喝=1 * * 1 

喝=0 * 0 1 

r贔=0 * 11 

As an example, even if rf and rf in Table 3.4 have the same evaluation types, because rf is 

not included in rf and rf is not included in rf, and the number of different bits in those rules 

is 3, they can not be merged. Because the evaluation types of r『andr< are different, those 

rules cannot be merged. Even though r『isincluded in r< and their evaluation types are the 

same, because祐cannot be placed just behind哨， thoserules cannot be merged. In contrast, 

r〖 and 岱 can be merged. 

The proposed rule reconstruction algorithm merges redundant rules before rewriting the 

rules. 

3. 3. 3 Experiments 

We demonstrate the efficiency of the proposed algorithms by presenting the results of experi-

ments conducted on an Intel Core i7-7820X 3.60 GHz CPU with 131 GB main memory under 

Cent OS 7.3. We implemented the proposed algorithm, the rule reordering algorithm SGM [77], 
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Figure 3.6: Add r51 and r賊

the reordering algorithms of Tanaka et al. [75, 76] and the latest reordering algorithm of Mohan 

et al. [61] in C. The rules and headers used in the experiments were generated by the standard 

packet classification benchmark ClassBench [80]. Because ClassBench generates rules without 

an action, we added an evaluation type P or D to each rule generated by ClassBench with a 

probability of 1/2. Using ClassBench, we generated standard 5-tuple rules and headers con-

sisting of source/destination addresses, source/destination port numbers and protocol numbers. 

Because the lengths of these components are 32, 32, 16, 16, and 8 bits respectively, the length of 

the condition of the rule and header was 104 bits. The number of headers was about 100 times 

greater than the number of rules. 

We measured the latency and the reordering time of a rule list for every algorithm. The 

medians and the averages of 10 trials for reordering and reconstruction are shown in Figs. 3.7, 

3.8, 3.10, and 3.11. Note that we plot the reordering and reconstructing times on a logarithmic 

scale in Figs. 3.10 and 3.11. 

Figure 3.9 shows that the proposed algorithm can increase the latency compared with the 

given rule list with 1000 and 2000 rules. As shown in Figs. 3.10 and 3.11, the proposed rule 

reconstruction algorithm is slower than the other rule reordering algorithms. However, Figs. 3.7 

and 3.8 show that the proposed rule reconstruction algorithm decreases the median and average 

latency. 

Comparing Figs. 3. 7 and 3.8, the median is clearly a better indicator of the proposed 

algorithm than the average. Table 3.6 suggests that the proposed reconstruction algorithm 

increases the average number of rules. Indeed, Table 3.7 and Fig. 3.9 show that the proposed 

algorithm inefficiently increases the number of rules and can, in the worst case, increase the 

latency. These results indicate that the proposed algorithm is influenced by the characteristics 

of the given rules. It is important to select the appropriate algorithm for the characteristics of 

the rule list. 
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Table 3.6: The average # of rules generated by the proposed algorithm. 

given rule list reconstructed rule list 

1000 

2000 

3000 

8236.8 

39849.6 

53125.4 

Table 3.7: The maximum# of rules generated by the proposed algorithm. 

given rule list reconstructed rule list 

1000 

2000 

3000 

20811 

86548 

177906 
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Chapter 4 

Deterlllining Equivalence of the Rule 

List Policies 

Any algorithm for reordering or reconstructing the rule list must retain its original classification 

policy. In this chapter, we present an algorithm that determines the equivalence of two rule 

lists by constructing the ZDD representing these policies. The effectiveness of this algorithm is 

confirmed through a series of experiments. 

Given two decision lists L1 and L2, deciding whether they represent the same Boolean 

function is coNP-complete [23]. Because deciding equivalence of two decision lists can be 

reduced to deciding equivalence of two rule lists, deciding equivalence of two rule list is also 

coNP-complete. 

Therefore, determining the equivalence of reordered or reconstructed rule lists is generally 

difficult. However, for rule lists of practical size, we can identify policy violations by constructing 

appropriate ZD Ds. 

4.1 Determining Equivalence of Rule List Policies via ZDD 

A procedure for constructing a ZDD according to M(八） is shown in Algorithm 8. Further, a 

ZDD construction method for M (乃） using a BDD /ZDD library such as CUDD [68] is given in 

Algorithm 9. 

Algorithm 8 first constructs ZDD Z according to the set of the only null combination 00・ ・ ・0 

and sets ptr to point Z. By scanning the condition吋=b山・・ ・bw, it then forms a non-terminal 

node with numeral k whose 1 edge points to ptr and O edge points to the 0-terminal node if 

位=1, and a non-terminal node with numeral k in which both edges point to ptr if bk = *, 
and then ptr points to a currently generated node. An example of constructing a ZDD using 

Algorithm 8 is shown in Fig. 4.1. 

First, Algorithm 9 constructs ZDD Z according to the set of the only null combination. 

Then, by scanning the condition rf = b山・・ ・bw, it applies the change(k) operation to Z if 

bk= 1, and takes the union of Zand Y if bk=*, where Y is Z.change(k). An example of how 
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Algorithm 8: make ZDD for Rule r 

input : rule吋＝疇...bw 

output: ZDD for rule吋

1 i← w; 

2 pointer ptr to 1-terminal node; 

3 while i > 0 do 

4

5

 

6
 

7

8

 

，
 10 

if bi ='*'then 

make a~。n-terminal node v whose variable is i and its left and right edges 

point to ptr ; 

ptr points to v; 

end 

if bi ='l'then 

make a non-terminal node v whose variable is i and its left edge point to O and 

right edges point to ptr ; 

ptr points to v; 

end 

t← i-1; 
end 

11 return ZDD pointed by ptr ; 

to construct the ZDD using Algorithm 9 is shown in Fig. 4.2. 

Algorithm 10 describes the method of constructing the ZDD according to R =〈叩，埒汽...,T炉〉．

First, Algorithm 10 constructs the null combination Zand then scans rules in descending order 

from 埒~. The method constructs ZDD Zi for rf. It sets Z to Z U Zi if e = D, or to Z ¥ Zi 

otherwise. An example of constructing the ZDD using Algorithm 10 is shown in Fig. 4.3. 

The equivalence of rule lists R1 and応 canbe confirmed by constructing Z D D1 and Z D D2 

and checking whether the two ZDDs are the same. The CUDD package and the algorithms 

presented here implement the ZDD as a hash table and use shared ZDD techniques [59]. Whether 

two ZDDs, A and Bare the same depends on whether the addresses of the two ZDDs are the 

same. Thus, the equivalence of ZDDs can be checked in one step. Thus, we can determine the 

equivalence of rule lists if the ZDDs for these rule lists can be constructed. 
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Figure 4.1: Construction process of ZDD according to the set of packets matching rf by Algo-

rithrn 8. 

Algorithm 9: make ZDD for Rule r using BDD /ZDD Library like CUDD [68] 

input : rule rf = b山・・ ・bw 

output: ZDD for rule rf 

1 make ZDD Z for the set of null combination {00 ... O}; 

2 i← w; 

3 while i > 0 do 

4 I if bi='1'then Z.change(i); 

5

6

 

7
 

else if bi ='*'then 

I z← Z U Z.change(i); 

end 

i← i -1; 

end 

8 return Z; 
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rithm 9. 

Algorithm 10: rnake ZDD for Rule List R 

input : rule list R =〈 e1 e2 r1 ,r2 , ... ,r炉〉

output: ZDD for rule list R 

1 rnake zdd Z for the empty set ; 

2 i← n; 

3 while i > 0 do 

4

5

6

7

 

make zdd Zi for r↑ by Algorithm 9 ; 

if ei = D then Z← zuzi; 

else Z← Z¥ Zi; 

i← i-1; 

end 

8 return Z ; 
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Table 4.1: List 1. 

Filter R1 

rf = * 1 1 0 

怜=0 * 1 * 
哨 =10*0

rf = 1 101 

r『=1111 

rf = 1 * * * 

叫=* 1 * 1 

rf = * 0 * 0 

rf = * * * * 

Table 4.2: List 2. 

Filter R2 

叶=0010

戌=* * 1 0 

r『=0001

rf = 0 * * 1 

rf = 1 1 0 0 

柑=* 1 * * 

点=1000

rf = 1 0 * 1 

ボ＝＊＊＊＊

Figure 4.4: ZDDs for rule list in Table 4.1. 

4.2 Determining Equivalence of Rule Lists with Multiple Ac-

tions 

In the previous subsection, we presented the algorithms for determining the equivalence of rule 

lists with only two actions P and D. In this section, using Tables 4.1 and 4.2, we introduce an 

algorithm for determining the equivalence of rule lists that are not limited to two actions. In 

the following, such a rule list is called a rule list with multiple actions. 

To determine the equivalence of rule lists with multiple actions A1, A2, ... , Am, the determi-
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Figure 4.5: ZDDs for rule list in Table 4.2. 

Table 4.3: A function f : P→ {A, B, C, D} represented by Tables 4.1 and 4.2. 

0000→ D 0100→ C 1000→ B 1100 f----+ D 

0001卜 C 0101← A 1001→ D 1101 f----+ C 

0010→ A 0110→ B 1010→ B 1110 f----+ B 

0011→ A 0111 f----+ A 1011 f----+ D 1111→C 

nation method constructs ZDDs as described in the previous section form actions. 

The procedure for constructing ZDDs X1, X2, ... , Xm for a rule list with multiple actions is 

described in Algorithm 11. 

Algorithm 11 constructs ZDD Xi for an action Ai, repeating the process from line 2 to line 

9. The difference between Algorithms 10 and 11 is whether Ai is specified on line 7. 

For rule lists R 1 and応， equivalencecan be determined by constructing 2m ZD Ds X 11, X 12, ... , X 1 m 

and X21, X22, ... , X2m and checking the equality of ZDDs X1k and X2k-

4.3 Experiments 

To confirm the efficiency of the proposed algorithm for a rule list with only two actions P and 

D, we implemented it in C under the Cent OS Release 6.10 (Final) on an Intel Core i5-3470 

3.20 GHz CPU with 2 GB main memory. We generated the rule lists using ClassBench [80] and 
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Algorithm 11: make ZDDs for Multiple Actions Rule List R 

input : rule list 冗＝〈r~l' 唸汽... ,r炉〉

output: ZDDs X1,X2, ... ,Xm for rule list R 

1 i← 1 ; 

I Im  is the number of actions {A1, A2, ... , Am}; 

2 while i::; m do 

3 make zdd Xi for the empty set ; 

4 j← n; 
5 while j > 0 do 

6 make zdd tmp for r;1 by Algorithm 9 ; 

1 if eJ = Ai then Xi← xi u tmp; 

s else Xi← xi¥ tmp; 
9 i← i-1; 

end 

end 

10 return X1, X2, ... , Xm ; 

measured the time for required to determine the equivalence of the rule lists. 

Figure 4. 7 shows the time required to construct the ZDD by proposed method, where the 

units of measurement are seconds. Figure 4. 7 shows that the time required to determine the 

equivalence of the rule lists is less than 0.2 s. This shows the remarkable effectiveness of the 

proposed algorithm. Thus, the proposed method is effective for rule lists of practical size. 
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Figure 4.6: ZDDs for policies according to Tables 4.1 and 4.2. 
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Chapter 5 

Run-Based Trie 

In the following section, we will discuss packet classification algorithms. 

Mikawa et al. proposed a data structure called a run-based trie (RBT) [57]. They define a 

run as a bitstring with maximal length and not containing any wild-cards. A run is defined as 

follows: 

．． 
Definition 5.0.1. {run form) Let ri E {O, 1, * }w be a bitmask rule of length w. A substring 

励i+l・..的 (1 さ i~j~w) of r that satisfies the following two conditions is called run; 

i) bk = 0 V bk = l (i さ k~j)

ii) (i~2 ⇒ bi-l = *)八 (j・ ~w-l ⇒ bj+1=*). 

For instance, a bitmask rule of length 16 

**01**001***1010 

consists of 3 runs, 01, 001, and 1010. These runs begin at the third, 7th, and 13th bits in the 

rule, respectively. Runs in a rule Ti are represented as pf, p;, ... , pf (0さKさ 「w/21).An RBT 

consists of w tries T1, T2, ... , Tw. Each trie Tk is constructed by placing the bit pattern of the 

run beginning at the k-th bit of乃 ERon its corresponding path of Tk. In addition, we mark 

尻onthe path if the run is the j-th run of Ti. The RBT for the rule list in Table 5.1 is shown 

in Fig. 5.1. 

5.1 Simple Search 

A simple RBT search [57] traverses tries T1, T2, ... , Tw with the bit patterns of the packet 

beginning at the k-th bit and collects the runs that match the pattern. The matched rules 

are then calculated from the collected runs and the highest priority rule in the match rules is 

returned. If there are no matching rules, the default rule rn is returned. For example, packet 

01010 traverses the heavy lines in Fig. 5.1 and collects runs PL PL pa and pg. Because 01010 

only matches rule r5, the highest priority rule for 01010 is r5. 
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Table 5.1: Bitrnask rules. 

Filter R 

1

2

3

4

5

6

 

r

r

r

r

r

r

 

0 * * 0 1 

1 * 1 1 * 
1 0 0 * * 
* 1 0 * 1 

0 * * 1 * 
* * * * * 
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Figure 5.1: Run-based trie for rule list in Table 5.1. 

Let us compute the time complexity of this simple search. First, to traverse tries T1, T2, ... , Tk, 

the simple search requires w + (w -l) +・・ ・+ 1 steps. The time complexity of traversing all tries 

is 0(研） • Then, because the number of runs on the tries is at most n x「wl, the time complexity 

required for comparing the runs is O(nw). Thus, the time complexity of the simple search is 

O(nw+研）．

5.2 Decision Tree constructed from RBT 

Mikawa et al. also proposed a search algorithm using a decision tree constructed from an 

RBT [57]. Because there is a limited number of patterns used to collect runs for each trie Ti in 

an RBT search, the patterns are enumerated as S1, S2, ... , Sw. For instance, the patterns used 
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Decision Tree 

¢
 

S』¢s』¢Sgの Sgの S』¢s』¢Sgの Sg¢Sg¢
r1 r1 r 4 rs r1 r5 r1 r1 r 4 rs r 4 r5 r1 r1 rs rs r5 r5 

Figure 5.2: Decision tree constructed using RBT in Fig. 5.1 (rewritten). 

to collect runs for tries T1, T2, T3, T4, and九 inFig. 5.1 are as follows: 

S1 = { {PL p~}, {p~}, {pt P1} }, 

S2={{p}},¢}, 

品＝｛｛砂｝，の｝，

ふ={ {Pi}, {p~}, ¢}, 

Ss={{p~},¢}, 

(5.1) 

where¢denotes no match with a run. 

Based on these patterns, the decision tree is constructed by taking the Cartesian product 

of S1 x S2 x・ ・ ・x Sw. The decision tree constructed from the patterns in Eq. 5.1 is shown in 

Fig. 5.2. Each path from the root to a leaf of the decision tree is equivalent to a search path 

obtained by traversing the RBT from T1 to Tw. Computing the highest-priority rule for each 

path on the decision tree in advance, we obtain the highest priority rule by only traversing the 

decision tree using the RBT. The time complexity of this decision tree search is O(w2), because 

we can reach a leaf by traversing the RBT. 
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T1 

3: Pi 

6 : PI, p~8 : p~ 

Figure 5.3: RBTwP for rule list in Table 5.1. 

5.3 Decision Tree based on RBT with Pointers 

5.3.1 RBT with Pointers 

In the worst case, the RBT search accesses the bitstring of a packet w2 times. Even if it reaches 

down to a node at depth k on Tk, the next starting point is the root of Tk+l・Because searching 

for runs at nodes of depth k means that bits p[l] to p[k + d -l] have already been referenced, 

traversing from the root of Tk+l to a node at depth k is redundant. Focusing on this point, 

we propose a search method that refers to the bits of a packet at most w times. This method 

adds new arcs to a non-terminal node that has no 0-arc or 1-arc. In addition, a run from a 

node on Tk is copied to nodes on T1, ... , Tk-l・For the rule list in Table 5.2, an RBT with 

added arcs and copied runs is shown in Fig. 5.3. We call this an RBT with pointers (RBTwP). 

Traversing the RBTwP, we access the bitstring of a packet at most w times, in searching for 

the highest-priority rule for the packet. Thus, the time complexity and space complexity of this 

method are O(w) and O(nw), respectively. 

5.3.2 Decision Tree based on RBTw P 

As well as the decision tree constructed from naive RBT [57], we can construct a decision tree 

based on RBTw P. 

First, we number the nodes that have run (denoted by the numeral on the left side of the 

colon in Fig. 5.3). We call this number the node number. The set of reachable node numbers 

from node i is limited according to Eq. 5.1. This reachable set is defined as follows: 

Definition 5.3.1. (Reachable set in RBTwP) 

Ni = { k I there exists a path p from i to k, ,=lj E p }, (5.2) 
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Algorithm 12: ConstructionOfDecisionTreeBaesd OnRBTw P 

input : Family of reachable sets root and N1, N2, ... , Nk 

output: Decision Tree based RBT with pointers 

1 make a root node of decision tree d ; 

2 add a priority number [n] to d I I n is the number of rules in the rule list; 

3 call Algorithm 13 with explicitly root and d; 

I I N1, N2, ... , Nk is implicitly passed to Algorithm 13 ; 

4 return d; 

where i, j, and k are node numbers. 

For example, in the RBTwP in Fig. 5.3, the reachable sets are 

where root is the root node of T1・

root= {1, 2}, 

N1 = { 4, 5, 6, 7}, 

N2 = {3, 4, 5, 6}, 

N3 = {6, 7}, 

N4 = {6, 7}, 

N戸 {8},

N5=q>, 

N1 = {8}, 

Ns =</>, 

(5.3) 

Based on these sets, we construct the decision tree using the Cartesian product-like operation 

shown in Algorithm 12. Algorithm 12 forms a decision tree by calling Algorithm 13, in which 

lines 1-5 recursively make node i based on Ni and calculate the highest-priority rule at node i. 

Because this decision tree can be searched by the RBTwP at most w steps, the time com-

plexity of this decision tree search is O(w). 

Although this decision tree is very efficient in terms of search time complexity, it may have 

redundant sub-trees. As shown in Fig. 5.5, the sub-trees in the shaded area are redundant, 

because a node on the sub-tree has no priority rule [i] greater than the highest rule on preceding 

nodes. Thus, such a sub-tree can be pruned. 
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Algorithm 13: SpanEdges 

input : Reachable Set Nanda node of decision tree v 

1 foreach i E N do 

2

3

4

5

 

6
 

make a decision tree node i and an edge from v to i ; 

calculate the candidate highest priority rule number c ; 

if c is less than the priority rule of ancient node then 

I add [c] to i; 

end 

call Algorithm 13 with Ni and i ; 

end 

Decision Tree constructed on RBT with pointers 
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Figure 5.4: Decision tree constructed on RBTwP in Fig. 5.3. 
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Figure 5.5: Redundant sub-tree in decision tree constructed on RBTwP 
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5.4 Cascaded Circular-RBT 

The time cornplexity of an RBT search depends on n as O(nw +研）， becausethere are at most 

n「w/21 runs on the RBT, and a comparison occurs when th~re is a run on a node when traversing 

the RBT. If each rule in a rule list has just one run, we can classify a packet in constant time, 

i.e., independent of the number of rules, via a modified RBT. In this section, we first propose a 

data structure for the rule list consisting of circular-run rules. Secondly, we provide definitions 

for the consecutive ones property (ClP) [9] and the circular ones property (CirclP) [17,81]. We 

then propose a packet classification algorithm called cascaded circular-RBT. 

5.4.1 Circular-RBT 

We define a circular-run as follows: 

Definition 5.4.1. {circular-run) Let ri E {O, 1, * }w be a bitmask rule of length w. A substring 

of r is called circular-run if it consists of a single run or its substring bib(i+l)・ ・ ・b凸...bj 

(1 :s; i :s; w, 1 :s; j < i) satisfies the following two properties: 

i) bk = 0 V bk = l (iさKさwVlさk:s; j) 

ii) bz = * (j < l < i). 

As an example, for r2 and乃 inTable 5.2, each rule consists of the circular-run 111 and 001. 

These circular-runs begin at the fifth and fourth bits in the rules, respectively. In this section, 

we consider only a rule list consisting of circular-run rules. 

Because a rule has just one run, the superscript j of a mark p{ on the RBT is redundant. 

Thus, we denote a run in a circular-run rule by Pi instead of p{. When a node on the RBT has 

more than one run, because all except the run of the highest priority rule are redundant, those 

redundant runs are removed. Because every rule has just one run, if a packet matches run Pi, 

then the packet also matches rule r i. 

For an RBT constructed from a rule list consisting of circular-run rules, if node v has run 

Pi and no node that can be reached from a b-arc of v has a higher-priority run than Pi, we 

remove the b-arc of v, where bis O or 1. Figure 5.8 shows the circular-RBT (CircRBT) formed 

by removing redundant arcs from Fig. 5.7. 

Although circular-RBT can classify a packet in constant time, i.e., independent of n, they 

can only be applied to a rule list consisting of circular-run rules. However, in general, a rule list 

consists of non-circular-run rules. Thus, we regard a rule list as ~a binary matrix and permute 

it such that the matrix has CirclP [17, 81]. In the following, we say that a rule list has CirclP if 

the binary matrix reduced from the rule list has CirclP. If a rule list has CirclP, we can apply 

the CircRBT method to the rule list. 
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Table 5.2: Circular-run rules. 

Filter R 

r1 

r2 

r3 

r4 

rs 

r5 

0 0 1 * * 
1 1 * * 1 

1 * * 0 0 

* * 1 1 0 

0 1 * * * 
* * * * * 
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Figure 5.6: RBT for rule list in Table 5.2. 
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Figure 5.8: Circular-RBT for rule list in Table 5.2. 
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Table 5.3: Bitmask rules (rewritten). Table 5.4: Replacing 0, 1 by 1 and* by 0. 

C1 C2 C3 C4 C5 

Filter R 1 

゜゚
1 1 

r1 0 * * 0 1 1 

゜
1 1 

゜r2 1 * 1 1 * 1 1 1 

゜゚,3 1 0 0 * * 

゜
1 1 

゜
1 

r4 * 1 0 * 1 1 

゜゚
1 

゜T5 0 * * 1 * 

゜゚゜゚゜r5 * * * * * 

5.4.2 Consecutive Ones Property and Circular Ones Property 

Replacing the ls and Os in a rule by 1 and the * in the rule by 0, we reduce the problem of 

whether a rule list has CirclP to whether a binary matrix has CirclP. For example, whether 

the rule list in Table 5.3 has CirclP can be determined by reducing it to the binary matrix in 

Table 5.4 and checking whether the matrix has ClP. To explain the CirclP, we first define ClP. 

Defi.1:1-ition 5.4.2. {Consecutive ones property {C1P)) A binary matrix has C1P if there is a 

permutation of its columns such that the ls are consecutive in each row. A binary matrix that 

has C1P is called a C1P matrix and a binary matrix that does not have C1P is called a non-C1P 

matrix. 

For instance, the binary matrix in Table 5.5 has ClP, because there is a permutation 1→ 1, 
2→ 3, 3→ 2 and 4→ 4 such that the ls in each row in the permuted matrix are consecutive 

(see Table 5.6). In contrast to the binary matrix in Table 5.5, that in Table 5.7 is non-ClP. 

Using partition refinement [27, 90], the problem of whether an n x r binary matrix has ClP 

is solvable in O(n + r + c) steps, where c is the number of ls in M. 

Definition 5.4.3. {Circular ones property {Circ1P)) A binary matrix has Circ1P if there is a 

permutation of its columns such that the ls or Os are consecutive in each row. A binary matrix 

that has Circ1P is called a Circ1P matrix, and a binary matrix that does not have Circ1P is 

called a non-Circ1 P matrix. 

Suppose a binary matrix is wrapped around a vertical cylinder. If the columns can be 

permuted such that the ls in each row are consecutive on the cylinder, then the matrix has 

CirclP. The binary matrix in Table 5.8 has CirclP, because it can be permuted so that the Os 

are consecutive for each row (see Table 5.9). In contrast, the matrix in Table 5.10 is non-CirclP. 

Whether a binary matrix has CirclP can be determined by complementing those rows whose 

first column is 1 (i.e., row M1, M2, ... , Mr is complemented if Mil ='1') and checking whether 

the matrix has ClP [81]. As we can determine whether a matrix has ClP in O(n + r + c) steps, 
CirclP can be checked in O(nr) steps. 
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Table 5.5: ClP-matrix. Table 5.6: Rearranging Table 5.7: Non-ClP matrix. 

Cl C2 C3 C4 columns. C1 C2 C3 C4 

1 

゜
1 

゜
C1 C3 C2 C4 1 1 

゜゚1 1 1 1 1 1 

゜
1 1 

゜
1 1 

゜
1 

゜
1 

゜
1 

1 

゜
1 

゜ ゜゚゜゚
1 

゜
1 1 

゜
1 

Table 5.8: CirclP-matrix. Table 5.9: 
C1 C2 C3 C4 C5 columns. 

゜1 

1 

1 

゜゚

゜
1 1 1 1 

1 

゜
1 1 1 

゜ ゜゚
1 1 

1 

゜
1 1 

゜゜ ゜
1 

゜
1 

゜
Rearranging Table 5.10: Non-CirclP rna-

trix. 
1 

゜
1 

゜
1 C5 C3 c1 c2 C4 c1 c2 C3 C4 C5 

1 1 

゜
1 

゜
1 1 1 

゜゚
1 

゜
1 

゜
1 

゜゚゜
1 1 

゜゚
1 1 1 1 1 

゜゚゜1 1 1 

゜
1 1 

゜゚゜
1 

゜
1 1 

゜゚゜゚゜
1 

゜
1 1 1 1 

゜ ゜
1 1 1 

゜゜゚
1 

゜
1 

゜゚゜゚
1 1 1 1 1 

゜1 1 

゜゚゜ ゜
1 

゜゚
1 

5.4.3 Cascaded Circular-RBT 

Although the CircRBT method is efficient with respect to both time and space, it can only be 

applied to a rule list that has CirclP. In general, because a rule list is non-CirclP, CircRBT 

cannot be applied. In this section, we propose an algorithm that divides a rule list into multiple 

rule lists that have CirclP, then constructs CircRBTs for these rule lists. Finally, a list of 

CircRBTs is constructed and used to classify packets. 

We present a method of partitioning a rule list in Algorithm 14. First, this algorithm makes 

a rule list R1 consisting of r1 and r2. Then, it repeats the process of taking one of the remaining 

rules and inserting it into the existing rule list or creating new rule list in order from乃 torn.

When rule list R has fewer than 3 rules, the algorithm returns the only R, because the rule 

list must have CirclP. If rule list R has more than 2 rules, rule list S (consisting of the head 

and second element of R) is inserted into Ln on lines 4-7. Lines 8-19 search for a rule list R 

such that {r} U凡 hasCirclP, and insert r into Ri if there is such a rule list; otherwise, a new 

rule list S consisting of only r is created and inserted into R. For instance, given the rule list 

in Table 5.11, Algorithm 14 divides it into the three rule lists in Tables 5.12, 5.13, and 5.14. 

For a series of rule lists having CirclP, Ln = [R虚 2,...'応], we construct a list of Cir-

cRBTs LF = [石，石，．．．，石].We call this a cascaded CircRBT. A method of packet classifica-

tion using cascaded CircRBT is shown in Algorithm 15. This algorithm applies a circular-run-
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Algorithm 14: RuleListPartition 

input : Rule list R 

output: List of rule list Ln = [R虚 2,・ ・., Rk] 

1 make an empty list of rule list Ln ; 

if IRI < 3 then 

2 add R to Ln; 

3 return Ln; 

end 

4 make a new rule list S ; 

5 add head(R) to Sand remove head(R) ; 

6 add head(R) to Sand remove head(R) ; 

7 add S to Ln; 

s while R i= (/J do 

, I r← head(R) ; 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

it← head(L叫；
flag = false ; 

while it# Ln.end do 

if *it U {r} has CirclP then 

add r to *it ; 

flag= true; 

break; 

end 

it← it.next ; 

end 

if flag# true then 

make a new rule list S ; 

add r to S; 

add S to Ln; 

end 

remove r from n ; 
end 

based search to a packet in the order石 to五， andreturns the highest-priority rule number 

from those obtained from circular-run-based searches. On line 3, Fi (p) returns a rule number 

obtained by searching CircRBT互withp. The time and space complexity of this packet classi-

fication algorithm are O(kw) and O(nw), respectively, where k is the size of the list of CircRBT. 

If k is independent of n, we have a constant time packet classification that is independent of the 

number of rules. 
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Algorithm 15: ListOfCircRBTSearch 

input : List of CircRBT LF and packet p 

output: Highest priority rule number for p 

1 cand← n + 1 / / n is the number of rules ; 

2 i← O; 
while i < ILFI do 

3 I C←互(p); 

if c < cand then 

4 I I cand← c; 
end 

5 I i← i + 1; 
end 

6 return cand; 

5.4.4 Experiments 

Table 5.11: Example of non-CirclP rule list. 

c1 c2 C3 C4 C5 C5 C7 cs Cg ClQ c11 c12 

門 1 * 0 * 1 1 0 * ＊ ＊ 

゜
1 

r2 1 0 * 0 * 1 0 0 0 ＊ 1 ＊ 

T3 0 1 0 1 0 1 * * 0 

゜
＊ ＊ 

r4 ＊ 1 0 * 1 0 * 1 0 1 ＊ 1 

T5 * 0 1 1 * * * * * 1 ＊ ＊ 

T6 1000****  1 ＊ ＊ 

゜r7 ＊ 1 ＊ ＊  1 0 0 * ＊ ＊ 

゜゚rs 0 * 1 0 0 0 * 0 * 

゜
＊ ＊ 

rg * * ＊＊＊＊＊＊＊  ＊ ＊ ＊ 

We demonstrate the efficiency of the proposed algorithm through a series of experiments and 

comparisons with a linear search, Grouper [50], and MDD [71]. An open-source implementation 

is available for Grouper, whereas the linear search, a classification algorithm using MDD, and 

the proposed algorithm were implemented in C. Experiments were conducted under the Cent 

Table 5.12: CirclP rule list 1. 

c12 C5 C3 ClQ c2 cs Cg C4 c1 C7 cu C5 

門 11 0*****1001

乃* **  * 000010  11  

r4 1 1 0 1 1 1 0 * * * * 0 

rg I * * * * * * * * * * * * 
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Table 5.13: CirclP rule list 2. 

C12 Cg C1 C4 C3 c2 ClQ C5 C5 C7 cs en 

00101001**  * 

**110  1 * ** *  * 

r5 I O 1 1 0 0 0 * * * * * * 

Table 5.14: CirclP rule list 3. 

ClQ C3 C4 C3 c1 C5 C5 c2 C7 c11 c12 Cg 

T7 I * * * * * 0 1 1 0 0 0 * 

r3 0 0 0 1 0 0 0 * * * * * 

OS Release 6.8 (Final) on an Intel Core i5-3470 3.20 GHz CPU with 2 GB main memory. We 

generated the rules and the headers based on the standard benchmark for packet classification 

algorithms, ClassBench [80]. ClassBench provides acl, fw, and ipc seed files. To generate the rule 

for these experiments, the ipc seed file was used. The original rules generated by ClassBench 

were converted to arbitrary bitmask rules. The original rules consisted of five fields, namely 

the source/destination address, source/destination port number, and protocol number. Because 

these fields have lengths of 32, 32, 16, 16, and 8 bits, respectively, the length of the rule and 

header was 104 bits. The number of headers was about lM. 

Using the generated rules and headers, we measured the time and memory requirements of 

constructing the data structures and the time required to determine the highest-priority rule 

for every algorithm. The construction and search processes were measured in seconds. 

Table 5.15 presents the number of instances for which MDD and the proposed data structure 

could not be constructed within 4 h. As can be seen from Table 5.15 and Figs 5.9 and 5.11, MDD 

and the proposed algorithm are relatively slow and consume significant amounts of memory. 

The means of 10 trials (except instances exceeding 4 h) are shown in Figs. 5.9, 5.10, and 

5.11. Note that the time and memory are plotted on a logarithmic scale in Figs. 5.9 and 5.11. 

As MDD cannot be constructed within 4 h when there are 5000 rules, we do not show these 

results in Figs. 5.9, 5.10, and 5.11. 

The proposed partitioning algorithm makes multiple calls to a routine that determines 

whether the rule list has CirclP, and this routine requires the construction of a new graph 

for the rule list, w邸 tinginformation that might have been collected from previous calls. Thus, 

as shown in Fig. 5.9, the proposed algorithm might take a significant amount of time to construct 

cascaded CircRBT. 

In the experiments, Grouper required the least memory to make the lookup table. Thus, 

although the space complexity of the proposed algorithm is theoretically better than that of 

Grouper 2町t• tn and O(nw), the memory requirements of Grouper are lower than those of the 

proposed algorithm. 

Figure 5.10 shows that the search times for the linear search and Grouper [50] are dependent 

on the number of rules. Although MDD can classify packets in constant time up to 3000 rules, it 
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Table 5.15: # of instances exceeding 4 h construction time in ipc. 

Grouper 

MDD 

Proposed Algorithm 
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0 0 0 0 0 
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Figure 5.9: Construction times (s). 

takes significantly more time for more than 4000 rules. As MDD exceeds the 2GB main memory 

with 4000 rules, it takes much more time to classify packets In contrast, the proposed algorithm 

classifies packets in constant time, independent of the number of rules. This agrees with the 

theoretical performance in Table 1.8. Because the rules generated by ClassBench are easy to 

partition, the size of the list of CircRBT list is small, allowing the proposed algorithm to classify 

packets in a constant time that is independent of the number of rules. 
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Chapter 6 

Con cl us ions 

This thesis has mainly discussed two problems related to packet classification. One is an opti-

mization problem for static early decisions and the other concerns packet classification algorithms 

based on software. 

For the early-decision optimization problem, we identified the following issues: 

1. It is necessary to develop a policy checker to ensure that the reconstructed rule list main-

tains the original policy. 

2. ORO should take the packet arrival distribution as input and consider variations in the 

rule weights. This was formulated as RORO. 

3. There is a problem with the pseudo-code_ for the state-of-the-art SGM [77] whereby its 

naive implementation does not terminate in a practical time when the precedence relation 

is dense. 

4. There is no formulation for the Optimal Rule List problem instead of the Optimal Rule 

Ordering problem. 

Table 6.1: Comparison of various packet classification schemes with arbitrary bitmask rules. 

Algorithm Worst-case Time Worst-case Space 

Linear Search O(nw) O(nw) 

Grouper [50] O(tn/w) 0(2w/t・tn) 

MDD [71] O(w) 0(2門

RBT Search [57] O(nw+研） O(nw) 

RBT Decision Tree [57] O(wり 0(炉）

MOB [44] O(nw) O(n研）

Decision Tree constructed on RBT with pointers O(w) 0(2門

Cascaded Circular-RBT O(kw) O(nw) 
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We obtain the following results for these problems: 

1. We developed a policy checker using ZDDs and confirmed its effectiveness with 5000 rules. 

2. • We showed that the problem of computing the weight for the default rule圧 with

order a under an uniform distribution U is #P-complete and developed an algorithm 

based on ZDDs for this problem. 

• We showed that RORO is NP-hard. 

• We proposed a simulated annealing algorithm for RORO and confirmed its effective-

ness with 500 rules. 

• We developed a pairing algorithm that pairs rules causing policy violations until there 

are no such rules, allowing the rules to be simply sorted according to their weights. 

This algorithm decreased the classification latency and reordering time compared 

with SGM. 

• We fixed the bug in the pseudo-code of SGM, and accelerated this algorithm by by 

changing the representation of the precedence relation from an adjacent matrix to an 

adjacent list, and confirmed its effectiveness in experiments. 

• We formulated the ORL problem and developed a corresponding algorithm. This 

algorithm rewrites the rule list such that its graph of precedence relations becomes 

a forest of oriented trees, from which the order of rules can be optimized. The 

effectiveness of this algorithm was demonstrated through a series of experiments. 

We now consider tasks for future work with regard to ORO. Although we showed that RORO 

is #P-complete, the computational complexity of ORL is still unclear. Because the effectiveness 

of the proposed algorithms was only demonstrated in experiments using the packet classification 

benchmark ClassBench [80], it is necessary to extend these results to the NFV environment 

(e.g., Open vSwitch [64]). 

For the problem of packet classification based on software, we showed that it is necessary 

to develop a classification algorithm according to arbitrary bitmask rules, whereby the packet 

classification time is independent of the number of rules. In this study, we proposed an algorithm 

that first constructs a decision tree from RBT [57] with pointers, and then classifies packets 

via the decision tree. The time complexity of this algorithm is O(w). We also developed a 

classification algorithm that divides a rule list into some rule lists幻応，．．．，応 sothat every 

rule in Ri has only circular-runs, constructs a list of CircRBTs S1, S2, ... , S, and classifies 

packets via this list. The time and space complexities of this algorithm are O(kw) and O(nw). 

There are several tasks for future work with regard to packet classification based on software. 

To construct the decision tree based on RBTwP, pruning the decision tree by deleting all nodes 

whose children point to the same node and sharing all equivalent sub-trees would be a useful 

development. In terms of dividing a rule list into several CirclP rule lists, there are three tasks. 

First, the time complexity of dividing a rule list is O(n2r), which is somewhat long. Reducing 

this time is an important task. Second, because the effectiveness of the proposed algorithms has 
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only been demonstrated using ClassBench [80], it would be interesting to determine whether 

the number of rule lists k is independent of the number of rules n for any rule list. Finally, the 

effectiveness of our algorithms should be studied in a network virtualization environment, as 

should our algorithms for static early decisions. 
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Appendix A 

Simulated Annealing for RORO 

In this appendix, we present a multi-start local optimization method (MSL) and a simulated 

annealing method for RORO [40,41]. 

A.I Multi-Start Local Optimization (MSL) 

To implement MSL, we first define a neighbor N(a-) for solution a-. In the proposed method, 

Eq. (A.l) is used to determine a neighbor to solution a-. 

N(a) = { a'l{k I a(k) # a'(k)}I = 2} (A.l) 

N(a) is obtained by choosing i,j E [n] (i =/= j) and swapping a(i) and a(j). For example, N(a) 

for a= (2 3 1 4) with Equation (A.l) is 

(3 2 1 4), (1 3 2 4), (4 3 1 2), (2 1 3 4), (2 4 1 3), (2 3 4 1). 

The proposed method randomly generates an order o : [IN(a)I]→ [IN(a)I] and searches for 
solutions in N(a) in order o. 

To implement MSL, we define an evaluation function h for a andび'aswell as a neighbor. 

Swapping the ith rule jth rules, the set of packets defined between the ith and jth rules may 

vary. 

After interchanging the ith and jth rules, the sets of packets decided by the ith ruler (J"-1(i), 

jth rule r (J"-l(j), and kth rule 乃— 1(k) (i + 1 :S k =S j -l) are given by Eqs. (A.3), (A.4), and 

(A.5), respectively, where T(i,j) is the order that only interchanges the ith and jth elements. 

From the above, let the evaluation function h for solutions a and a be 

J 

h(CY, が） = Lk・(IE(応，k)IF-IE(Ra,, k)IF), (A.2) 

k=i 

where CJ = T(a―l(i),a-l(j)) 0 (J. 

MSL with the neighbor given by Eq. (A.1) and the evaluation function in (A.2) is described 

in Algorithm 16. This algorithm takes rule list Rand a parameter loop, repeats loop to randomly 

generate feasible solution T, and returns the optimal solution. 
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Algorithm 16: Multi-Start Local Optimization 

input : Rule list R, Loop parameter loop 

output: Rule Orderび

l a-← initial random feasible order ; 

2 0← searching order for IN (a-) I ; 
3 i← O; 
4 while i < loop do 

5 T← random feasible order ; 

6 do local optimization for T according to o ; 

1 if h(び， T)< 0 then a-← T; 
8 i← i+l; 
end 

A.2 Simulated Annealing 

Simulated annealing takes a temperature and allows a solution to transit to a worse solution 

with probability p defined by the temperature and an evaluation function. 

A simulated annealing algorithm for RORO is given in Algorithm 17. The algorithm utilizes 

neighbor N1 (a-) when temperature t is high compared with the initial temperature T as T~ 咽
N1 (a-) is a set of solutions 0-1 whose weights do not vary in N(a-). Because E(R, i) is computed 

at every evaluation of the solution, the algorithm uses N1 (a-) when t is high. 

E(RT(戸 (i),cr→(j))ocr, びー1(i)) 

= E(Rcr, O'―1(j)) u (E(Rcr,0'-1(i)) n M(rcr-l(j))) u ... u (E(Rcr,O'―1(j-1)) n M(rcr-l(j))) 
(A.3) 

E (RT(cr-1(i),cr-1(j))ocr, O'―1(j)) = E(Rcr,O'―1(i)) ¥ M(rcr-l(i+l)) ¥・ ・ ・¥ M(rcr-1(j)) (A.4) 

E(RT(い (i),戸 (j))oび 9戸 (k))

= E(Rび '(J"―1(k))¥M(r17-1(j)) U (E(Ro-,a―1(i)) ¥ M(r17-1(i+l)) ¥ .. ・¥ M(r。→(k-1))) n M(ro-→ (k)) 

(A.5) 

A.3 Experiments 

To confirm the efficiency of the proposed algorithms, we implemented them in C++ under Mac 

OSX 10.9.5 on an Intel Core i5 1.4GHz CPU with 4 GB main memory. We generated rule lists 

and header lists based on the standard benchmark for packet classification Class Bench [80], 

and used a ZDD library [68]. To evaluate th proposed algorithms MSL and SA algorithms, we 

implemented the state-of-the-art rule reordering algorithm SGM [77] in C++. The latency of 

a given rule list for MSL, SA, and SGM is shown in Fig. A.l. Although MSL decreases the 
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Algorithm 17: Simulated Annealing 

input : Rule list冗

Initial accepted probability init, 

Inner Loop parameter loop, 

Temperature factor temp, 

Freezing Parameter freeze 

output: Rule Order a 

1 a← initial random feasible order ; 

2 0← searching order for IN (a) I ; 

3 choose initial temperature T so that init = e―△ /t; 

4 t← T; 

5 counLout← O; 
6 while counLout <freeze• IN(a)I do 

7

8

9

0

1

2

 
1

1

1

 

13 

14 

15 

16 

17 

counLin← O; 
while counLin <loop・IN(a-)1 do 

T if tく両 thengetび EN (a-) according to o; 

else getび EN (a-) according to o; 

△ = h(び，が）；

if△ ~0 then a-← び， ouLcount←O; 

else 

choose a random value q E [O, 1] ; 
if q < e―△ /t then a-← a-. 

ouLcount← ouLcount + 1 ; 

end 

in_count← in_count + 1 ; 

end 

t← t・temp 
end 

latency for the given rule list, its latency is greater than that of SA and SGM. However, in all 

cases, SA has the lowest latency Thus, SA is efficient for RORO. 
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Figure A.I: Latency for rule lists with 100,500, and 1000 rules. 
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