
Figure 3.2: The graph Gn for rule list R in Table 3.2.

Table 3.3: Rewriting a non-included rule r3 to r3 and r3.

Filter R

r3 * 0 0 0 1 *

r4 0 * * 0 1 *

Filter R
I

r; 0 0 0 0 1 *

叶 10001*

T4 0 * * 0 1 *

The mean values of 10 trials are shown in Fig. 3.3. Clearly, the proposed method decreased the

latency compared with the SGM [77) and SWBP [61) in all cases. In particular, the difference

in latency between SGM and the proposed algorithm with 4000 and 5000 rule is greater than

that with 1000 and 2000. Thus, the greater the number of rules, the more efficient the proposed

algorithm becomes.

51

6 X 108

1
0
8
1
0
8
1
0
8
1
0
8
1
0
8

x

x

x

x

x

5

4

3

2

1

(
U
)
7
A
3
u
a
1
e
T
菩
I
J
$
I

国

1500 2000 2500 3000 3500 4000 4500 5000

The number of Rules

Figure 3.3: Latency of the proposed method, SGM [77), and the SWBP [61).

52

Table 3.4: Example of a rule list.

Filter R IE(R,i)lu

rf = * 0 * 1 4

咽=0 0 0 0 1

哨=0 * 0 0 1

r『=0 * 1 * 3

r『=* 1 * 1 3

瑶=* * * 1

゜rf = * * * * 4

L(R,U) = 60

3.2.2 Difference between Single-Machine Job Sequencing Problem and RORO

Most of the time, the dependency relation determines the precedence relation, i.e., if r↑ and r?

are dependent under i < j, r? generally cannot be placed ahead of r↑ • For r[and r見inTable

3.4, if rf is placed ahead of哨， thenpacket 0100 is evaluated as D, not P. Thus, rf depending

on哨meansthat rf is placed behind哨.However, although rf andぷaredependent, rf can

be placed ahead of吠when哨 isplaced ahead of rf. Only packet 0000 may cause a policy

violation with respect to placing r『aheadof r『.However, if哨isplaced ahead of rf, because

0000 is evaluated as P by哨 placingrf ahead of r『doesnot cause policy violation. Thus, r]匂

depending on庁 doesnot always mean that庁can not be placed ahead of八り

Avoiding this characteristic of RORO, we can obtain the optimal rule order, if the graph

of dependency relations is a forest of oriented trees [34]. That is, by using the algorithm for

single-machine job sequencing [34], we can achieve a better ORO solution, if the graph of

dependency relations is a forest of oriented trees.

53

00

Figure 3.4: Forest of oriented trees.

3.3 Rewriting Rules to Oriented Trees

3.3.1 Rewriting Rules

The proposed rule rewriting algorithm begins with an empty rule list R1, obtains a rule from

the input rule list, and inserts it intoだ fromr1 to r n. If inserting rule乃 intoR1 does not

make the dependency graph of R into a forest of oriented trees, the algorithm expands乃 into

ri1, ri2, ... rik so that the graph of n'LJ {ri1, ri2, ... , 叫 becomesa forest of oriented trees. Note

that the algorithm expands乃 sothat at least one rule in ri1, rゅ，..., rik is included in some rule

in R1. For example, rules rf to r『inTable 3.4 form a forest of oriented trees as shown in Fig.

3.4. Adding埒tothe rule list consisting of rf to哨violatesthe property that the dependency

graph is a forest of oriented trees as illustrated in Fig. 3.5. The rewriting algorithm expands岱

to喝，喝，and点，asshown in Table 3.5 and inserts喘and喝intothe rule list. Because the

set of packets matching喝isincluded in that of rf, i.e., r<: is redundant, rはisnot inserted

into the rule list. The resulting graph of Table 3.5 is shown in Fig. 3.6 as a forest of oriented

trees.

3.3.2 Merging Rules

Because expanding a rule consisting of many'*'generates a lot of rules, the algorithm attempts

to remove such rules. If rules rf and rf satisfy all of the following conditions, they can be

merged:

1. the evaluation types of rf and r. are the same,

2. r. can be placed just behind rf,

3. (a) r ~ is included in r. or r. is included r ~ or

(b) the difference in the conditions of rf and rf is just one bit.

54

00

Figure 3.5: Component of 1, 4, 5, and 6 is not an oriented tree.

Table 3.5: Expand岨to喘，喝， and碍；．

Filter'R

rf = 0 * 1 *

喝=1 * * 1

喝=0 * 0 1

r贔=0 * 11

As an example, even if rf and rf in Table 3.4 have the same evaluation types, because rf is

not included in rf and rf is not included in rf, and the number of different bits in those rules

is 3, they can not be merged. Because the evaluation types of r『andr< are different, those

rules cannot be merged. Even though r『isincluded in r< and their evaluation types are the

same, because祐cannot be placed just behind哨， thoserules cannot be merged. In contrast,

r〖 and 岱 can be merged.

The proposed rule reconstruction algorithm merges redundant rules before rewriting the

rules.

3. 3. 3 Experiments

We demonstrate the efficiency of the proposed algorithms by presenting the results of experi-

ments conducted on an Intel Core i7-7820X 3.60 GHz CPU with 131 GB main memory under

Cent OS 7.3. We implemented the proposed algorithm, the rule reordering algorithm SGM [77],

55

Figure 3.6: Add r51 and r賊

the reordering algorithms of Tanaka et al. [75, 76] and the latest reordering algorithm of Mohan

et al. [61] in C. The rules and headers used in the experiments were generated by the standard

packet classification benchmark ClassBench [80]. Because ClassBench generates rules without

an action, we added an evaluation type P or D to each rule generated by ClassBench with a

probability of 1/2. Using ClassBench, we generated standard 5-tuple rules and headers con-

sisting of source/destination addresses, source/destination port numbers and protocol numbers.

Because the lengths of these components are 32, 32, 16, 16, and 8 bits respectively, the length of

the condition of the rule and header was 104 bits. The number of headers was about 100 times

greater than the number of rules.

We measured the latency and the reordering time of a rule list for every algorithm. The

medians and the averages of 10 trials for reordering and reconstruction are shown in Figs. 3.7,

3.8, 3.10, and 3.11. Note that we plot the reordering and reconstructing times on a logarithmic

scale in Figs. 3.10 and 3.11.

Figure 3.9 shows that the proposed algorithm can increase the latency compared with the

given rule list with 1000 and 2000 rules. As shown in Figs. 3.10 and 3.11, the proposed rule

reconstruction algorithm is slower than the other rule reordering algorithms. However, Figs. 3.7

and 3.8 show that the proposed rule reconstruction algorithm decreases the median and average

latency.

Comparing Figs. 3. 7 and 3.8, the median is clearly a better indicator of the proposed

algorithm than the average. Table 3.6 suggests that the proposed reconstruction algorithm

increases the average number of rules. Indeed, Table 3.7 and Fig. 3.9 show that the proposed

algorithm inefficiently increases the number of rules and can, in the worst case, increase the

latency. These results indicate that the proposed algorithm is influenced by the characteristics

of the given rules. It is important to select the appropriate algorithm for the characteristics of

the rule list.

56

Table 3.6: The average # of rules generated by the proposed algorithm.

given rule list reconstructed rule list

1000

2000

3000

8236.8

39849.6

53125.4

Table 3.7: The maximum# of rules generated by the proposed algorithm.

given rule list reconstructed rule list

1000

2000

3000

20811

86548

177906

1 X 109

s)

8

゜
ーx

ー

a
日
臣
m
u口
a
p
1
o
au

1 X 107

1000 1500 2000 2500 3000

The number of Rules
Given --+- SGM [77] 一→壬—

Tanaka [75] -沃- Mohan [61] 一 量 ―

Tanaka [76] ----,tE-- Proposed ----e-

Figure 3.7: Median latency.

57

8

8

8

0

0

0

1

1

1

x

x

x

4

5

3

3

(
J
U
)
7
 8

゜
ーx

5

2

A::>Ucl'l111
uon11::iy1ss1110

2 X 108

1.5 X 108

1 X 108

5 X 107

4.5 X 108

8

゜
ーx

5

3

ご
I・U)7
 A'.:me'l'¥?1 u
o
n
き
1:JIS
器
I
3

1500 2000 2500 3000

The number of Rules
Given --+-- SGM [77] -a-

Tanaka [75]―沃一 Mohan [61] —·—
Tanaka [76] -※— Proposed ---e--

Figure 3.8: Average latency.

4 X 108

3 X 108

2.5 X 108

2 X 108

1.5 X 108

1 X 108

5 X 107

1500 2000 2500 3000

The number of Rules
Given -t--- SGM [77]―B -

Tanaka [75]~Mohan [61] -----
Tanaka [76] ----¼- Proposed ----e----

Figure 3.9: Maximum latency.

s)
a
日
IJ,'.aU!lap10
a11

10000

1000

100

10

0.1

0.01

0.001
1000 1500 2000 2500 3000

The number of Rules
Tanaka [75]~Mohan (61] ----
Tanaka [76] -7IE- Proposed --e---
SGM [77] ---B-

Figure 3.10: Median reordering/reconstructing time.

58

(
s
)
3
日
I
L
菩
u
a
p
1
o
a'H

10000

1000

100

10

0.1

0.01

0.001
1000 1500 2000 2500

The number of Rules
Tanaka [75] ~Mohan [61] -----
Tanaka [76] —• Proposed ---e---
SGM [77] --B-

3000

Figure 3.11: Averages of Reordering/Reconstructing Times.

59

Chapter 4

Deterlllining Equivalence of the Rule

List Policies

Any algorithm for reordering or reconstructing the rule list must retain its original classification

policy. In this chapter, we present an algorithm that determines the equivalence of two rule

lists by constructing the ZDD representing these policies. The effectiveness of this algorithm is

confirmed through a series of experiments.

Given two decision lists L1 and L2, deciding whether they represent the same Boolean

function is coNP-complete [23]. Because deciding equivalence of two decision lists can be

reduced to deciding equivalence of two rule lists, deciding equivalence of two rule list is also

coNP-complete.

Therefore, determining the equivalence of reordered or reconstructed rule lists is generally

difficult. However, for rule lists of practical size, we can identify policy violations by constructing

appropriate ZD Ds.

4.1 Determining Equivalence of Rule List Policies via ZDD

A procedure for constructing a ZDD according to M(八） is shown in Algorithm 8. Further, a

ZDD construction method for M (乃） using a BDD /ZDD library such as CUDD [68] is given in

Algorithm 9.

Algorithm 8 first constructs ZDD Z according to the set of the only null combination 00・ ・ ・0

and sets ptr to point Z. By scanning the condition吋=b山・・ ・bw, it then forms a non-terminal

node with numeral k whose 1 edge points to ptr and O edge points to the 0-terminal node if

位=1, and a non-terminal node with numeral k in which both edges point to ptr if bk = *,
and then ptr points to a currently generated node. An example of constructing a ZDD using

Algorithm 8 is shown in Fig. 4.1.

First, Algorithm 9 constructs ZDD Z according to the set of the only null combination.

Then, by scanning the condition rf = b山・・ ・bw, it applies the change(k) operation to Z if

bk= 1, and takes the union of Zand Y if bk=*, where Y is Z.change(k). An example of how

60

Algorithm 8: make ZDD for Rule r

input : rule吋＝疇...bw

output: ZDD for rule吋

1 i← w;

2 pointer ptr to 1-terminal node;

3 while i > 0 do

4

5

6

7

8

，
 10

if bi ='*'then

make a~。n-terminal node v whose variable is i and its left and right edges

point to ptr ;

ptr points to v;

end

if bi ='l'then

make a non-terminal node v whose variable is i and its left edge point to O and

right edges point to ptr ;

ptr points to v;

end

t← i-1;
end

11 return ZDD pointed by ptr ;

to construct the ZDD using Algorithm 9 is shown in Fig. 4.2.

Algorithm 10 describes the method of constructing the ZDD according to R =〈叩，埒汽...,T炉〉．

First, Algorithm 10 constructs the null combination Zand then scans rules in descending order

from 埒~. The method constructs ZDD Zi for rf. It sets Z to Z U Zi if e = D, or to Z ¥ Zi

otherwise. An example of constructing the ZDD using Algorithm 10 is shown in Fig. 4.3.

The equivalence of rule lists R1 and応 canbe confirmed by constructing Z D D1 and Z D D2

and checking whether the two ZDDs are the same. The CUDD package and the algorithms

presented here implement the ZDD as a hash table and use shared ZDD techniques [59]. Whether

two ZDDs, A and Bare the same depends on whether the addresses of the two ZDDs are the

same. Thus, the equivalence of ZDDs can be checked in one step. Thus, we can determine the

equivalence of rule lists if the ZDDs for these rule lists can be constructed.

61

ご＞

dJ
{0000}

ctJ
{0000}

ご＞

1
__J I I

{0010}

ご＞

Z.6

ご＞

'

ヽ

，

＇

'

'
 ＇ ，
 `

＇

＇ ＇
＇ ＇

，

，
 ，

'
 ＇ ＇

＇ ，
 ＇ ，
 ＇ ，
 ＇ ＇

1
11

{0110}

1
I I I I

{0110,1110}

Figure 4.1: Construction process of ZDD according to the set of packets matching rf by Algo-

rithrn 8.

Algorithm 9: make ZDD for Rule r using BDD /ZDD Library like CUDD [68]

input : rule rf = b山・・ ・bw

output: ZDD for rule rf

1 make ZDD Z for the set of null combination {00 ... O};

2 i← w;

3 while i > 0 do

4 I if bi='1'then Z.change(i);

5

6

7

else if bi ='*'then

I z← Z U Z.change(i);

end

i← i -1;

end

8 return Z;

62

cbssg,(3) rh <b""c(2) r・ch'""c(l)占 '"'''um,釦
c> I c::::> c::::>・. c::::>・. : c::::>

， ，

l J
＇ ＇

， ， ， ＇ I

＇ 』

｀ ， ＇ ＇ ＇
＇ ＇ ＇ ,, ＇ ヽ

， ＇ ' ,, ＇ ，
＇ ヽ

， ,,
＇ ＇

dJ dJ m由 dJ[g] ~
{0000} {0000} {0010} {0110} {1110} {0110,1110}

Figure 4.2: Construction process of ZDD according to the set of packets matching rf by Algo-

rithm 9.

Algorithm 10: rnake ZDD for Rule List R

input : rule list R =〈 e1 e2 r1 ,r2 , ... ,r炉〉

output: ZDD for rule list R

1 rnake zdd Z for the empty set ;

2 i← n;

3 while i > 0 do

4

5

6

7

make zdd Zi for r↑ by Algorithm 9 ;

if ei = D then Z← zuzi;

else Z← Z¥ Zi;

i← i-1;

end

8 return Z ;

63

z

z z z

Z¥ Z5

0 ご>-―-仁シ

@]
¢{****} {*O**} {*0**,*110}

Figure 4.3: Construction process for ZDD via Algorithm 10

z

64

Table 4.1: List 1.

Filter R1

rf = * 1 1 0

怜=0 * 1 *
哨 =10*0

rf = 1 101

r『=1111

rf = 1 * * *

叫=* 1 * 1

rf = * 0 * 0

rf = * * * *

Table 4.2: List 2.

Filter R2

叶=0010

戌=* * 1 0

r『=0001

rf = 0 * * 1

rf = 1 1 0 0

柑=* 1 * *

点=1000

rf = 1 0 * 1

ボ＝＊＊＊＊

Figure 4.4: ZDDs for rule list in Table 4.1.

4.2 Determining Equivalence of Rule Lists with Multiple Ac-

tions

In the previous subsection, we presented the algorithms for determining the equivalence of rule

lists with only two actions P and D. In this section, using Tables 4.1 and 4.2, we introduce an

algorithm for determining the equivalence of rule lists that are not limited to two actions. In

the following, such a rule list is called a rule list with multiple actions.

To determine the equivalence of rule lists with multiple actions A1, A2, ... , Am, the determi-

65

Figure 4.5: ZDDs for rule list in Table 4.2.

Table 4.3: A function f : P→ {A, B, C, D} represented by Tables 4.1 and 4.2.

0000→ D 0100→ C 1000→ B 1100 f----+ D

0001卜 C 0101← A 1001→ D 1101 f----+ C

0010→ A 0110→ B 1010→ B 1110 f----+ B

0011→ A 0111 f----+ A 1011 f----+ D 1111→C

nation method constructs ZDDs as described in the previous section form actions.

The procedure for constructing ZDDs X1, X2, ... , Xm for a rule list with multiple actions is

described in Algorithm 11.

Algorithm 11 constructs ZDD Xi for an action Ai, repeating the process from line 2 to line

9. The difference between Algorithms 10 and 11 is whether Ai is specified on line 7.

For rule lists R 1 and応， equivalencecan be determined by constructing 2m ZD Ds X 11, X 12, ... , X 1 m

and X21, X22, ... , X2m and checking the equality of ZDDs X1k and X2k-

4.3 Experiments

To confirm the efficiency of the proposed algorithm for a rule list with only two actions P and

D, we implemented it in C under the Cent OS Release 6.10 (Final) on an Intel Core i5-3470

3.20 GHz CPU with 2 GB main memory. We generated the rule lists using ClassBench [80] and

66

Algorithm 11: make ZDDs for Multiple Actions Rule List R

input : rule list 冗＝〈r~l' 唸汽... ,r炉〉

output: ZDDs X1,X2, ... ,Xm for rule list R

1 i← 1 ;

I Im is the number of actions {A1, A2, ... , Am};

2 while i::; m do

3 make zdd Xi for the empty set ;

4 j← n;
5 while j > 0 do

6 make zdd tmp for r;1 by Algorithm 9 ;

1 if eJ = Ai then Xi← xi u tmp;

s else Xi← xi¥ tmp;
9 i← i-1;

end

end

10 return X1, X2, ... , Xm ;

measured the time for required to determine the equivalence of the rule lists.

Figure 4. 7 shows the time required to construct the ZDD by proposed method, where the

units of measurement are seconds. Figure 4. 7 shows that the time required to determine the

equivalence of the rule lists is less than 0.2 s. This shows the remarkable effectiveness of the

proposed algorithm. Thus, the proposed method is effective for rule lists of practical size.

67

ヽ
l

ヽ
ヽ

ヽ
ヽ

吝、/
、

/こ////
 /

ー
ー

i

ー
ー

ー

ー

ー

I

ー

．＇

ー

゜

＼

＼

＼

ー

ヽ

＼

I

ヽ

I

ヽ

＼

I

¥

＼

＼

ー

＼

＼

ー

ー

ー

I

I

I

ー

ー

ー

I

＼

¥

l

ー

ー

＼

ー

ー

ー

ー

ー
／

／
 ／

Figure 4.6: ZDDs for policies according to Tables 4.1 and 4.2.

1

8

6

.

0

0

゜

1
6
1
4
1
2

0

0

0

0

0

S
)
 3
U
I
Jl

習
惹
o
a
a

0.04

0.02
1000 1500 2000 2500 3000 3500 4000 4500 5000

The number of Rules

Figure 4.7: Deciding time (s).

68

Chapter 5

Run-Based Trie

In the following section, we will discuss packet classification algorithms.

Mikawa et al. proposed a data structure called a run-based trie (RBT) [57]. They define a

run as a bitstring with maximal length and not containing any wild-cards. A run is defined as

follows:

．．
Definition 5.0.1. {run form) Let ri E {O, 1, * }w be a bitmask rule of length w. A substring

励i+l・..的 (1 さ i~j~w) of r that satisfies the following two conditions is called run;

i) bk = 0 V bk = l (i さ k~j)

ii) (i~2 ⇒ bi-l = *)八 (j・ ~w-l ⇒ bj+1=*).

For instance, a bitmask rule of length 16

01001***1010

consists of 3 runs, 01, 001, and 1010. These runs begin at the third, 7th, and 13th bits in the

rule, respectively. Runs in a rule Ti are represented as pf, p;, ... , pf (0さKさ 「w/21).An RBT

consists of w tries T1, T2, ... , Tw. Each trie Tk is constructed by placing the bit pattern of the

run beginning at the k-th bit of乃 ERon its corresponding path of Tk. In addition, we mark

尻onthe path if the run is the j-th run of Ti. The RBT for the rule list in Table 5.1 is shown

in Fig. 5.1.

5.1 Simple Search

A simple RBT search [57] traverses tries T1, T2, ... , Tw with the bit patterns of the packet

beginning at the k-th bit and collects the runs that match the pattern. The matched rules

are then calculated from the collected runs and the highest priority rule in the match rules is

returned. If there are no matching rules, the default rule rn is returned. For example, packet

01010 traverses the heavy lines in Fig. 5.1 and collects runs PL PL pa and pg. Because 01010

only matches rule r5, the highest priority rule for 01010 is r5.

69

Table 5.1: Bitrnask rules.

Filter R

1

2

3

4

5

6

r

r

r

r

r

r

0 * * 0 1

1 * 1 1 *
1 0 0 * *
* 1 0 * 1

0 * * 1 *
* * * * *

訊；・・・ロ尻
ヽ
ヽ

0
1

恥

花＼
・・・・・・・
o
1“

乃
＼
叶 2

5

p

2
1

?

＼

＼

b

p

九
＼1,＇

2
4

T
S
C¥＼

0
p

Figure 5.1: Run-based trie for rule list in Table 5.1.

Let us compute the time complexity of this simple search. First, to traverse tries T1, T2, ... , Tk,

the simple search requires w + (w -l) +・・ ・+ 1 steps. The time complexity of traversing all tries

is 0(研） • Then, because the number of runs on the tries is at most n x「wl, the time complexity

required for comparing the runs is O(nw). Thus, the time complexity of the simple search is

O(nw+研）．

5.2 Decision Tree constructed from RBT

Mikawa et al. also proposed a search algorithm using a decision tree constructed from an

RBT [57]. Because there is a limited number of patterns used to collect runs for each trie Ti in

an RBT search, the patterns are enumerated as S1, S2, ... , Sw. For instance, the patterns used

70

Decision Tree

¢

S』¢s』¢Sgの Sgの S』¢s』¢Sgの Sg¢Sg¢
r1 r1 r 4 rs r1 r5 r1 r1 r 4 rs r 4 r5 r1 r1 rs rs r5 r5

Figure 5.2: Decision tree constructed using RBT in Fig. 5.1 (rewritten).

to collect runs for tries T1, T2, T3, T4, and九 inFig. 5.1 are as follows:

S1 = { {PL p~}, {p~}, {pt P1} },

S2={{p}},¢},

品＝｛｛砂｝，の｝，

ふ={ {Pi}, {p~}, ¢},

Ss={{p~},¢},

(5.1)

where¢denotes no match with a run.

Based on these patterns, the decision tree is constructed by taking the Cartesian product

of S1 x S2 x・ ・ ・x Sw. The decision tree constructed from the patterns in Eq. 5.1 is shown in

Fig. 5.2. Each path from the root to a leaf of the decision tree is equivalent to a search path

obtained by traversing the RBT from T1 to Tw. Computing the highest-priority rule for each

path on the decision tree in advance, we obtain the highest priority rule by only traversing the

decision tree using the RBT. The time complexity of this decision tree search is O(w2), because

we can reach a leaf by traversing the RBT.

71

T1

3: Pi

6 : PI, p~8 : p~

Figure 5.3: RBTwP for rule list in Table 5.1.

5.3 Decision Tree based on RBT with Pointers

5.3.1 RBT with Pointers

In the worst case, the RBT search accesses the bitstring of a packet w2 times. Even if it reaches

down to a node at depth k on Tk, the next starting point is the root of Tk+l・Because searching

for runs at nodes of depth k means that bits p[l] to p[k + d -l] have already been referenced,

traversing from the root of Tk+l to a node at depth k is redundant. Focusing on this point,

we propose a search method that refers to the bits of a packet at most w times. This method

adds new arcs to a non-terminal node that has no 0-arc or 1-arc. In addition, a run from a

node on Tk is copied to nodes on T1, ... , Tk-l・For the rule list in Table 5.2, an RBT with

added arcs and copied runs is shown in Fig. 5.3. We call this an RBT with pointers (RBTwP).

Traversing the RBTwP, we access the bitstring of a packet at most w times, in searching for

the highest-priority rule for the packet. Thus, the time complexity and space complexity of this

method are O(w) and O(nw), respectively.

5.3.2 Decision Tree based on RBTw P

As well as the decision tree constructed from naive RBT [57], we can construct a decision tree

based on RBTw P.

First, we number the nodes that have run (denoted by the numeral on the left side of the

colon in Fig. 5.3). We call this number the node number. The set of reachable node numbers

from node i is limited according to Eq. 5.1. This reachable set is defined as follows:

Definition 5.3.1. (Reachable set in RBTwP)

Ni = { k I there exists a path p from i to k, ,=lj E p }, (5.2)

72

Algorithm 12: ConstructionOfDecisionTreeBaesd OnRBTw P

input : Family of reachable sets root and N1, N2, ... , Nk

output: Decision Tree based RBT with pointers

1 make a root node of decision tree d ;

2 add a priority number [n] to d I I n is the number of rules in the rule list;

3 call Algorithm 13 with explicitly root and d;

I I N1, N2, ... , Nk is implicitly passed to Algorithm 13 ;

4 return d;

where i, j, and k are node numbers.

For example, in the RBTwP in Fig. 5.3, the reachable sets are

where root is the root node of T1・

root= {1, 2},

N1 = { 4, 5, 6, 7},

N2 = {3, 4, 5, 6},

N3 = {6, 7},

N4 = {6, 7},

N戸 {8},

N5=q>,

N1 = {8},

Ns =</>,

(5.3)

Based on these sets, we construct the decision tree using the Cartesian product-like operation

shown in Algorithm 12. Algorithm 12 forms a decision tree by calling Algorithm 13, in which

lines 1-5 recursively make node i based on Ni and calculate the highest-priority rule at node i.

Because this decision tree can be searched by the RBTwP at most w steps, the time com-

plexity of this decision tree search is O(w).

Although this decision tree is very efficient in terms of search time complexity, it may have

redundant sub-trees. As shown in Fig. 5.5, the sub-trees in the shaded area are redundant,

because a node on the sub-tree has no priority rule [i] greater than the highest rule on preceding

nodes. Thus, such a sub-tree can be pruned.

73

Algorithm 13: SpanEdges

input : Reachable Set Nanda node of decision tree v

1 foreach i E N do

2

3

4

5

6

make a decision tree node i and an edge from v to i ;

calculate the candidate highest priority rule number c ;

if c is less than the priority rule of ancient node then

I add [c] to i;

end

call Algorithm 13 with Ni and i ;

end

Decision Tree constructed on RBT with pointers

向

Ns

―

―

 5

―

―

ー
。
VS

凡 N5

Ns

旧
O
NS

N゚s N゚乱4]

Figure 5.4: Decision tree constructed on RBTwP in Fig. 5.3.

Decision Tree constructed on RBT with pointers

[6]

N゚紅4]

固

凡口
―

―

 6
 z

N゚叶4]

Figure 5.5: Redundant sub-tree in decision tree constructed on RBTwP

74

5.4 Cascaded Circular-RBT

The time cornplexity of an RBT search depends on n as O(nw +研）， becausethere are at most

n「w/21 runs on the RBT, and a comparison occurs when th~re is a run on a node when traversing

the RBT. If each rule in a rule list has just one run, we can classify a packet in constant time,

i.e., independent of the number of rules, via a modified RBT. In this section, we first propose a

data structure for the rule list consisting of circular-run rules. Secondly, we provide definitions

for the consecutive ones property (ClP) [9] and the circular ones property (CirclP) [17,81]. We

then propose a packet classification algorithm called cascaded circular-RBT.

5.4.1 Circular-RBT

We define a circular-run as follows:

Definition 5.4.1. {circular-run) Let ri E {O, 1, * }w be a bitmask rule of length w. A substring

of r is called circular-run if it consists of a single run or its substring bib(i+l)・ ・ ・b凸...bj

(1 :s; i :s; w, 1 :s; j < i) satisfies the following two properties:

i) bk = 0 V bk = l (iさKさwVlさk:s; j)

ii) bz = * (j < l < i).

As an example, for r2 and乃 inTable 5.2, each rule consists of the circular-run 111 and 001.

These circular-runs begin at the fifth and fourth bits in the rules, respectively. In this section,

we consider only a rule list consisting of circular-run rules.

Because a rule has just one run, the superscript j of a mark p{ on the RBT is redundant.

Thus, we denote a run in a circular-run rule by Pi instead of p{. When a node on the RBT has

more than one run, because all except the run of the highest priority rule are redundant, those

redundant runs are removed. Because every rule has just one run, if a packet matches run Pi,

then the packet also matches rule r i.

For an RBT constructed from a rule list consisting of circular-run rules, if node v has run

Pi and no node that can be reached from a b-arc of v has a higher-priority run than Pi, we

remove the b-arc of v, where bis O or 1. Figure 5.8 shows the circular-RBT (CircRBT) formed

by removing redundant arcs from Fig. 5.7.

Although circular-RBT can classify a packet in constant time, i.e., independent of n, they

can only be applied to a rule list consisting of circular-run rules. However, in general, a rule list

consists of non-circular-run rules. Thus, we regard a rule list as ~a binary matrix and permute

it such that the matrix has CirclP [17, 81]. In the following, we say that a rule list has CirclP if

the binary matrix reduced from the rule list has CirclP. If a rule list has CirclP, we can apply

the CircRBT method to the rule list.

75

Table 5.2: Circular-run rules.

Filter R

r1

r2

r3

r4

rs

r5

0 0 1 * *
1 1 * * 1

1 * * 0 0

* * 1 1 0

0 1 * * *
* * * * *

1

2

3

4

ー

5

T
p
 ‘

‘
‘‘

‘
‘
‘
,
¥
P

ー

‘‘
‘‘
‘‘、

¥
p5

1

2

T2

゜

乃＼
I
I
,
'

：0
瓜

4

T

o
,’

ヽ

＇ ‘,

3

、9
,
＇1
,

＇’
?
¥
＼
0
p

3

乃

¥
¥
¥
0位

Figure 5.6: RBT for rule list in Table 5.2.

76

1

2

3

4

T1

5

1

2

 4

9
9
9
9
,
'
o
p

3
 P2

Figure 5.7: RBT added arcs and copied runs for rule list in Table 5.2.

1

2

3

4

T1

5

1

2

3

4

9
9
9
9
9
,
0
p
 ¥
m

P2

Figure 5.8: Circular-RBT for rule list in Table 5.2.

77

Table 5.3: Bitmask rules (rewritten). Table 5.4: Replacing 0, 1 by 1 and* by 0.

C1 C2 C3 C4 C5

Filter R 1

゜゚
1 1

r1 0 * * 0 1 1

゜
1 1

゜r2 1 * 1 1 * 1 1 1

゜゚,3 1 0 0 * *

゜
1 1

゜
1

r4 * 1 0 * 1 1

゜゚
1

゜T5 0 * * 1 *

゜゚゜゚゜r5 * * * * *

5.4.2 Consecutive Ones Property and Circular Ones Property

Replacing the ls and Os in a rule by 1 and the * in the rule by 0, we reduce the problem of

whether a rule list has CirclP to whether a binary matrix has CirclP. For example, whether

the rule list in Table 5.3 has CirclP can be determined by reducing it to the binary matrix in

Table 5.4 and checking whether the matrix has ClP. To explain the CirclP, we first define ClP.

Defi.1:1-ition 5.4.2. {Consecutive ones property {C1P)) A binary matrix has C1P if there is a

permutation of its columns such that the ls are consecutive in each row. A binary matrix that

has C1P is called a C1P matrix and a binary matrix that does not have C1P is called a non-C1P

matrix.

For instance, the binary matrix in Table 5.5 has ClP, because there is a permutation 1→ 1,
2→ 3, 3→ 2 and 4→ 4 such that the ls in each row in the permuted matrix are consecutive

(see Table 5.6). In contrast to the binary matrix in Table 5.5, that in Table 5.7 is non-ClP.

Using partition refinement [27, 90], the problem of whether an n x r binary matrix has ClP

is solvable in O(n + r + c) steps, where c is the number of ls in M.

Definition 5.4.3. {Circular ones property {Circ1P)) A binary matrix has Circ1P if there is a

permutation of its columns such that the ls or Os are consecutive in each row. A binary matrix

that has Circ1P is called a Circ1P matrix, and a binary matrix that does not have Circ1P is

called a non-Circ1 P matrix.

Suppose a binary matrix is wrapped around a vertical cylinder. If the columns can be

permuted such that the ls in each row are consecutive on the cylinder, then the matrix has

CirclP. The binary matrix in Table 5.8 has CirclP, because it can be permuted so that the Os

are consecutive for each row (see Table 5.9). In contrast, the matrix in Table 5.10 is non-CirclP.

Whether a binary matrix has CirclP can be determined by complementing those rows whose

first column is 1 (i.e., row M1, M2, ... , Mr is complemented if Mil ='1') and checking whether

the matrix has ClP [81]. As we can determine whether a matrix has ClP in O(n + r + c) steps,
CirclP can be checked in O(nr) steps.

78

Table 5.5: ClP-matrix. Table 5.6: Rearranging Table 5.7: Non-ClP matrix.

Cl C2 C3 C4 columns. C1 C2 C3 C4

1

゜
1

゜
C1 C3 C2 C4 1 1

゜゚1 1 1 1 1 1

゜
1 1

゜
1 1

゜
1

゜
1

゜
1

1

゜
1

゜ ゜゚゜゚
1

゜
1 1

゜
1

Table 5.8: CirclP-matrix. Table 5.9:
C1 C2 C3 C4 C5 columns.

゜1

1

1

゜゚

゜
1 1 1 1

1

゜
1 1 1

゜ ゜゚
1 1

1

゜
1 1

゜゜ ゜
1

゜
1

゜
Rearranging Table 5.10: Non-CirclP rna-

trix.
1

゜
1

゜
1 C5 C3 c1 c2 C4 c1 c2 C3 C4 C5

1 1

゜
1

゜
1 1 1

゜゚
1

゜
1

゜
1

゜゚゜
1 1

゜゚
1 1 1 1 1

゜゚゜1 1 1

゜
1 1

゜゚゜
1

゜
1 1

゜゚゜゚゜
1

゜
1 1 1 1

゜ ゜
1 1 1

゜゜゚
1

゜
1

゜゚゜゚
1 1 1 1 1

゜1 1

゜゚゜ ゜
1

゜゚
1

5.4.3 Cascaded Circular-RBT

Although the CircRBT method is efficient with respect to both time and space, it can only be

applied to a rule list that has CirclP. In general, because a rule list is non-CirclP, CircRBT

cannot be applied. In this section, we propose an algorithm that divides a rule list into multiple

rule lists that have CirclP, then constructs CircRBTs for these rule lists. Finally, a list of

CircRBTs is constructed and used to classify packets.

We present a method of partitioning a rule list in Algorithm 14. First, this algorithm makes

a rule list R1 consisting of r1 and r2. Then, it repeats the process of taking one of the remaining

rules and inserting it into the existing rule list or creating new rule list in order from乃 torn.

When rule list R has fewer than 3 rules, the algorithm returns the only R, because the rule

list must have CirclP. If rule list R has more than 2 rules, rule list S (consisting of the head

and second element of R) is inserted into Ln on lines 4-7. Lines 8-19 search for a rule list R

such that {r} U凡 hasCirclP, and insert r into Ri if there is such a rule list; otherwise, a new

rule list S consisting of only r is created and inserted into R. For instance, given the rule list

in Table 5.11, Algorithm 14 divides it into the three rule lists in Tables 5.12, 5.13, and 5.14.

For a series of rule lists having CirclP, Ln = [R虚 2,...'応], we construct a list of Cir-

cRBTs LF = [石，石，．．．，石].We call this a cascaded CircRBT. A method of packet classifica-

tion using cascaded CircRBT is shown in Algorithm 15. This algorithm applies a circular-run-

79

Algorithm 14: RuleListPartition

input : Rule list R

output: List of rule list Ln = [R虚 2,・ ・., Rk]

1 make an empty list of rule list Ln ;

if IRI < 3 then

2 add R to Ln;

3 return Ln;

end

4 make a new rule list S ;

5 add head(R) to Sand remove head(R) ;

6 add head(R) to Sand remove head(R) ;

7 add S to Ln;

s while R i= (/J do

, I r← head(R) ;

10

11

12

13

14

15

16

17

18

19

20

it← head(L叫；
flag = false ;

while it# Ln.end do

if *it U {r} has CirclP then

add r to *it ;

flag= true;

break;

end

it← it.next ;

end

if flag# true then

make a new rule list S ;

add r to S;

add S to Ln;

end

remove r from n ;
end

based search to a packet in the order石 to五， andreturns the highest-priority rule number

from those obtained from circular-run-based searches. On line 3, Fi (p) returns a rule number

obtained by searching CircRBT互withp. The time and space complexity of this packet classi-

fication algorithm are O(kw) and O(nw), respectively, where k is the size of the list of CircRBT.

If k is independent of n, we have a constant time packet classification that is independent of the

number of rules.

80

Algorithm 15: ListOfCircRBTSearch

input : List of CircRBT LF and packet p

output: Highest priority rule number for p

1 cand← n + 1 / / n is the number of rules ;

2 i← O;
while i < ILFI do

3 I C←互(p);

if c < cand then

4 I I cand← c;
end

5 I i← i + 1;
end

6 return cand;

5.4.4 Experiments

Table 5.11: Example of non-CirclP rule list.

c1 c2 C3 C4 C5 C5 C7 cs Cg ClQ c11 c12

門 1 * 0 * 1 1 0 * ＊ ＊

゜
1

r2 1 0 * 0 * 1 0 0 0 ＊ 1 ＊

T3 0 1 0 1 0 1 * * 0

゜
＊ ＊

r4 ＊ 1 0 * 1 0 * 1 0 1 ＊ 1

T5 * 0 1 1 * * * * * 1 ＊ ＊

T6 1000**** 1 ＊ ＊

゜r7 ＊ 1 ＊ ＊ 1 0 0 * ＊ ＊

゜゚rs 0 * 1 0 0 0 * 0 *

゜
＊ ＊

rg * * ＊＊＊＊＊＊＊ ＊ ＊ ＊

We demonstrate the efficiency of the proposed algorithm through a series of experiments and

comparisons with a linear search, Grouper [50], and MDD [71]. An open-source implementation

is available for Grouper, whereas the linear search, a classification algorithm using MDD, and

the proposed algorithm were implemented in C. Experiments were conducted under the Cent

Table 5.12: CirclP rule list 1.

c12 C5 C3 ClQ c2 cs Cg C4 c1 C7 cu C5

門 11 0*****1001

乃* ** * 000010 11

r4 1 1 0 1 1 1 0 * * * * 0

rg I * * * * * * * * * * * *

81

Table 5.13: CirclP rule list 2.

C12 Cg C1 C4 C3 c2 ClQ C5 C5 C7 cs en

00101001** *

**110 1 * ** * *

r5 I O 1 1 0 0 0 * * * * * *

Table 5.14: CirclP rule list 3.

ClQ C3 C4 C3 c1 C5 C5 c2 C7 c11 c12 Cg

T7 I * * * * * 0 1 1 0 0 0 *

r3 0 0 0 1 0 0 0 * * * * *

OS Release 6.8 (Final) on an Intel Core i5-3470 3.20 GHz CPU with 2 GB main memory. We

generated the rules and the headers based on the standard benchmark for packet classification

algorithms, ClassBench [80]. ClassBench provides acl, fw, and ipc seed files. To generate the rule

for these experiments, the ipc seed file was used. The original rules generated by ClassBench

were converted to arbitrary bitmask rules. The original rules consisted of five fields, namely

the source/destination address, source/destination port number, and protocol number. Because

these fields have lengths of 32, 32, 16, 16, and 8 bits, respectively, the length of the rule and

header was 104 bits. The number of headers was about lM.

Using the generated rules and headers, we measured the time and memory requirements of

constructing the data structures and the time required to determine the highest-priority rule

for every algorithm. The construction and search processes were measured in seconds.

Table 5.15 presents the number of instances for which MDD and the proposed data structure

could not be constructed within 4 h. As can be seen from Table 5.15 and Figs 5.9 and 5.11, MDD

and the proposed algorithm are relatively slow and consume significant amounts of memory.

The means of 10 trials (except instances exceeding 4 h) are shown in Figs. 5.9, 5.10, and

5.11. Note that the time and memory are plotted on a logarithmic scale in Figs. 5.9 and 5.11.

As MDD cannot be constructed within 4 h when there are 5000 rules, we do not show these

results in Figs. 5.9, 5.10, and 5.11.

The proposed partitioning algorithm makes multiple calls to a routine that determines

whether the rule list has CirclP, and this routine requires the construction of a new graph

for the rule list, w邸 tinginformation that might have been collected from previous calls. Thus,

as shown in Fig. 5.9, the proposed algorithm might take a significant amount of time to construct

cascaded CircRBT.

In the experiments, Grouper required the least memory to make the lookup table. Thus,

although the space complexity of the proposed algorithm is theoretically better than that of

Grouper 2町t• tn and O(nw), the memory requirements of Grouper are lower than those of the

proposed algorithm.

Figure 5.10 shows that the search times for the linear search and Grouper [50] are dependent

on the number of rules. Although MDD can classify packets in constant time up to 3000 rules, it

82

Table 5.15: # of instances exceeding 4 h construction time in ipc.

Grouper

MDD

Proposed Algorithm

1000 2000 3000 4000 5000

0 0 0 0 0

0

0

1

1

4

0

2

1

10

2

10000, GroMPuDropeD pr 函[[5710d]] ----¾-----_,._

1000 t -a-

100
’ CヽF)

E-, .且....
10

> 1

0.1

0.01

0.001
1000 1500 2000 2500 3000 3500 4000 4500 5000

The number of Rules

Figure 5.9: Construction times (s).

takes significantly more time for more than 4000 rules. As MDD exceeds the 2GB main memory

with 4000 rules, it takes much more time to classify packets In contrast, the proposed algorithm

classifies packets in constant time, independent of the number of rules. This agrees with the

theoretical performance in Table 1.8. Because the rules generated by ClassBench are easy to

partition, the size of the list of CircRBT list is small, allowing the proposed algorithm to classify

packets in a constant time that is independent of the number of rules.

83

S
)
auI
臣
q
:m
ia
s

100

90

80

70

60

50

40

30

20

10

゜1000 1500 2000 2500 3000 3500 4000

The number of Rules

4500 5000

Figure 5.10: Classification times (s).

1 X 107

1 X 106

(
E
H
)
 AlOUlclJt¥1

100000

10000

1000
1000 1500 2000 2500 3000 3500 4000 4500 5000

The number of Rules

Figure 5.11: Required memory (kB).

84

Chapter 6

Con cl us ions

This thesis has mainly discussed two problems related to packet classification. One is an opti-

mization problem for static early decisions and the other concerns packet classification algorithms

based on software.

For the early-decision optimization problem, we identified the following issues:

1. It is necessary to develop a policy checker to ensure that the reconstructed rule list main-

tains the original policy.

2. ORO should take the packet arrival distribution as input and consider variations in the

rule weights. This was formulated as RORO.

3. There is a problem with the pseudo-code_ for the state-of-the-art SGM [77] whereby its

naive implementation does not terminate in a practical time when the precedence relation

is dense.

4. There is no formulation for the Optimal Rule List problem instead of the Optimal Rule

Ordering problem.

Table 6.1: Comparison of various packet classification schemes with arbitrary bitmask rules.

Algorithm Worst-case Time Worst-case Space

Linear Search O(nw) O(nw)

Grouper [50] O(tn/w) 0(2w/t・tn)

MDD [71] O(w) 0(2門

RBT Search [57] O(nw+研） O(nw)

RBT Decision Tree [57] O(wり 0(炉）

MOB [44] O(nw) O(n研）

Decision Tree constructed on RBT with pointers O(w) 0(2門

Cascaded Circular-RBT O(kw) O(nw)

85

We obtain the following results for these problems:

1. We developed a policy checker using ZDDs and confirmed its effectiveness with 5000 rules.

2. • We showed that the problem of computing the weight for the default rule圧 with

order a under an uniform distribution U is #P-complete and developed an algorithm

based on ZDDs for this problem.

• We showed that RORO is NP-hard.

• We proposed a simulated annealing algorithm for RORO and confirmed its effective-

ness with 500 rules.

• We developed a pairing algorithm that pairs rules causing policy violations until there

are no such rules, allowing the rules to be simply sorted according to their weights.

This algorithm decreased the classification latency and reordering time compared

with SGM.

• We fixed the bug in the pseudo-code of SGM, and accelerated this algorithm by by

changing the representation of the precedence relation from an adjacent matrix to an

adjacent list, and confirmed its effectiveness in experiments.

• We formulated the ORL problem and developed a corresponding algorithm. This

algorithm rewrites the rule list such that its graph of precedence relations becomes

a forest of oriented trees, from which the order of rules can be optimized. The

effectiveness of this algorithm was demonstrated through a series of experiments.

We now consider tasks for future work with regard to ORO. Although we showed that RORO

is #P-complete, the computational complexity of ORL is still unclear. Because the effectiveness

of the proposed algorithms was only demonstrated in experiments using the packet classification

benchmark ClassBench [80], it is necessary to extend these results to the NFV environment

(e.g., Open vSwitch [64]).

For the problem of packet classification based on software, we showed that it is necessary

to develop a classification algorithm according to arbitrary bitmask rules, whereby the packet

classification time is independent of the number of rules. In this study, we proposed an algorithm

that first constructs a decision tree from RBT [57] with pointers, and then classifies packets

via the decision tree. The time complexity of this algorithm is O(w). We also developed a

classification algorithm that divides a rule list into some rule lists幻応，．．．，応 sothat every

rule in Ri has only circular-runs, constructs a list of CircRBTs S1, S2, ... , S, and classifies

packets via this list. The time and space complexities of this algorithm are O(kw) and O(nw).

There are several tasks for future work with regard to packet classification based on software.

To construct the decision tree based on RBTwP, pruning the decision tree by deleting all nodes

whose children point to the same node and sharing all equivalent sub-trees would be a useful

development. In terms of dividing a rule list into several CirclP rule lists, there are three tasks.

First, the time complexity of dividing a rule list is O(n2r), which is somewhat long. Reducing

this time is an important task. Second, because the effectiveness of the proposed algorithms has

86

only been demonstrated using ClassBench [80], it would be interesting to determine whether

the number of rule lists k is independent of the number of rules n for any rule list. Finally, the

effectiveness of our algorithms should be studied in a network virtualization environment, as

should our algorithms for static early decisions.

87

Acknow-ledgrnent

I would like to express my sincere gratitude to my supervisor, Professor Ken TAN AKA. I am

grateful to Dr. Kenji Mikawa from Center for Academic Information Service, Niigata University

for his assistance. My sincere thanks to Professors Leo NAGAMATSU and Kazuto MATSUO

from Field of Information Sciences, Graduate School of Science, Kanagawa University for their

helpful comments. Finally, I would like to thank the members of TANAKA laboratory for their

support.

88

Bibliography

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509-516,

June 1978.

[2] E. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live testing of firewall config-

uration enforcement. IEEE Journal on Selected Areas in Communications, 27(3):302-314,

April 2009.

[3] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network configuration in a box:

towards end-to-end verification of network reachability and security. In 2009 17th IEEE

International Conference on Network Protocols, pages 123-132, Oct 2009.

[4] E. S. Al-Shaer and H. H. Hamed. Discovery of policy anomalies in distributed firewalls. In

IEEE INFOCOM 2004, volume 4, pages 2605-2616 vol.4, March 2004.

[5] F. Baboescu, , and G. Varghese. Packet classification for core routers: is there an alternative

to cams? In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE

Computer and Communications Societies (IEEE Cat. No.03CH37428), volume 1, pages

53-63 vol.I, March 2003.

[6] Florin Baboescu and George Varghese. Scalable packet classification. SIGCOMM Comput.

Commun. Rev., 31(4):199-210, August 2001.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general approach to

network configuration verification. In Proceedings of the Conference of the A CM Special

Interest Group on Data Communication, SIGCOMM'17, pages 155-168, New York, NY,

USA, 2017. ACM.

[8] X. Bi, Y. Zhou, and J. Yu. Clustering boundary cutting for packet classification based on

distribution density. In 2017 IEEE International Symposium on Parallel and Distributed

Processing with Applications and 2017 IEEE International Conference on Ubiquitous Com-

puting and Communications (ISPA/IUCC), pages 661-666, Dec 2017.

[9] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval

graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System

Sciences, 13(3):335 -379, 1976.

89

[10] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a bdd

package. In Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC'90,

pages 40-45, New York, NY, USA, 1990. ACM.

[11] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-

tions on Computers, C-35(8):677-691, Aug 1986.

[12] Milind M Buddhikot, Subhash Suri, and Marcel Waldvogel. Sp邸edecomposition techniques

for fast layer-4 switching. In International Workshop on Protocols for High Speed Networks,

pages 25-41. Springer, 1999.

[13] Francis Chang, Kang Li, and Wu chang Feng. Approximate caches for packet classification.

IEEE INFOCOM 2004, 4:2196-2207 vol.4, 2004.

[14] H.J. Chao. Next generation routers. Proceedings of the IEEE, 90(9):1518-1558, Sep. 2002.

[15] I. L. Chvets and M. H. MacGregor. Multi-zone caches for accelerating ip routing table

lookups. In Workshop on High Performance Switching and Routing, Merging Optical and

IP Technologie, pages 121-126, May 2002.

[16] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. Fast packet classification using

bloom filters. In 2006 Symposium on Architecture For Networking And Communications

Systems, pages 61-70, Dec 2006.

[17] Michael Dom, Jiong Guo, and Rolf Niedermeier. Approximation and fixed-parameter algo-

rithms for consecutive ones submatrix problems. Journal of Computer and System Sciences,

76(3):204 -221, 2010.

[18] Q. Duan and E. Al-Shaer. Traffic-aware dynamic firewall policy management: techniques

and applications. IEEE Communications Magazine, 51(7):73-79, July 2013.

[19] E. S. M. El-Alfy and S. Z. Selim. On optimal firewall rule ordering. In 2007 IEEE/ ACS

International Conference on Computer Systems and Applications, pages 819-824, May 2007.

[20] A. Feldman and S. Muthukrishnan. Tradeoffs for packet classification. In Proceedings IEEE

INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies {Cat. No.OOCH37064),

volume 3, pages 1193-1202 vol.3, March 2000.

[21] T. Fuchino, T. Harada, K. Tanaka, and K. Mikawa. A reordering method via rules pairing

based on average weights. IEICE Technical Report, Circuits and Systems, 118(295):31-36,

nov 2018.

[22] Errin W. Fulp. Optimization of network firewall policies using directed acyclic graphs. In

In Proc. IEEE Internet Management Conf, extended abstract, 2005.

90

[23] David Guijarro, V ctor Lavn, and Vijay Raghavan. Monotone term decision lists. Theoretical

Computer Science, 259(1) :549 -575, 2001.

[24] P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent cuttings. Micro,

IEEE, 20(1):34-41, Jan 2000.

[25] P. Gupta and N. McKeown. Algorithms for packet classification. Netwrk. Mag. of Global

Internetwkg., 15(2):24-32, March 2001.

[26] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. SIGCOMM

Comput. Commun. Rev., 29(4):147-160, August 1999.

[27] Michel Habib, Christophe Paul, and Laurent Viennot. Partition refinement techniques: An

interesting algorithmic tool kit. International Journal of Foundations of Computer Science,

10(02):147-170, 1999.

[28] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and verification of ipsec and vpn security

policies. In 13TH IEEE International Conference on Network Protocols {ICNP'05), pages

10 pp.-278, Nov 2005.

[29] Hazem Hamed and Ehab Al-Shaer. Dynamic rule-ordering optimization for high-speed

firewall filtering. In Proceedings of the 2006 A CM Symposium on Information, Computer

and Communications Security, ASIACCS'06, pages 332-342, New York, NY, USA, 2006.

ACM.

[30] Hazem Hamed, Adel El-Atawy, and Ehab Al-Shaer. Adaptive statistical optimization tech-

niques for firewall packet filtering. In INFOCOM. IEEE, 2006.

[31] P. He, G. Xie, K. Salamatian, and L. Mathy. Meta-algorithms for software-based packet

classification. In 2014 IEEE 22nd International Conference on Network Protocols, pages

308-319, Oct 2014.

[32] K. Hikage and T. Yamada. Algorithm for minimizing overhead of firewall with mainte-

nance of rule dependencies. Proc. IEICE General Conference 2018, 2016(1):6, mar 2016 (in

Japanese).

[33] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-net: Real-time network verification

using atoms. In 14th USENIX Symposium on Networked Systems Design and Implementa-

tion {NSDI 17), pages 735-749, Boston, MA, 2017. USENIX Association.

[34] W. A. Horn. Single-machine job sequencing with treelike precedence ordering and linear

delay penaltie、s.SIAM Journal on Applied Mathematics, 23(2):189-202, 1972.

[35] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Fame: A firewall anomaly management

environment. In Proceedings of the ACM Conference on Computer and Communications

Security, pages 17-26, 2010.

91

[36] T. Ikemoto, K. Tanaka, and K. Mikawa. A dividing method of rule set for packet filtering

optimization. Proc. 13th Forum on Information Technology, 2015:181-182, sep 2014 (in

Japanese).

[37] T. Inoue, R. Chen, T. Mano, K. Mizutani, H. Nagata, and 0. Akashi. An efficient frame-

work for data-plane verification with geometric windowing queries. IEEE Transactions on

Network and Service Management, 14(4):1113-1127, Dec 2017.

[38] T. Inoue, T. Mano, K. Mizutani, S. I. Minato, and 0. Akashi. Rethinking packet classifi-

cation for global network view of software-defined networking. In 2014 IEEE 22nd Inter-

national Conference on Network Protocols, pages 296-307, Oct 2014.

[39] W. Jiang. Scalable ternary content addressable memory implementation using fpgas. In

Architectures for Networking and Communications Systems, pages 71-82, Oct 2013.

[40] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. Optimiza-

tion by simulated annealing: An experimental evaluation. part i, graph partitioning. Oper.

Res., 37(6):865-892, October 1989.

[41] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. Opti-

mization by simulated annealing: An experimental evaluation; part ii, graph coloring and

number partitioning. Oper. Res., 39(3):378-406, May 1991.

[42] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and

Scott Whyte. Real time network policy checking using header space analysis. In Presented

as part of the 10th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 13), pages 99-111, Lombard, IL, 2013. USENIX.

[43] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static

checking for networks. In Presented as part of the 9th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 12), pages 113-126, San Jose, CA,

2012. USENIX.

[44] Y. Kobayashi, T. Takahashi, K. Mikawa, and K. Tanaka. A packet classification algorithm

based on trie considering matching orders of bits. IEICE Technical Report, Circuits and

Systems, 2015(315):65-70, nov 2015 (in Japanese).

[45] Y. Kobayashi, T. Takahashi, K. Mikawa, and K. Tanaka. Fast packet classification using

trie. In Proc. IEICE General Conference, page 160, March 2016 (in Japanese).

[46] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using efficient

multi-dimensional range matching. SIGCOMM Comput. Commun. Rev., 28(4):203-214,

October 1998.

92

[47] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary. Algorithms

for advanced packet classification with ternary cams. SIGCOMM Comput. Commun. Rev.,

35(4):193-204, August 2005.

[48] E.L. Lawler. Sequencing jobs to minimize total weighted completion time subject to prece-

dence constraints. Annals of Discrete Mathematics, 2:75 -90, 1978. Algorithmic Aspects

of Combinatorics.

[49] W. Li and X. Li. Hybridcuts: A scheme combining decomposition and cutting for packet

classification. In 2013 IEEE 21st Annual Symposium on High-Performance Interconnects,

pages 41-48, Aug 2013.

[50] Jay Ligatti, Josh Kuhn, and Chris Gage. A packet-classification algorithm for arbitrary

bitmask rules, with automatic time-space tradeoffs. In Proceedings of the International

Conference on Computer Communication Networks (ICCCN), pages 145-150, August 2010.

[51] Hyesook Lim, Youngju, Choe, Miran Shim, and Jungwon Lee. A -quad-trie condition-

ally merged with a decision tree for packet classification. Communications Letters, IEEE,

18(4):676-679, April 2014.

[52] Hyesook Lim, Nara Lee, Geumdan Jin, Jungwon Lee, Youngju Choi, and Changhoon Yim.

Boundary cutting for packet classification. IEEE/ ACM Trans. Netw., 22(2):443-456, April

2014.

[53] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey,

and Samuel Talmadge King. Debugging the data plane with anteater. SIGCOMM Comput.

Commun. Rev., 41(4):290-301, August 2011.

[54] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69-74, March 2008.

[55] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. Network

function virtualization: State-of-the-art and research challenges. IEEE Communications

Surveys Tutorials, 18(1) :236-262, Firstquarter 2016.

[56] K. Mikawa, K. Tanaka, and J. Koide. A solution for packet filter optimization problem

using block segmentation. IEICE Transactions on Communications, J94-B(10):1408-1417,

Oct 2011 (in Japanese).

[57] Kenji Mikawa and Ken Tanaka. Run-based trie involving the structure of arbitrary bitmask

rules. IEICE Transactions on Information and Systems, E98.D(6):1206-1212, 2015.

[58] S. Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In Design

Automation, 1993. 30th Conference on, pages 272-277, June 1993.

93

[59] Shin-ichi Minato. Zero-suppressed bdds and their applications. International Journal on

Software Tools for Technology Transfer, 3(2):156-170, 2001.

[60] G. Misherghi, L. Yuan, Z. Su, C. N. Chuah, and H. Chen. A general framework for bench-

marking firewall optimization techniques. IEEE Transactions on Network and Service Man-

agement, 5(4) :227-238, December 2008.

[61] Ratish Mohan, Anis Yazidi, Boning Feng, and B. John Oommen. Dynamic ordering of

firewall rules using a novel swapping window-based paradigm. In Proceedings of the 6th

International Conference on Communication and Network Security, ICCNS'16, pages 11-

20, New York, NY, USA, 2016. ACM.

[62] B. Nagpal, N. Singh, N. Chauhan, and R. Murari. A survey and taxonomy of various

packet classification algorithms. In 2015 International Conference on Advances in Computer

Engineering and Applications, pages 8-13, March 2015.

[63] Christos M. Papadimitriou. Computational compl⑫ ity. Addison-Wesley, Reading, Mas-

sachusetts, 1994.

[64] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Rajahalme,

Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon, and Martin

Casado. The design and implementation of open vswitch. In Proceedings of the 12th

USENIX Conference on Networked Systems Design and Implementation, NSDl'15, pages

117-130, Berkeley, CA, USA, 2015. USENIX Association.

[65] X. Shao, K. Tanaka, and K. Mikawa. Rule list optimization method via dag. In Proc.

IEICE General Conference 2018, page 334, March 2018 (in Japanese).

[66] R. Shima, K. Tanaka, and K. Mikawa. A solution for optimum filtering rules allocation.

Proc. 10th Forum on Information Technology, 10(4):175-176, sep~011 (in Japanese).

[67] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification

using multidimensional cutting. In Proceedings of the 2003 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM'03,

pages 213-224, New York, NY, USA, 2003. ACM.

[68] F. Somenzi. Cudd package. http:/ /vlsi. colorado. edu/-fabio/CUDD/ cudd. pdf.

[69] Haoyu Song and John W. Lockwood. Efficient packet classification for network intrusion

detection using fpga. In Proceedings of the 2005 ACM/SIGDA 13th International Sympo-

sium on Field-programmable Gate Arrays, FPGA'05, pages 238-245, New York, NY, USA,

2005. ACM.

[70] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using extended tcams. In 11th

IEEE International Conference on Network Protocols, 2003. Proceedings., pages 120-131,

Nov 2003.

94

[71] A. Srinivasan, T. Harn, S. Malik, and R. K. Brayton. Algorithms for discrete function

manipulation. In Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Papers.,

1990 IEEE International Conference on, pages 92-95, Nov 1990.

[72] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search.

SIGCOMM Comput. Commun. Rev., 29(4):135-146, August 1999.

[73] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four switch-

ing. SIGCOMM Comput. Commun. Rev., 28(4):191-202, October 1998.

[74] Thibaut Stimpfling, Normand Blanger, Omar Cherkaoui, Andr Bliveau, Ludovic Bliveau,

and Yvon Savaria. Extensions to decision-tree based packet classification algorithms to

address new classification paradigms. Computer Networks, 122:83 -95, 2017.

[75] Ken Tanaka, Kenji Mikawa, and Manabu Hikin. A heuristic algorithm for reconstructing a

packet filter with dependent rules. IEICE Trans. Commun., 96(1):155-162, Jan 2013.

[76] Ken Tanaka, Kenji Mikawa, and Kouhei Takeyama. Optimization of packet filter with

maintenance of rule dependencies. IEICE Communications Express, 2(2) :80-85, Feb 2013.

[77] A. Tapdiya and E.W. Fulp. Towards optimal firewall rule ordering utilizing directed acycli-

cal graphs. In Computer Communications and Networks, 2009. ICCCN 2009. Proceedings

of 18th Intematonal Conference on, pages 1-6, Aug 2009.

[78] D. E. Taylor and J. S. Turner. Scalable packet classification using distributed crossproducing

of field labels. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer

and Communications Societies., volume 1, pages 269-280 vol. 1, March 2005.

[79] David E. Taylor. Survey and taxonomy of packet classification techniques. A CM Comput.

Surv., 37(3) :238-275, September 2005.

[80] David E. Taylor and Jonathan S. Turner. Classbench: A packet classification benchmark.

IEEE/ACM Trans. Netw., 15(3):499-511, June 2007.

[81] Alan Tucker. Matrix characterizations of circular-arc graphs. Pacific J. Math., 39(2):535-

545, 1971.

[82] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. Efficuts: Optimizing

packet classification for memory and throughput. SIGCOMM Comput. Commun. Rev.,

40(4) :207-218, August 2010.

[83] J. van Lunteren and T. Engbersen. Fast and scalable packet classification. IEEE Journal

on Selected Areas in Communications, 21(4):560-571, May 2003.

95

[84] P. Warkhede, S. Suri, and G. Varghese. Fast packet classification for two-dimensional

conflict-free filters. In Proceedings IEEE INFOCOM 2001. Conference on Computer Com-

munications. Twentieth Annual Joint Conference of the IEEE Computer and Communica-

tions Society (Cat. No.01CH37213), volume 3, pages 1434-1443 vol.3, April 2001.

[85] T. Y. C. Woo. A modular approach to packet classification: algorithms and results.

In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications Societies {Cat.

No.OOCH37064), volume 3, pages 1213-1222 vol.3, March 2000.

[86] B. Yan, Y. Xu, and H. J. Chao. Adaptive wildcard rule cache management for software-

defined networks. IEEE/ A CM Transactions on Networking, 26(2) :962-975, April 2018.

[87] Bo Yan, Yang Xu, Hongya Xing, Kang Xi, and H. Jonathan Chao. Cab: A reactive wildcard

rule caching system for software-defined networks. In Proceedings of the Third Workshop

on Hot Topics in Software Defined Networking, HotSDN'14, pages 163-168, New York,

NY, USA, 2014. ACM.

[88] H. Yang and S.S. Lam. Real-time verification of network properties using atomic predicates.

IEEE/ACM Transactions on Networking, 24(2):887-900, April 2016.

[89] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng. A sorted-partitioning ap-

proach to fast and scalable dynamic packet classification. IEEE/ A CM Transactions on

Networking, 26(4):1907-1920, Aug 2018.

[90] V.P. You. On matrices that do not have the consecutive ones property. Master's thesis,

Department of Mathematics, Simon Fraser University, 2009.

[91] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and P. Mohapatra.

Fireman: a toolkit for firewall modeling and analysis. In 2006 IEEE Symposium on Security

and Privacy (S P'06), pages 15 pp.-213, May 2006.

[92] P. Zhang, C. Zhang, and C. Hu. Fast testing network data plane with rulechecker. In 2017

IEEE 25th International Conference on Network Protocols (ICNP), pages 1-10, Oct 2017.

96

Appendix A

Simulated Annealing for RORO

In this appendix, we present a multi-start local optimization method (MSL) and a simulated

annealing method for RORO [40,41].

A.I Multi-Start Local Optimization (MSL)

To implement MSL, we first define a neighbor N(a-) for solution a-. In the proposed method,

Eq. (A.l) is used to determine a neighbor to solution a-.

N(a) = { a'l{k I a(k) # a'(k)}I = 2} (A.l)

N(a) is obtained by choosing i,j E [n] (i =/= j) and swapping a(i) and a(j). For example, N(a)

for a= (2 3 1 4) with Equation (A.l) is

(3 2 1 4), (1 3 2 4), (4 3 1 2), (2 1 3 4), (2 4 1 3), (2 3 4 1).

The proposed method randomly generates an order o : [IN(a)I]→ [IN(a)I] and searches for
solutions in N(a) in order o.

To implement MSL, we define an evaluation function h for a andび'aswell as a neighbor.

Swapping the ith rule jth rules, the set of packets defined between the ith and jth rules may

vary.

After interchanging the ith and jth rules, the sets of packets decided by the ith ruler (J"-1(i),

jth rule r (J"-l(j), and kth rule 乃— 1(k) (i + 1 :S k =S j -l) are given by Eqs. (A.3), (A.4), and

(A.5), respectively, where T(i,j) is the order that only interchanges the ith and jth elements.

From the above, let the evaluation function h for solutions a and a be

J

h(CY, が） = Lk・(IE(応，k)IF-IE(Ra,, k)IF), (A.2)

k=i

where CJ = T(a―l(i),a-l(j)) 0 (J.

MSL with the neighbor given by Eq. (A.1) and the evaluation function in (A.2) is described

in Algorithm 16. This algorithm takes rule list Rand a parameter loop, repeats loop to randomly

generate feasible solution T, and returns the optimal solution.

97

Algorithm 16: Multi-Start Local Optimization

input : Rule list R, Loop parameter loop

output: Rule Orderび

l a-← initial random feasible order ;

2 0← searching order for IN (a-) I ;
3 i← O;
4 while i < loop do

5 T← random feasible order ;

6 do local optimization for T according to o ;

1 if h(び， T)< 0 then a-← T;
8 i← i+l;
end

A.2 Simulated Annealing

Simulated annealing takes a temperature and allows a solution to transit to a worse solution

with probability p defined by the temperature and an evaluation function.

A simulated annealing algorithm for RORO is given in Algorithm 17. The algorithm utilizes

neighbor N1 (a-) when temperature t is high compared with the initial temperature T as T~ 咽
N1 (a-) is a set of solutions 0-1 whose weights do not vary in N(a-). Because E(R, i) is computed

at every evaluation of the solution, the algorithm uses N1 (a-) when t is high.

E(RT(戸 (i),cr→(j))ocr, びー1(i))

= E(Rcr, O'―1(j)) u (E(Rcr,0'-1(i)) n M(rcr-l(j))) u ... u (E(Rcr,O'―1(j-1)) n M(rcr-l(j)))
(A.3)

E (RT(cr-1(i),cr-1(j))ocr, O'―1(j)) = E(Rcr,O'―1(i)) ¥ M(rcr-l(i+l)) ¥・ ・ ・¥ M(rcr-1(j)) (A.4)

E(RT(い (i),戸 (j))oび 9戸 (k))

= E(Rび '(J"―1(k))¥M(r17-1(j)) U (E(Ro-,a―1(i)) ¥ M(r17-1(i+l)) ¥ .. ・¥ M(r。→(k-1))) n M(ro-→ (k))

(A.5)

A.3 Experiments

To confirm the efficiency of the proposed algorithms, we implemented them in C++ under Mac

OSX 10.9.5 on an Intel Core i5 1.4GHz CPU with 4 GB main memory. We generated rule lists

and header lists based on the standard benchmark for packet classification Class Bench [80],

and used a ZDD library [68]. To evaluate th proposed algorithms MSL and SA algorithms, we

implemented the state-of-the-art rule reordering algorithm SGM [77] in C++. The latency of

a given rule list for MSL, SA, and SGM is shown in Fig. A.l. Although MSL decreases the

98

Algorithm 17: Simulated Annealing

input : Rule list冗

Initial accepted probability init,

Inner Loop parameter loop,

Temperature factor temp,

Freezing Parameter freeze

output: Rule Order a

1 a← initial random feasible order ;

2 0← searching order for IN (a) I ;

3 choose initial temperature T so that init = e―△ /t;

4 t← T;

5 counLout← O;
6 while counLout <freeze• IN(a)I do

7

8

9

0

1

2

1

1

1

13

14

15

16

17

counLin← O;
while counLin <loop・IN(a-)1 do

T if tく両 thengetび EN (a-) according to o;

else getび EN (a-) according to o;

△ = h(び，が）；

if△ ~0 then a-← び， ouLcount←O;

else

choose a random value q E [O, 1] ;
if q < e―△ /t then a-← a-.

ouLcount← ouLcount + 1 ;

end

in_count← in_count + 1 ;

end

t← t・temp
end

latency for the given rule list, its latency is greater than that of SA and SGM. However, in all

cases, SA has the lowest latency Thus, SA is efficient for RORO.

99

5 X 106

4.5 X 106
,-._ "'-<

4 X 106

~~ 3.5 X 106

j 呂>, 3 X 106

2.5 X 106

£ ゚g " 恩

2 X 106

1.5 X 106

1 X 106

500000

200 300 400 500 600 700 800 900 1000

The number of Rules

Figure A.I: Latency for rule lists with 100,500, and 1000 rules.

100

Appendix B

Research Achievelllent

B.1 Journals

1. T. Harada, Y. Ishikawa, K. Tanaka, K. Mikawa, "A Packet Classification Method via

Cascaded Circular-Run-Based Trie," IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, (to appear)

2. T. Harada, K. Tanaka and K. Mikawa, "A Method for Computing the Number of Packets

Matching a Filtering Rule," IEICE Transactions on Information & Systems, Vol. JlOl-D,

No.3, pp.522-529, Mar., 2018, (in Japanese)

B.2 Conferences

1. T. Harada, K. Tanaka and K. Mikawa, "A Heuristic Algorithm for Relaxed Optimal Rule

Ordering Problem," 2nd Cyber Security in Networking Conference (CSNet'18), Oct., 2018

2. T. Harada, K. Tanaka and K. Mikawa, "Acceleration of Packet Classification via Inclusive

Rules," IEEE Conference on Communications and Network Security (CNS), pp.598-599,

May, 2018

B.3 Technical Reports

1. T.Harada, K. Tanaka, K. Mikawa, "Deciding Equivalence of The Rule List Policies via

ZDD," IPSJ SIG Technical Reports, Vol.2019-AL-171, No.8, pp.1-8, Jan., 2019 (in Japanese)

2. T. Fuchino, T. Harada, K. Tanaka, K. Mikawa, "A Reordering Method via Rules Pair-

ing based on Average Weights," IEICE Technical Report, Circuits and Systems, Vol.118,

No.295, pp.31-36, Nov., 2018 (in Japanese)

3. T. Harada, K. Tanaka, K. Mikawa, "Packet Filter Reconstruction by Rules Encapsulation,"

IEICE Technical Report, Circuits and Systems, Vol. 118, No.82, pp.93-98, Jun., 2018, (in

Japanese)

101

4. T. Harada, K. Tanaka, K. Mikawa, "A Packet Classification Method for a List of Run-

Based Tries Consisting of a Single Run,", IPSJ SIG Technical Reports, Vol.2018-AL-167,

No.3, pp.1-8, Mar. , 2018 (in Japanese)

5. T. Harada, K. Tanaka, K. Mikawa, "Heuristic Algorithms for Optimal Rule Ordering with

Varying Rule Weights," IPSJ SIG Technical Reports, Vol.2018-AL-166, No.10, pp.1-8,

Jan., 2018 (in Japanese)

6. T. Harada, K. Tanaka, K. Mikawa, "Computing the Number of Packets that match A

Filtering Rule via MTZDDs," IEICE Technical Report, Circuits and Systems, Vol.117,

No.96, pp.45-50, Jun., 2017 (in Japanese)

7. T. Harada, K. Tanaka, K. Mikawa, "An RBT Decision Tree Construction for Sparse Rules,"

IEICE Technical Report, Computation, Vol.117, No.28, pp.9-15, May, 2017 (in Japanese)

8. T. Harada, K. Tanaka, K. Mikawa, "A Fast Search Method for Run-Based Trie Consisting

of A Single Run," IPSJ SIG Technical Reports, Vol.2017-AL-162, No.2, pp.1-7, Mar., 2017

(in Japanese)

9. T. Harada, K. Tanaka, K. Mikawa, "A Fast Search Method for Run-Based Tries via Point-

ers," IEICE Technical Report, Circuits and Systems, Vol. 116, No.315, pp.13-18, Nov.,

2016 (in Japanese)

B.4 Programs

https://github.com/tanakalab

102

