
2018 Doctoral Thesis

The Packet Classification Problem and its

Solutions

Supervisor Prof. Ken TANAKA

Field of Information Sciences, Graduate School of Science, Kanagawa

University

Student ID Number:201670146

Takashi HARADA

Contents

1 Introduction

1.1 Research Background

1.2 Purpose of This Study

1.3 Studies on Classification

1.3.1 Policy and Configuration Checking .

1.3.2 Rule List Optimization

1.3.3 Specialized Data Structures

1.4 Organization of This Thesis

1

1

2

3

4

6

7

0

ー

．

．

．

．

．

．

．

．

．

．

．

．

•
．

• •
．

．

．

•
．

2 Optimal Rule Ordering 11

2.1 Relaxed ORO 11

2.2 RRO is NP-hard . 16

2.3 Zero-Suppressed Binary Decision Diagrams 27

2.4 Computing The Number of Evaluated Packets . 28

2.4.1 Complexity of Computing the Number of Evaluated Packets 28

2.5 Manipulating M(乃） and E(応，i)via ZDDs . 29

2.6 Rule Pairing Algorithm 32

2.6.1 Complexity Analysis 34

2.6.2 Experiments . 35

2. 7 Improving Reordering Methods based on [75] 41

2.7.1 Interchange Adjacent Rules 41

2.7.2 Interchange of Single Rule and Consecutive Rules. 42

2.7.3 Adaptive Reordering Algorithm 44

2.7.4 Experiments . 45

3 Optimizing Rule List

3.1 Single Machine Job Sequencing Problem ..

3.2 Rule List Reconstruction Method via Inclusive Rules

3.2.1 Experiments 50

48

. 48

49

3.2.2 Difference between Single-Machine Job Sequencing Problem and RORO . 53

3.3 Rewriting Rules to Oriented Trees 54

3.3.1 Rewriting Rules . 54

CONTENTS

3.3.2

3.3.3

Merging Rules

Experiments .

•1
.
1

4

5

5

5

．
．

．
．

•• ••
．
．

．
．

••
．
．

．
．

．
．

．
．

．
．

．
．

．
．

．
．

．
．

．
．

．
．

4 Determining Equivalence of the Rule List Policies

4.1 Determining Equivalence of Rule List Policies via ZDD

4.2 Determining Equivalence of Rule Lists with Multiple Actions

4.3 Experiments ...

60

. 60

. 65

66

5 Run-Based Trie

5.1 Simple Search

5.2 Decision Tree constructed from RBT

5.3

69

. 69

70

Decision Tree based on RBT with Pointers 72

5.3.1 RBT with Pointers 72

5.3.2 Decision Tree based on RBTwP 72

5.4 Cascaded Circular-RBT 75

5.4.1 Circular-RBT 75

5.4.2 Consecutive Ones Property and Circular Ones Property 78

5.4.3 Cascaded Circular-RBT 79

5.4.4 Experiments . 81

6 Conclusions

A Simulated Annealing for RORO

A. l Multi-Start Local Optimization (MSL) .

85

97

. 97

A.2 Simulated Annealing 98

A.3 Experiments 98

BR esearch Achievement 1 O 1

B.1 Journals 101

B.2 Conferences . 101

B.3 Technical Reports ．． ．． ... 101

B.4 Programs . 102

Chapter 1

Introduction

1.1 Research Background

The number of malicious programs on the Internet has been growing at an alarming rate, and the

attacks on various important agencies are increasingly complicated. These malevolent programs

can result in unauthorized access to governments or companies, the spread of ransomware,

and information leakage. With the rapid growth in the Internet of Things, the number of

devices connected to the Internet has increased significantly, and unsecured equipment now

poses critical problem as a gateway for distributed denial of service attacks. Packet classification

is an effective countermeasure against such cyber-attacks. It is also the key technology for

network management tasks such as quality of service (QoS), load balancing, and network function

virtualization (NFV). Packet classifiers determines the behavior of incoming packets through a

comparison with the operational classification policy. A classification policy is generally a list

of classification rule.

The linear search classification algorithm assigns prior actions to each packet according to

the classification policy. These actions are determined by comparing the packet header with clas-

sification rules until a match is found. Because the processing latency of packet classification is

proportional to the number of rules, a large number of rules can result in serious communica-

tion delay. To solve this problem, several techniques for reconstructing the rule list have been

developed, and specialized data structures and hardware solutions have been proposed.

The rapid growth of NFV [55] and software-defined networking (SDN) [54] has led to the

need for a technique that efficiently classifies packets without specialized hardware such as

ternary content addressable memory (TCAM) or field-programmable gate arrays [16,39,47,69,

70]. In general, packet classifiers use five fields to classify packets: source address, destination

address, source port number, destination port number, and protocol of the packet. These fields

are represented as prefix/range patterns such as 133. 72. *. * and 0-65535, and most existing
algorithms only handle these types of patterns. In addition to these patterns, researchers have

introduced arbitrary bitmask patterns like *. 72. *. 141 to represent more complex fields [50, 57].

Clearly, a prefix pattern is a special case of an arbitrary bitmask pattern. In general, translation

ー

from prefix/range patterns to arbitrary bitmask patterns is less efficient than that from arbitrary

bitmask pattern to range patterns. As the virtual switch in the NFV environment specifies more

fields, it is necessary to develop a packet classification technique based on arbitrary bitmask

patterns. Therefore, developing a method with arbitrary bitmask rules is a worthy subject of

study.

In addition to specialized data structure solutions, rule-list-based algorithms decrease the

classification latency by reordering the rules or reconstructing the rule list [19, 21, 22, 29, 30, 32,

36, 56, 60, 61, 65, 66, 75-77]. In the former task, the rules are reordered according to weights

representing the frequency of matching against packets, thus preserving the classification policy.

The latter task involves constructing a rule list so that heavy rules are placed above light rules.

As the rule list generated by such algorithms must retain the original classification policy, some

method for checking whether the rule list satisfies the policy is required. Although there are

various complex schemes for checking the network configuration, there is no simple algorithm for

determining the equivalence of rule list policies. As most research on the problem of reordering

rules or reconstructing rule lists does not confirm whether the resulting rule list retains the

original policy, some proposed methods have no awareness of policy violations.

1.2 Purpose of This Study

This study has three main aims:

1. Formulate the problem of linear search packet classification accurately and develop an

efficient algorithm;

2. Develop an algorithm for determining the equivalence of rule lists;

3. Propose specialized data structures that are independent of the number of (arbitrary bit-

mask) rules.

We discuss the above tasks individ叫 ly.As described above, it is necessary to check whether

the reordering or reconstructing rules retain the original policy.

For the second task, in the conventional ORO model, for overlap rules ri and Tj, we can

not place Tj ahead of ri, even if those actions are the same. This condition is too strict, so

Tanaka and Mikawa relaxed the constraint so that rules ri and Tj can not be interchanged if

they overlap and their actions are different. However, there is a case whereby interchanging

such rules does not cause a policy violation. Aside from this problem, there is an issue with

the dependency model, whereby interchanging overlap rules may cause some variation in the

rule weights. Thus, most algorithms do not calculate objective values accurately. To solve these

problems, we formulate this problem based on policy violations instead of binary relations on

rules like overlap or dependency.

Following the growth of NFV, it is important develop an algorithm that is independent of

the number of (arbitrary bitmask) rules. Although researchers have developed algorithms that

2

are independent of the number of rules or correspond to arbitrary bitmask rules, no algorithm

covers both properties within practical memory constraints. Thus, in sections 5.3 and 5.4, we

discuss fast classification and memory efficient algorithms.

1.3 Studies on Classification

Packet classification is a difficult task. The algorithms developed this task can largely be sepa-

rated into distinct groups depending on their approach [14, 62, 79].

In [14], Chao classified existing algorithms into four categories: 1) Basic Data Structures, 2)

Geometric Algorithms, 3) Heuristics, and 4) Hardw:are-based Algorithms; see Table 1.1. Tay-

lor [79] divided them into four categories of 1) Exhaustive Search, 2) Decision Tree, 3) Decompo-

sition, and 4) Tuple Space; see Table 1.2. Nagpal et al. [62] used a slightly narrower classification,

with the categories of 1) Decision Tree, 2) Trie, 3) Geometrical, 4) Divide & Conquer, 5) Tuple

Space, and 6) Hardware; see Table 1.3. These classifications are not exhaustive - there are many

algorithms that do not appear in the above three taxonomies [8,31,49,51,52, 74,82,86,87,89].

Table 1.1: Taxonomy developed by Chao [14].

Approach I Algorithms

Linear Search

Hierarchical Trie [73]

Set-Pruning Trie

Grid of Tries [73]

Cross-Producting [73]

2-D Classification Scheme [46]

Area-Based Quadtree [12]

Fat Inverted Segment Tree [20]

Recursive Flow Classification [25, 26]

Hierarchical Intelligent Cuttings (Hi Cuts) [24]

Tuple Space Search [72]

Bitmap Intersection [46]
Hardware-Based Algorithms I

Ternary CAMs

Basic Data Structure

Geometric Algorithms

Heuristics

In contrast to the above researchers, we categorize packet classification algorithms based on

what they do instead of how they do it. Figure 1.1 shows the resulting classification of existing

algorithms. The problems addressed in this study are highlighted in gray. We roughly divide

the algorithms into software-and hardware-based approaches, and then split them into static

and dynamic. Software-based algorithms can be further classified into Policy/Configuration

Checking, Classification Rule List Optimization, and Specialized Data Structures. Specialized

data structures are of particular interest for arbitrary bitmasks, and we discuss the complexity

of algorithms that are independent of the number of rules. Rule list optimization consists of rule

3

Approach

Table 1.2: Taxonomy developed by Taylor [79].

Algorithms

Exhaustive Search

Decision Tree

Decomposition

Tuple Space

Linear Search

Ternary CAM

Grid of Tries [73]

Extended Grid-of-Tries (EGT) [5]

Hierarchical Intelligent Cuttings (HiCuts) [24]

Modular Packet Classification [85]

HyperCuts [67]

Extended TCAM (E-TCAM) [70]

Fat Inverted Segment Tree [20]

Parallel Bit-Vectors (BV) [46]

Aggregated Bit-Vector (ABV) [6]

Cross-Producting [73]

Recursive Flow Classification [25, 26]

Parallel Packet Classification (P陀） [83]

Distributed Crossproducting of Field Labels (DCFL) [78]

Tuple Space Search & Tuple Pruning [72]

Rectangle Search [72]

Conflict-Free Rectangle Search [84]

Caching [13, 15]

list reconstruction and the reordering of rules, which can be formulated as Optimal Rule List

(ORL) and Optimal Rule Ordering (ORO) problems, respectively. As the reordering condition

in most conventional OROs is too strict, we divide ORO into that used in overlap models

and Relaxed ORO (RORO). Most previous research on configuration checking considers the

complicated problems of conflict analysis and configuration modeling and analysis. Although

researchers who have tackled ORL and RORO need policy checkers that efficiently determine

whether a reconstructed rule list maintains the original policy or not, there are no algorithm

specifically designed for this problem. Thus, we consider this as a separate algorithm from

those for configuration modeling and analysis. The above methods are detailed in the following

sections. Of course, there are hybrid methods and algorithms that can not be classified by this

diagram, such as decision diagram schemes [1, 10, 11, 37, 38, 58, 59).

1.3.1 Policy and Configuration Checking

Network configurations for access control, QoS, load balancing, and virtual private networks

(VPNs) are the complex and error-prone. For example, checking reachability is an NP-hard

problem [53]. As any misconfiguration may trigger a service stop or result in insecure transmis-

sion and, researchers have developed frameworks and validation techniques for network config-

4

Table 1.3: Taxonomy developed by Nagpal et al. [62].

Approach Algorithms

Decision Tree
Hierarchical Intelligent Cuttings (HiCuts) [24]

HyperCuts [67]

Hierarchical Trie [73]

Trie Set-Pruning Trie

Grid of Tries [73]

Area-Based Quadtree [12)

Geometrical Fat Inverted Segment Tree [20]

Grid of Tries [73]

Lucent Bit Vector [46]

Divide & Conquer
Aggregated Bit-Vector (ABV) [6]

Cross-Producting [73)

Recursive Flow Classification [25, 26]

Tuple Space Tuple Space Search & Tuple Pruning [72]

Hardware
Ternary CAMs

Bitmap Intersection [46]

Table 1.4: Taxonomy for algorithms that do not appear in [14, 62, 79].

Approach I Algorithms

Smart Split [31]

Boundary Cutting [52]

EffiCuts [82] Decision Tree

Trie

Tuple Space

Geometrical

HybridCuts [49)

Adaptive Grouping Factor(AGF) [74)

Independent Sub-Rule(ISR) Leaf Structure [74)

Quad-Trie [51)

Clustering Boundary Cutting [8)

Partition Sort [89)

CAching in Buckets (CAB) [87)

Adaptive Wildcard Rule Cache Management [86)

urations [2, 3, 7, 18, 28, 33, 37, 38, 42, 43, 53, 88, 91, 92].

In addition to the network configuration, anomalies in the classification policy of an individ-

ual rule list, such as Shadowing, Generalization, Correlation, and Redundancy, are defined and

analyzed [4,28,35,91]. Most of these algorithm use the binary decision diagram (BDD) [1,10,11]

and can be modified to determine the equivalence of the rule list policies. However, as the

classification rule list specifies only parts of header spaces, zero-suppressed BDD (ZDD) [58,59]

is more efficient than BDD for sparse combination set.

5

Researches for Packet Classification

Software Based Algorithms Hardware Based Algorithms

Policy/Configuration
Checking

Figure 1.1: Research classification overview.

1.3.2 Rule List Optimization

To reduce the packet classification latency, packet classification is modeled and formulated as an

optimization problem. Researchers have developed various rule reordering algorithms [19,22,29,

30,32,36,56,60,61,65,66, 75-77], most of which are designed for the overlap model [19,22,29,30,

32,61, 77]. In the overlap model, for two different rules that match the same packet, the posterior

rule cannot be placed higher than the prior rule. However, even if rules Ti and Tj match the same

packet p, Tj can be placed before乃 whenthe actions of ri and rj are the same. Thus, Tanaka

and Mikawa introduced the dependency model [36, 65, 66, 75, 76], whereby even if rules Ti and Tj

overlap, Tj can be placed ahead of ri if these actions are the same. Although several algorithms

have been developed for this model [21, 36, 56, 60, 65, 66, 75, 76], variations in the rules weights

mean that most do not accurately calculate the objective value. This phenomenon is discussed

in the following section. In contrast to these algorithms, Misherghi et al. [60] formulated ORO as

an integer programming problem that accounts for the above problems, and Fuchino et al. [21]

proposed a fast rule reordering algorithm. The method presented [21] is discussed in detail in

Section 2.6.

6

Table 1.5: Bitmask rules. Table 1.6: Lookup table 1. Table 1.7: Lookup table 2.

Filter R (0 0) 1 0 0 0 1 1 (0 0 0) 001001

r1 0 * * 0 1 (0 1) 1 0 0 1 1 1 (0 0 1) 1 0 1 1 0 1

r2 1 * 1 1 * (1 0) 0 1 1 0 0 1 (0 1 0) 0 0 1 0 1 1

T3 1 0 0 * * (11) 010101 (0 11) 0 0 1 1 1 1

r4 * 1 0 * 1 (100) 000001

r5 0 * * 1 * (101) 100001

r6 * * * * * (11 0) 0 1 0 0 1 1

(111) 0 1 0 0 1 1

1.3.3 Specialized Data Structures

The rapid growth of the NFV environment has two important consequences for packet classifica-

tion algorithms. One is the prevalence of arbitrary bitmask rules for complex packet classifica-

tion, and the other is the independence of the latency from the number of rules. Although there

are various packet classification algorithms, only a few algorithms can treat arbitrary bitmask

rules.

Kobayashi et al. proposed an algorithm based on the matching order of bits [44,45]. For each

internal node v, they add the highest priority priority(v) E {1, ... ,} to the sub-trie rooted at v.

This allows us to traverse sub-tries that have high priority and achieve fast packet classification.

Grouper [50] generates t lookup tables from an input rule list and uses them to classify a packet.

Each lookup table consists of 2 L w /t」or2「w/tlrows and l w /t」or「w/tl columns. Each lookup

table takes a sub-bitstring of length l w /t」or『w/tl and returns an n-length bitmap indicating

which of the n rules match the sub-bitstring. Grouper classifies a packet as follows: It divides

a packet into t groups and applies t lookup tables to those sub-bitstrings to find the t bitmaps.

Intersecting all bitmaps indicates which of then rules match the packet. The rule corresponding

to the left-most 1 bits in the final bitmap is the highest priority rule for the packet. For example,

given the rule list R in Table 1.5 and t = 2, Grouper generates the lookup tables in Tables 1.6

and 1. 7. For instance, packet p = 01010 is classified as follows: Applying lookup tables 1 and

2 to 01 and 010 gives bitmaps 100111 and 001011. Intersecting them generates 000011, and so

the highest priority rule is rs.

The multi-valued decision diagram (MDD) [71] is a data structure that can be used for

manipulating a function f : {O, 1 }w→ {O, 1, ... , n }. The MDD for a function f is obtained by
applying reduction rules to a binary decision tree representing f. The deletion of a redundant

node and sharing of an identical node are illustrated in Figures 1.2 and 1.3. For the rule list

in Table 1.5, Figure 1.4 shows the MDD. Circles and boxes denote non-terminal and terminal

nodes, respectively. A numeral i associated with a non-terminal node represents a Boolean

variable of a function. Non-terminal nodes have edges with values of O ... , m. In Figure 1.4, m

7

、八¢
Figure 1.2: Node deletion. Figure 1.3: Node sharing.

I

I

I

I
I
I

I
I

' I
ヽ Iロ

¥

9
,
'

口

＼

＼

＼

＼

＼

＼

＼

＼

＼

＼

＼

Figure 1.4: MDD for rule list in Table 1.5.

is 1; 0 and 1 edges from a non-terminal node with a numeral i represent that the ith variable

takes a value of O and 1, respectively. Terminal nodes denote the value of a function. By

traversing from the root node to a terminal node according to the bitstring of a packet, we can

obtain the rule number of the highest priority rule. For instance, a packet (bitstring) 01010

traverses the heavy arrows in Figure 1.4 and reaches the terminal node labeled 5.

Mikawa et al. proposed a data structure called a run-based trie (RBT) [57]. They define a

run as a bitstring of maximal length and that does not contain any wild-cards. A run is defined

as follows:

Definition 1.3.1. (run form) Let Ti E {O, 1, * }w be a bitmask rule of length w. A substring

励i+l... bj・ (1::; i ::; j ::; w) of r that satisfies the following two conditions is called a run,

i) bk = 0 V bk = l (iさKさj)

ii) (i~2 ⇒ bi-l = *)八 (j・:=;w-l⇒bj+l = *).

8

T1

p{;; ・ロ
I
I
I
I

1゚
p3

乃
＼
‘

・・・・・・・
o
1“

几

＼

し
＼
＼
3
2
恥 i

2
1

p

九

R
¥＼

c

)

2
4

九
C
¥
¥b

p

Figure 1.5: Run-based trie for rule list in Table 1.5.

For instance, a bitmask rule of length 16

01001***1010

consists of 3 runs. 01, 001, and 1010. These runs begin at the third, 7th, and 13th bits in the rule,

respectively. Runs in rule Ti are represented as pf, p;, ... , Pt (0さKさ 「w/21).RBT consists of

w tries T1, T2, ... , Tw, each constructed by placing the bit pattern of the run beginning at the

k-th bit of Ti ER on the corresponding path of Tk. In addition, we mark p{ on the path if the

run is the j-th run of Ti. RBT for the rule list in Table 1.5 is shown in Figure 1.5. A simple

RBT search [57] traverses tries T1, T2, ... , Tw with the bit patterns of the packet beginning at

the k-th bit, and collects the runs that match the pattern. The matched rules from the collected

runs are then calculated, and the highest priority rule in the matched rules is returned. If there

are no matching rules, the default rule Tn is returned. For example, packet 01010 traverses the

heavy lines in Figure 1.5 and collects runs p}, pg, pl, and p~. Because 01010 only matches rule

巧， thehighest priority rule for 01010 is乃・

Mikawa et al. also proposed decision tree algorithm constructed from RBT [5 7]. Because

the patterns of the runs collected for each trie Ti in the RBT search are limited, they enumerate

the patterns as S1, S2, ... , Sw and take the Cartesian product S1 x S2 x・ ・ ・x Sw. The decision

tree reflects the structure of this process. Each path from the root to a leaf of the decision tree

is equivalent to a search path obtained by traversing the RBT from T1 to Tw. Computing the

highest priority rule for each path on the decision tree in advance, we can determine the highest

priority rule by traversing the decision tree using RBT.

Table 1.8 shows the time and space complexities of algorithms for arbitrary bitmask rules,

where w is the rule length and n is the number of rules. The algorithms at lines 7 and 8 In Table

，

Table 1.8: Comparison of various packet classification schemes with arbitrary bitmask rules.

Algorithm Worst-case Time Worst-case Space

Linear Search O(nw) O(nw)

Grouper [50] O(tn/w) 0(2w/t・tn)

MDD [71] O(w) 0(2門

RBT Search [57] O(nw+研） O(nw)

RBT Decision Tree [57) O(wり 0(炉）

MOB [44] O(nw) O(n研）

1.8 are discussed in the following sections. From Table 1.8, it is apparent that only MDD [71] and

the RBT decision tree [57) are independent of the number of rules. As these two algorithms can

consume a lot of memory, it is vital to develop a memory-efficient algorithm that is independent

of the number of (arbitrary bitmask) rules.

1.4 Organization of This Thesis

This thesis consists of two main parts. Chapters 2-4 focus on problems related to rule lists and

Chapter 5 discusses fast packet classification techniques based on specialized data structures.

In Chapter 2, we introduce the conventional optimization problem of optimal rule ordering

and highlight its defects. To model the latency caused by classification exactly, we introduce

an optimization problem called relaxed optimal rule ordering and prove that this problem is

NP-hard. Furthermore, the counting problem related to RORO is defined and we show that

this problem is #P-complete complexity. We propose algorithms for these problems.

Chapter 3 formulates an optimization problem constructs the optimal rule list so as to

minimize the classification latency. We then propose reconstruction algorithms for rule lists

based on the feasible property that the optimal rule reordering problem is solvable in polynomial

time.

The algorithms for reordering rules and reconstructing rule lists should ensure that the

resulting rule list maintains the classification policy. In Chapter 4, to determine whether those

algorithms satisfy this property, we propose an algorithm determining the equivalence of the

rule list policies.

In sections 5.3 and 5.4, we present algorithms that classify packets in constant time, inde-

pendent of the number of rules in the rule list.

Finally, Chapter 6 summarizes this paper and discusses tasks for future work.

10

Chapter 2

Optimal Rule Ordering

Packet classification is achieved by performing a linear search on a classification rule list. A

larger number of rules will result in a longer communication delay. To solve this problem, the

packet classification problem can be generalized as optimal rule ordering (ORO), which aims

to find the rule ordering that minimizes the latency due to packet classification. The decision

problem corresponding to ORO is known to be NP-complete [29], and various heuristic methods

have been developed [19,22,29,61, 75-77].

In most ORO problems, for two different rules that match the same packet, the posterior

rule cannot be placed higher than the prior rule if the packet classification policy is to hold.

However, there are many cases in which we can actually interchange such rules without any

policy violation. Even if rules ri and rj match the same packet p, rj can still be placed before乃

when (1) the actions of ri and rj are the same [75, 76] or (2) there is a rule rk matching p that

is placed before乃 [60].According to this property, the classificatton latency can become lower

than that of the conventional model by relaxing the condition of interchanging rules. Based

on this, we formulate an optimization problem that aims to exhaustively search for the most

efficient packet classification. We refer to this problem as relaxed ORO {RORO). In RORO,

interchanging rules may vary the number of packets for some rules, and so both a rule list and a

packet arrival distribution are required as inputs. In this chapter, we prove the computational

complexity of a decision problem corresponding to RORO. We refer to this problem as relaxed

rule ordering {RRO). RRO is shown to be NP-hard. The formulation is a novel foundation for

developing the heuristics for an optimization problem that minimizes the classification latency.

Section 2.1 defines RORO and presents some terminology. In section 2.2, we prove that RRO

is NP-hard. A rule pairing algorithm, and an algorithm based on the method [75] are presented

in sections 2.6 and 2.7, respectively. The effectiveness of these algorithms is also confirmed.

2.1 Relaxed ORO

In this section, we formalize the process of packet classification and define the RORO problem.

Packet classification on network devices is modeled as shown in Fig. 2.1. Each rule consists

11

Table 2.1: The rule list. Table 2.2: Reordering according to (2.2).

Filter R IE(R,i)lu

r[= * 0 * l 4

rf = 0 0 0 0 1

哨=0 * 0 0 1

rf = 0 * 1 * 3

rf = * 1 * 1 3

祐=* * * 1

゜r見＝＊＊＊＊ 4

L(R,U) = 60

Filter R。 IE(Ra,i)lu

吋＝＊〇*1 4

r『=0 * 1 * 3

T『=* 1 * 1 3

哨=0 * 0 0 2

哨=0 0 0 0

゜州=* * * 1

゜乃D ＝＊＊＊＊ 4

L(Ru,U) = 51

packet p E {O, 1 }w

1

2

3

r

r

r

e

e

e

-
I
-
―

-

―

u

u

u

r

r

r

Action of r1

Action of r2

Action of r3

三 Actionof rn

Figure 2.1: Packet classification model.

of a rule number i E N, a condition string on {O, 1, *}叫 andan evaluation type {P, D}, where

w is the length of a condition and * is a don't care term denoting that any bit can be matched.

A rule list consists of n rules. P and D denote whether the device accepts or denies incoming

packets, respectively. A packet p is a bit string of length w, i.e., p E {O, 1}凹 Arule is defined

as shown in (2.1). An example of a rule list is provided in Table 2.1.

Definition 2.1.1. (rule form)

rf = b凸・ ・・bw,bk E {0,1,*}, e E {P,D} (2.1)

12

Table 2.3: Latency under (2.4). Table 2.4: Latency under (2.2) and (2.4).

Filter R IE(R,i)IF Filter Ra IE(Ra,i)IF

rf = * 0 * 1 4 rf = * 0 * 1 4

牙=0000 20 r『=0 * 1 *

゜哨=0 * 0 0 10 rf = * 1 * 1
，

r『=0 * 1 *

゜
哨=0 * 0 0 30

r<= * 1 * 1
， rf = 0 0 0 0

゜埒=* * * 1

゜
r<= * * * 1

゜D_
巧ー＊＊＊＊ 13 巧D ＝＊＊＊＊ 13

L(R,F) = 197 L(Ra,F) = 229

A set of packets is denoted by P. When a packet arrives at a network device, it is compared

with each rule in order, and assigned the evaluation type of the first matching rule. Because all

packets must match at least one rule in the rule list, a default rule is added to the end of the

list. If a packet does not match any rules prior to the nth rule, it is automatically assigned the

evaluation type of the final rule r~.

An ordering is a bijective functionび： [n]→ [n], where [n] = {1, 2, ... , n }. In this paper, we

denote an ordering asび=(x1, X公..., Xn) as each rule k moves to Xk-For example,

er= (1542367) (2.2)

signifies 1→ 1,2→ 5, 3→ 4,4→ 2,5→ 3,6→ 6 and 7→ 7. In this case, a(2) = 5 means that

the rule in the second position moves to the fifth position, and a―1 (5) = 2 means that the rule

that moved to the fifth position was previously in the second position. Informally, the domain

and codomain of the function a represent a set of rule numbers and a set of positions for rules.

Let R be a rule list and a be an ordering. 応 denotesthe rule list reordered by a. With the

above ordering a, the rule list

R = [r『,rt r3, rふ唸埒，吟］

is reordered as follows:

応＝ ［吋，rふ唸埒，吋，埒，吟].

We use R(p) to denote an evaluation type for p as the classification result. For instance, given

the rule list R in Table 2.1, R(Olll) = D. The rule list in Table 2.1 denotes the function

f:{0,1}4→ {P, D} given in (2.3).

13

0000→ P, 0001→ P, 0010→ D, 0011 HP,

0100→ P, 0101→ P, 0110→ D, 0111→ D,
1000→ D, 1001→ P, 1010→ D, 1011 HP,

1100→ D, 1101→ P, 1110→ D, 1111→P

(2.3)

If there exists a packet p such that R(p) # Ru (p), we say that orderび violatesthe policy or

that a policy violation occurs.

Let id : [n]→ [n] be the identity ordering, i.e., id(i) = i for all i E [n]. 図 meansthat

the rule list is not reordered and図 equalsR. In the following, id is omitted from a rule list

inscription when the order of the rule list is id.

Let M(ri) denote a set of packets that can match rule rf, i.e., M(乃） is a set of binary

sequences generated by changing each'*'on the condition of rf to O or 1. For example, for r『
(Table 2.1),

M(巧） = { 0101, 0111, 1101, 1111 }.

As the evaluation type e is redundant for M (巧）， eis omitted from the inscription of the set of

packets that can match rule rf as long as the absence of e causes no confusion.

Given a rule list R and an ordering CT, a set of packets evaluated by rule ri is defined. This

set is denoted as E (応，i).Similarly to M (乃）， eis omitted. For example, given the rule list in

Table 2.1, the set of packets evaluated by rule r『isexpressed as

E(R, 5) = { 0101, 1101, 1111 }.

Note that E(R, 5) is different from M(巧）. As the packet 0111 is evaluated by rule r『,0111 is

not in E(R, 5).

Let F: {O, l}w→ N be a packet arrival frequency distribution and let IPIF denote I:PE戸 (p).

As an example, for P = { 0101, 1101, 1111 } and Fin (2.4),

『IF=I{ 0101, 1101, 1111 }IF= F(OlOl) + F(llOl) + F(llll) = 9.

0000→ 20, 0001→ 0, 0010→ 0, 0011 H 3,

0100→ 10, 0101→ 2, 0110→ 0, 0111卜 0,

1000→ 0, 1001 H 1, 1010→ 13, 1011→ 0,
1100→ 0, 1101 H 0, 1110→ 0, 1111→ 7

(2.4)

Given a packet arrival distribution F, a rule list R, and an order of rules a, the number of

packets evaluated by巧 underF can be defined. We denote this number as IE(応，i)IF and call

it the weight of ri. For example, under the uniform distribution U,

0000→ 1, 0001→ 1, 0010 1-------t 1, 0011 1-----t 1,

0100 卜➔ 1, 0101 1-----t 1, 0110→ 1, 0111 1-----t 1,

1000→ 1, 1001→ 1, 1010→ 1, 1011 1-----t 1,

1100 卜➔ 1, 1101→ 1, 1110 1-----t 1, 1111→ 1

14

(2.5)

the number of evaluated packets乃 inTable 2.2 is IE(応 ，3)lu= 2.

Considering that the comparison of a packet with a rule has latency 1, under the order of

rules a-and the packet arrival distribution F, the classification latency L(応，F)of rule list R

is defined as follows:

Definition 2 .1. 2. (Classification latency)

L(応，F)=~ilE(応，戸(i))IF + (n -l)IE(応，戸(n))IF- (2.6)

In other words, latency can be expressed as

n

L(応，F)= LIE(応，i)IF.CY(i) -IE(応，びー1(n))IF
i=l

in terms of the rule number. As a packet is not com pared with the last rule r r,-1 (n) , the second

term is necessary. For example, the classification latency for the rule list in Table 2.1 with

uniform distribution U is expressed as

L(R,U) = 1-4 + 2-1 + 3-1 + 4-3 + 5-3十 6-0+ 6-4 = 60.

By reordering the rules in Table 2.1 according toぴ whilemaintaining the classification policy

denoted by f, the latency decreases from 60 to

L(Ra-,U) = 1・4+2・3+3・3+4・2+5・0+6・0+6・4 = 51.

As described above, by reordering the rules, the classification latency of a rule list can be

decreased. In addition, for each rule八， reorderingthe・rules may vary the number of packets

evaluated by ri. Therefore, the optimal order of rules actually varies according to the packet

arrival distribution. For example, the rule weights and latency for the packet arrival distribution

F:{0,1}4→ N given by (2.4) are listed in Table 2.3. Comparing them with the results for a-

and Fin Table 2.4, we find that the latency increases from 197 to 229. In this way, the optimal

order for rules is dependent on the packet arrival distribution. To clarify the optimal order for

rules, we now define RORO with a given packet arrival distribution.

Definition 2.1.3. (RORO)

Input: Rule list R and packet arrival distribution F

Output: Order of rulesび thatminimizes L(応，F)

s.t. ¥/p E P, R(p) =応(p)

In the above definition, ¥/p E P, R(p) = Ra (p) means that order a-does not violate the policy

represented by rule list R, i.e., orderび isa feasible solution.

15

3

Figure 2.2: The precedence graph G冗 forR in Table 2.5.

Figure 2.3: The precedence graph G玉forR in Table 2.1.

2.2 RRO is NP-hard

In this section, we show that the decision problem corresponding to RORO, i.e., RRO is NP-

hard. We define two decision problems for ORO and RORO in advance.

Definition 2.2.1. (RULE ORDERING (RO))

Instance: Rule list R and positive integer B

Question: Is there an orderび， s.t.I:~1 wげ (i)< B

and¥/八，rjER, O(rj, 乃）八 i<j⇒CY(i) <び(j)'

where O(rj, 巧） denotes that a packet matching both乃 andr j exists and Wi is the weight of

巧. Wi corresponds to IE(R, i)IF-Note that the above subscript i represents the rule number,

not the position of the rule. If ri and rj hold for O(rゎ乃）， wesay that ri and rj overlap. For

example, rf and州overlapin Table 2.1, because the packet 0111 matches both r『and州．

Definition 2.2.2. (RRO)

Instance: Rule list R, packet arrival distribution F,

and positive integer B

Question: Is there an orderび，s.t.L(応，F)< B

and ¥Ip E P, R(p) = Rび(p).

16

Table 2.5: Rule list R of RO.

Filter R Wi

r1 * 1 * 0 1 0 3

r2 **0*00 5

た3 0*100* 19

r4 1 1 * 0 * 0 37

rs 0 1 * 0 * * 13

T5 0 1 0 * * * 29

r7 ＊＊＊＊＊＊ 43

As opposed to RO, RRO allows us to interchange rules ri and rj when O(rj心） holds

and these evaluation types are the same. Because interchanging such rules may vary the set

of packets IE(R, i) IF and IE(R, j) IF, RRO also needs the packet arrival distribution F as an

input.

For a rule list R in RO, we define a graph Gn = (V, A) as

V={l,2, ... ,n}

A = { ki I i, k E V, i < k, O(rk巧）， (2.7)

ーヨjEV,i<j<k八O(rjぶ）八 O(rk心）｝，

and for a rule list R in RRO, we define a graph G , = (V , A as
N

v'= { 1, 2, ... , n }

A1 = { ki I i,k E V,i < k,D(rkぷ） (2.8)

三 jEV,i<j<k八D(rk心）八 D(rj心）｝，

where D(rゎ巧） denotes that O(rゎTi)holds and the evaluation types of Ti and Tj are different.

For example, for the rule list R in Table 2.5, the graph停 isshown in Fig. 2.2. For the rule

list R in Table 2 .1, the graph G五isshown in Fig. 2.3. In graph G玉inFig. 2.3 for the rule list

in Table 2.1, because D(T7, 巧） holds and there is no rule T j such that D (T7, T j) and D (T j, 巧），

there is edge (7, 5). If we avoid the evaluation types of the rules in Table 2.1 and make graph G

instead of G1, there is no edge (7, 5) in G, because we have T5 such that O(T7, T5) and 0(T6心）．

To prove that RRO is NP-hard, we first present several lemmas.

Lemma 2.2.1. The graph G玉fora rule list R in RRO is two-colorable.

Proof. The vertices of the graph G五canbe divided into two sets, U and V, where the actions

of rules corresponding~o a vertex u E U and v E V are P and D, respectively. For all rules rf
f f and r. corresponding to the vertices in U(V), as those actions are the same, D(r., rf) does not

hold. Thus, the sets U and V are independent sets and the graph G五isbipartite. If a graph G

is a bipartite, the graph G is two-colorable. Thus, the graph G玉fora rule list R in RRO is

two-colorable. ロ

17

Figure 2.4: Coloring vertices from source vertex 7.

Figure 2.5: Inserting a vertex between same color vertices.

Lemma 2.2.2. For a directed acyclic graph G = (V, A) and a positive integer kさ 1v12,we

can generate a bipartite graph G1 = (V1, A1) in O (尼 +,nm),where the out-degree of a vertex

v'E V1 n V is deg+(v) + k.

Proof. We show that there is a method that takes graph G as input and outputs a graph such

as G.

1. Assign one of two colors to each vertex via a depth-first search, starting from the source

vertex. For example, for the graph shown in Fig. 2.2, a colored graph is shown in Fig.

2.4.

2. Insert a vertex between vertices that have the same color. For the graph in Fig. 2.4, insert

vertices 8 and 9, as shown in Fig. 2.5. The inserted vertices are boxed, and the original

vertices are circled.

3. For each v E V, insert vertices before v such that the number of squared vertices is k. For

the graph in Fig. 2.5 and k = 2, inserting squared vertices results in the graph in Fig. 2.6.

As the complexity of the depth-first search is O(n+m), the complexity for the step 1 is O(n+m),

where m is the number of edges of the input graph. Steps 2 and 3 insert at most k (さ州） vertices

and have 0(州+nm) complexity. ロ

18

Figure 2.6: Adjusting the number of squared vertices preceding each circled node.

Figure 2.7: Renumbering.

Lemma 2.2.3. We can construct a rule list R and a packet arrival distribution F from a

weighted directed acyclic graph G = (V, A) that is bipartite and has just one source vertex in

O(IVl2 + IVIIAI).

Proof. We show that Algorithm 1 takes such a directed acyclic graph and returns a rule list and

a packet arrival distribution.

Firstly, Algorithm 1 computes the longest distances for each vertex from the source vertex.

In Algorithm 1, Tue denotes the condition of Tu, On lines 6-14, the algorithm makes rules

whose longest distances are equal to 1. To be independent of these rules, the algorithm inserts

'1'diagonally. In Table 2.6, T12, T18, T19, and T20 make a 4 x 4 unit-like matrix. The binary

operation ++ on lines 10, 11, 25, 26, 38, and 39 concatenates two strings. For example, "0010"

19

++ "10001" gives "001010001".
On lines 15-32, the algorithm makes rules whose longest distances are equal to k. As stated

above, the rule is first constructed from the rules depending on ri using 〶 . The binary operation

① on line 20 in Algorithm 1 takes two strings, x and y, on {O, 1, *} and returns a string z as

follows:
、̀
_／
ヽ
‘
_
／

.
t
.
9
U

YY*€
=――

〇
€

.
9
しx

.t x

*

1

v

>

）

 e

€S11

•1

€

*

O

―――
-

W

 r

.
o
i
t
e

y

x

h

 t

o

o

t

e

0

1

ー

伺
国
い
‘

，

.

t

e

1

0

ー

p

x

y

i

*

|
n

―-
x

a

＿一――

.

o

e

x

y

z

r
 ゚

F

g

n

i

r

t

s

y

t

p

m

e

n

a

s

•1 €
e

r

e

h

w

z=x④ y = * * 0 * 1 * 0 *・

For instance, on lines 15-32, we show how乃 ismade. As the longest distance of r3 from

the source vertex r21 is 4, before making r3, those rules whose longest distance is 3 are already

made. Thus, rules r12 and r13 depending on r3 are already made. c ("")知12cand c(r叫釘13c

on line 20 generate the string **0000100010. As there are 4 rules whose longest distance is 4,

the 4 x 4 unit-like matrix is added for rules r3, r5, r7, 乃 onlines 34-41. As a result, the string

**00001000101000 is generated.

Next, similar to the lines 6-14,'1's are inserted diagonally.

On lines 34-41, the algorithm adds a matrix with'*'son the main diagonal and'O's elsewhere.

From this matrix, we can make E(R', i) -/= (/J and IE(R', i) IF = 0 for any rule list and packet

arrival distribution.

Algorithm 1 makes the rule list in Table 2.6 from the graph in Fig. 2.7. We change the font

of the condition of the rules in Table 2.6 to align the columns.

We construct the packet arrival distribution F from R and weighted graph G as follows:

For each rule乃 withWiヂ0,the algorithm makes packet p by changing'*'on ric to'O'and

F(p) = Wi, where Wi is the weight of vertex i EV. Let the weights of the vertices in the Graph

in Fig. 2. 7 be

3, (if i = 3)

5, (if i = 6)

19, (if i = 9)

37, (if i = 12)
(2.9) Wi = ¥

13, (if i = 15)

29, (if i = 18)

43, (if i = 21)

0, (otherwise).

For rule list R in Table 2.6 and weighted graph Gin Fig. 2.7, the arrival distribution is expressed

as shown in (2.10).

20

3, (if p = l 00110011010000011110010000000000000000000)

5, (if p = l 00110010101000011110000010000000000000000)

19, (if p = l 00100100011111111110000000010000000000000)

F(p) = < 37, (if p= 100010010011111111110000000000010000000000)
(2.10)

13, (if p = 100100111111111111110000000000000010000000)

29, (if p = l 00111111111111111110000000000000000010000)

43, (if p = 111111111111111111110000000000000000000010)

0, (otherwise) .

The complexity of Algorithm 2 is a function of the size of the graph, and making the rule

for the corresponding node is a function of the size of A. Thus, Algorithm 1 has complexity

O(IVl2 + IVIIAI)- ロ

Theorem 2.2.1. RRO is NP-hard.

Proof. As the decision problem RO is NP-complete [29], to prove that RRO is NP-hard, we

reduce RO to RRO.

Let R be a rule list in RO, i.e., r E R has a weight, and let B be a positive integer. We

construct a rule listだinRRO, i.e., r E R1 has an evaluation type, a packet arrival distribution

F, and a positive integer B such that

コu,t, い (i)< B 八Vr凸 ER,O(r;, 乃）八 i<j⇒u(i) <び(j)

iff玉， L(見，F)< B1八VpE P,R(p) =凡(p).

(2.11)

First, we construct the weighted graph Gn from rule list R based on definition (2.7), where

the vertex i and ri have the same weight. This process has 0(w州） complexity, because we need

only to compare all pairs of rules ri and rj to create that graph, where w is the length of the

rule condition. Based on the method in Lemma 2.2.2, we construct graph G1 from Gn with

k = max{deg打1),deg+(2), ... , deg+(n)} in O(n3 +炉m)time. Next, rule list R1 and packet

arrival distribution Fare determined using Algorithm 1. Finally, we set B = B• k.

According to the above explanation, the transformation of (R, B) into (R1, F, B1) can be

done in polynomial time, 0(州） • Proving that (2.11) holds is the only task that is yet to be

performed. We show (2.11) by separately proving

ヨび，t皿 -a(i)< B 八V巧，乃 ER,O(巧ぷ）八 i< j⇒ a(i) <叫）
(2.12)

⇒ 玉， L(見，刀 <B'八VpE P,R(p) =凡(p).

21

and

玉，L(見，F)< B1八VpE P, R(p) =凡(p).
n

⇒ ヨぴ，〉叫・o-(i)< B 八訊，rjER, O(rj, 八）八i<j⇒a-(i) < o-(j)
(2.13)

i=l

in parts I) and II) below. In the following, n and n'denote the number of rules in R and応
respectively.

I) Suppose that there is an order CJ" such th~t I:~=l WfO"(i) < B and¥;/八，TjEn, O(rjぷ）八i'<

j⇒ CJ"(i) <叫） • We define T : [バ］→ [n] as

T(i) = { :.u(「i/k1)-k+imodk
(if i =パ）

(otherwise).

From this definition, in the order T, the inserted rules Ti-1, ri-2, ... , ri-k according to rule

Ti are ordered right before Ti. For example, for k = 3, CJ" = (2 14 3 5 6),

T = (45612310111278913141516171819),

where n = 6 and n = l 9. As G1 , and T are based on Gn to ensure that the preceding
月

relation holds, ¥/p E P, だ(p)=丸(p)holds.

The latency of RT under Fis expressed as follows:

n -l

L(戸） =~ilE(見， T―1(i)) IF + (n1 -l) IE (見，戸（バ））IF

= LilE(R~, 戸 (i))IF-IE(見 ，T―1(n1))IF
i=l

According to the construction method of the packet arrival distribution F, IE(見，戸(n'))IF

= 0, IE(見，T―1(l))IF= 0, and (n'-l)/k = n, where l is not a multiple of k. Therefore,

n'-l

L(見，F)= L ilE(R~, 戸 (i))IF
i=l

= LkilE(見，T―1(ki))IF
i=l

As ilE(R~, T―1 (i)) IF is eq叫 toCY(i)・wi, we obtain

n

L(R~,F) = L k・Wi・a(i)
i=l

n

= k L wi・a(i)
i=l

I

<k・B=B.

22

Thus, we have proved statement (2.12).

II) Suppose that there is an order T such that L(R~,. ア） < B1 and Vp E P, R(p) =凡(p).We

defineび： [n]→ [n] as a(i) = T(ik)/k. As G~, and Tare based on Gn to ensure that the

preceding relation holds, 訊，TjEn, O(rj心）八 i<j⇒a(i) < a(j) holds.

n n
1 ど亨(i)= k L kwia-(i)

i=l i=l

Thus, we have proved statement (2.13).

1
= k tkilE(応戸(ki))IF

i=l
I

n -1
1

＝ー LilE(だ，T―1('
k

i))IF
i=l

l I

<-B =B
k

From the above, statement (2.11) holds.

As stated above, for any positive integers B, B and rule lists R, R , there is an order O" such

that 区~=l 叫· び(i)< B八訊，rjER, O(rjふ）八 i< j that implies O" (i) <叫） if and only if

there 1s an order T such that L (凡，F)< B 八VpE P, R(p) = RT(p). ロ

As RRO is NP-hard, its optimization version RORO is also NP-hard. The fact that

RORO is NP-hard implies that we should develop a polynomial time heuristic instead of an

exact algorithm.

23

Algorithm 1: GraphToRulelist(G = (V, A))
/ / input graph G = (V, A) is two-colorable;
/ / n E V is the only source vertex in G;

1 R← an empty list;

2 add屯 whosecondition rnc is the list of'*'of length IVI -1 to R;

3 d← LongestDistances(n, G);
4 Vk← { V I dv = k };

5 i← 1;
6 while i :S IVi I do

7 j← l;
8 C← "" / / empty string ;

9 while j :S IVi I do

10 if i + j = I Vi I + 1 then c← C ++ "1";
11 else c← C ++ "O";
12 j← j + l;

end

13 I add r{: whose condition rue is c for the present to R;

14 I i← i + l;
end

15 D← max{d1, d2, ... , dn};

16 k← 2;
17 while k :SD do

1s I m← IVil + ... + IVk-11 ;

foreach u E Vk do

19

20

C← ヽヽ"・

foreach v E V do

I if (v,u) EA then c← c釦｀

end

'1, ← l;
while i :S IVkl do

j← m+l;

while j'.S IVkl do

21

22

23

24

25

26

27

if i + m -j = IVi日+1 then c← C ++ "1";
else c← C ++ "O";
j← j + l;

end

e← D;
if k is even then e← P;

28

29

30

31

add rt whose condition rue is c for the present to応

'1, ← i+ l;

32

end

end

end

k← k+ l;

foreach i E {1, 2, ... , IVI} do

33 I if Ir』 <IVI then pad a shortage with *i

end

34 i← 1・

35 while i :S IVI do

36

37

38

39

40

41

end

J← 1;
while j :S !VI do

end

if i = j then rゎ← ric +十"*";

else ri
C ← ric ++ "O";

j← j + l;

'1, ←'I,+ 1;

42 add the default rule r D
1V1+1・

24

Algorithm 2: LongestDistances(s, G)

/ / input graph G = (V, A) is a directed acyclical graph;

/ / parameter s is the source vertex of G;

/ / ¥:Iv E V there exists a directed path from s to v;

1 Vv EV, dv← O;
2 a← a topological ordering of V, where a(s) = 1;

3 i← 1;
4 while i :S IVI do

5

6

7

8

9

v← 戸 (i);

foreach (v, u) EE do

if du < dv + l then

I du= dv + l;
end

end

i← i + 1;
return d;

end

25

Table 2.6: The rule list generated from the graph in Fig. 2.7.

rP * * o o o o 1 o o o 1 o 1 o o o 1 o o o * o

虐** 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 * 0

哨** 0 0 0 0 1 0 0 0 1 0 1 0 0 0 * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r『** 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rf; * * 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

柑** 0 0 0 0 1 0 0 0 0 1 0 1 0 0 * * * * 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r平 01 0 0 0 0 1 0 0 1 0 0 0 0 1 0 * * * * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

柑 01 0 0 0 0 1 0 0 1 0 0 0 0 0 1 * * * * 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rf? 0 1 0 0 O O 1 0 0 1 0 0 * * * * * * * * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 O

喝 10 0 0 1 0 0 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0

rf1 1 0 0 0 0 1 0 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0

喝 10 0 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0

喝 01 0 0 0 0 1 0 0 0 1 0 * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0

噌 01 0 0 0 0 1 0 0 0 0 1 * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0

喝 01 0 0 0 0 1 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0

喝 01 0 0 0 0 0 1 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0

弔 01 0 0 0 0 0 0 1 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0

喝 01 0 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0

喝 00 1 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0

喘 00 0 1 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0

rぶ** * * * * * * * * * * * * * * * * * * 0 * 0

喝＊＊ ＊＊

26

Figure 2.8: Binary decision tree. Figure 2.9: ZDD

□□
Figure 2.10: Node deletion. Figure 2.11: Node sharing.

2.3 Zero-Suppressed Binary Decision Diagrams

As the algorithms discussed in the following sections use the zero-suppressed binary decision

diagram (ZDD) [58), we explain the mechanism and process of ZDD in this section.

A combination of w items can be represented by aw-bit vector (b1, b2, ... , 加）， whereeach

bk expresses whether or not the combination contains the item. A set of combinations can be

represented by a set of w-bit vectors. A set of evaluated packets can also be regarded as a set

of combinations.

The ZDD data structure was proposed by Minato to manipulate a set of combinations effi-

ciently [58). A ZDD is obtained by applying reduction rules to a binary decision tree representing

a set of combinations. The deletion of a redundant node and sharing of an identical node are

illustrated in Figs. 2.10 and 2.11, respectively. Figures 2.8 and 2.9 represent the same set of

combinations {001, 111 }. Circles denote non-terminal nodes and boxes indicate terminal nodes.

A numeral i associated with a non-terminal node represents a Boolean variable of item i. Non-

terminal nodes have edges with values of 1 and 0. The 1 and O edges of node i express whether

or not this node contains item i. In ZDDs, the variables are ordered. On the path from the

root node to a terminal node indicated by a bold arrow, a skipped variable i indicates that the

combination does not contain item i.

27

2.4 Computing The Number of Evaluated Packets

As mentioned in section 2.1, computing the packet classification latency for an orderび witha

given packet arrival distribution involves computing each number of evaluated packets IE(Rび'i)IF

for every rule in a given list. However, in general, computing the number of evaluated packets

IE(応，i)IF for rule Tn is very difficult. As the algorithms described in the following sections

must compute the number of evaluated packets, this section defines the problem of computing

the number of evaluated packets. We show that this problem is #P-complete under the uniform

distribution.

2.4.1 Complexity of Computing the Number of Evaluated Packets

Definition 2.4.1. {Computing the number of evaluated packets)

Input: rule list R, order a, distribution F, i E z+
Output: IE(応 ，i)IFunder F, a, R

We show that the problem is #P-complete if i = n and Fis the uniform distribution [63].

To prove the following theorem, we introduce some terminology. A binary relation S(u, v) is

polynomially balanced if there exists a Turing machine that can determine S (u, v) in polynomial

time. A binary relation S(u, v) is polynomially decidable if there exists some k such that S(u, v)

implies lvl :::; lulk [63].

Theorem 2.4.1. The problem of computing the number of evaluated packets is #P-complete if

i = n and F is the uniform distribution.

In the following, the term uniform distribution is omitted.

Proof. First, we show that the problem of computing the number of evaluated packets of rn is

in class #P. Next, we present a reduction algorithm from #SAT to the problem of computing

the number of evaluated packets of rn; then, we show that this reduction maintains the number

of solutions.

1. Let x be a formula¢1八の2八・・・八 <l>n-l constructed from the conditions of rules乃， where

むisthe disjunction of variables Zj; Zj is avoided if the jth character of the condition

of Ti is'*', and Zj is set to Zj orらifthe jth character of the condition of乃 is'O'or

'1', respectively (1 ::; j ::; w). Let S (x, y) be the binary relation denoting that y satisfies

x. The problem of computing the number of evaluated packets of rn is an enumeration

problem defined by the binary relation S(x, y). As S(x, y) is polynomially balanced and

polynomially decidable, the problem defined by S(x, y) is in class #P.

2. We demonstrate a reduction from #SAT to the problem of computing the number of

evaluated packets of rn, as shown in Algorithm 3. In the algorithm, ++ denotes the string
concatenation operation and the rule evaluation type is don't care. As the number of

solutions of x E #SAT is clearly the same as the number of solutions of Red(x) and the

28

Algorithm 3: Red

input : formulra釘八伽八・・・八虹1

output: rule list R

1 n← the number of variables ;

2m← the number of clauses ;

sn← an empty list ;

4 i← O;
while i < m do

5

6

7

c/>i =上；

8

9

0

 ー

11

12

13

cond←'"'・，

J← 1 ;

while j~n do

if Xj E Ci then cond← cond ++ "O" ;

else if功 ECi then cond← cond ++ "1" ;

else cond← cond ++ "*" ;

end

set Ri's condition cond ;

add Ri to the last of R ;

i← i + 1;

end

return R

order of Red is O(mn), Red is a parsimonious algorithm from #SAT to the problem of

computing the number of evaluated packets of Tn-

From the above, the problem of computing the number of evaluated packets of r n is #P-

complete. ロ

We present an example of a reduction from #SAT to the problem of computing the number

of evaluated packets of rn. Applying Algorithm 3 to the formula in (2.14) yields the rule list in

Table 2.1. The number of assignments satisfying (2.14) is the same as IE(Rid, n)lu in Table 2.1.

（四 V叩八 (x1V四 V祁 V四）

八(x1V X3 V四）八 (x1V森）

八（む V坂）八豆4

(2.14)

2.5 Manipulating M(ri) and E(Ra, i) via ZDDs

The problem of computing the number of evaluated packets of ri is丑P-complete,meaning

it is hard to solve. RORO requires the efficient manipulation of a set of packets. As the

range of packets reaching a network device is smaller than all possible packets, in practice, the

29

M(r1) M(乃） M(乃） M(八） M(巧） M(rり

m

Figure 2.12: ZDDs for M(r1), M(r2), ... , M(r5).

manipulated data in packet classification are regarded as a sparse set of all combinations. In this

section, we describe an efficient method that manipulates a set of evaluated packets E(応，i)

for an orderび usingZDDs.

The ZDDs for the set of packets M(乃） of each single rule and the rule list R in Table 2 .1

are shown in Fig. 2.12, where M(r4) expresses the set of combinations {0111, 0110, 0011, 0010}.

The set of packets evaluated by巧 usingrule list R and order <Y, E(Ra-, i), does not match any

of rules 1, 2, ... , (<Y(i) -1), but does match rule ri. That is, E(応，i)is the set of packets that

does not match rule numbers <Y―1(1), (j―1(2), ... , びー1(<Y(i)-1)and matches巧， where<Y―1 is the

inverse function of <Y. Thus, to find E(Ra-, i), we compute the following:

M(ri) ¥ M(い (1))¥ M(r u-1(2)) ¥・ ・ ・¥ M(い (u(i)-1)). (2.15)

To compute E(応，i),it is necessary to determine M(門）， M(乃），..., M(rn)- As this set of

combinations is frequently used in reordering methods, we can use ZDDs to manipulate them

efficiently. The ZDDs of E(Rid, i) for the rule list in Table 2.1 are shown in Fig. 2.13, where

E(Rid, 4) expresses the set of combinations {0111, 0110, 0010}. Note that, comparing M(r4)

with E(Rid, 4), 0011 has been removed. For brevity, Rid is now abbreviated as R. In practice,

the ZDDs for Figs. 2.12 and 2.13 are stored in a computer by sharing identical nodes, as in Fig.

2.14. This sharing of nodes provides a compact representation of the set of combinations and

allows for efficient manipulation. We show the efficiency of manipulating the sets of evaluated

packets by ZDDs in section 2. 7.4.

30

E(R, 1) E(R, 2) E(R, 3) E(R, 4) E(R, 5) E(R, 6)

！

ー !
 Figure 2.13: ZDDs for E(Rid, 1), E(Rid, 2), ... , E(Rid, 6).

M(r1) M(r2) M(r3) M(r4) E(R, 1) E(R, 2) E(R, 3) E(R, 4) E(R, 5) E(R, 6)

Figure 2.14: ZDDs for M(乃）sand E(図，i)s.

31

2.6 Rule Pairing Algorithm

In this section, we propose a rule reordering algorithm and calculate its time complexity.

If there is no dependent rule (r心）， wherei < j and the weight of rj is greater than that

of ri, we can simply sort the rules with those weights to find a better ordering. For example,

the rule list in Fig. 2.15 can be sorted as shown in Fig. 2.16. In contrast to the rule list in Fig.

2.15, that in Table 2.1 cannot be simply reordered with those weights, as shown in Fig. 2.17.

This is because rf preceding r[, rf preceding r <, rf preceding r『,and rf preceding哨
violate the classification policy. These relations are represented by heavy lines in Fig. 2.17,

except relation rf, r『.By gathering rules together as one in advance to satisfy

if ji E A then the weight of ri is greater than that of rゎ (2.16)

we can achieve a better ordering for rule list R by simply sorting. We focus on this property.

Our algorithm aims to impart the above property on the precedence graph of the rule list.

It recursively pairs the rules causing the policy violation until there are no such rules. As an

example, for the rule list in Table 2.1, the weighted precedence graph Gn is shown in Fig: 2.18.

Because pairs (r7, 乃），（巧，乃）， and(r7, 乃） do not have property (2.16), the algorithm selects

one of the pairs and applies property (2.16). Pairing (巧，r6),the weighted graph in Fig. 2.18

becomes that in Fig. 2.19. The weight of gathered rules ri1, ri2, ... , rik is the mean of weights

(wi1 + Wi2 + ... , Wik)/k.

Next, pairing (rい，乃）， theweighted graph becomes that in Fig. 2.20.

Then, pairing (r;, 乃）， theweighted graph is transformed to that shown in Fig. 2.21. The

resulting weighted graph has property (2.16).

Finally, the algorithm sorts the rules with those weights and decomposes the paired rules.

The rule list in Table 2.1 is reordered as shown in Fig. 2.22.

The complete pairing and sorting procedure is described by Algorithm 4. In the algorithm,

Wi is the weight of rule ri. To pair the rules, the algorithm searches for the heaviest rule on line

4. To explain why the algorithm searches for the heaviest rule, we consider the weighted graph

in Fig. 2.23. For this graph, there can be two pairing processes, presented as follows:

加，rゎ叫→ [(rぃ乃），r月→［（（八，乃），叫],

加，rj,叫→ ［（巧，叫，r』→ ［（（八，叫，乃）］．

In this example, the algorithm first selects pair (ri, rk), to decrease the latency. As shown

above, in most cases, if there are rules to be paired, the pairing algorithm should select the pair

containing the heaviest rule.

Another key process in the algorithm is the search for the rule to be paired with Tmax on line

13. Generally speaking, this process selects the minimum weight rule from the rules that directly

precede Tmax・To explain why the algorithm selects the minimum weight rule, we consider the

weighted graph in Fig. 2.24. Pairing r a with Tb means that there will be no rule between r a and

乃 inthe resulting ordering. Because the rules directly preceding Tmax are independent, we can

32

rule

weight 27 16 10 17 55 21 28

Figure 2.15: Example of a rule list that can be simply reordered.

rule~ 了0
weight 55 28 27 21 17 16 10

Figure 2.16: Example of a rule list simply reordered by the weights of the rules.

rule

weight 4

4

3

3

ー ー

゜
Figure 2.17: Reordering causing policy violations at the red edges.

simply sort these according to their weights. Thus, in the case shown in Fig. 2.24, the pairing

process selects Tj to be paired with Tmax(r砂

We now consider the process searchPairingRule() in detail. First, it computes the average

weight of all vertices to which there is a path from Tmax・Then, the process selects the minimum

average weight rule Tmin・Finally, it reversely traverses the edges from Tmin to Tmax by selecting

the smaller average weight rule.

For example, we consider the graph shown in Fig. 2.25. The procedure uses r7 as Tmax

because W7 is the maximum weight. To select one of r4, r5, and r5, the average weights are

computed for rules r1, r2, ... , r5 as shown in Fig. 2.26. Here, the upper, bottom-left, and

bottom-right numbers show the rule number i, rule weight Wi, and average weight Ai, respec-

tively. In this example, because the average weight A2 is the minimum, r2 is selected, and then

33

rule

weight 4

ー ー 3

3
 ゜

4

Figure 2.18: Weighted precedence graph for the rule list in Table 2.1.

rule

weight 4

ー ー 3

3

(0+4)/2

Figure 2.19: Pairing (巧，r5).

rule

weight 4

ー 3

3

(1 +0+4)/3

Figure 2.20: Pairing (r5', 乃）．

r4, because A4 < A5. Thus, r4 is paired with r7.

2.6.1 Complexity Analysis

In this section, we describe the time complexity for the rule pairing procedure presented in

Algorithm 4. In the following, let m denote the number of pairs of dependent rules and n be

the number of rules. Searching for the maximum weight rule in Sat line 4 has O(n) complexity.

Checking whether there is no rule on which r max depends (line 5) is an O (1) process. The time

complexity for searchPairingRule(rmax, S) is O(n + m). Sorting the rules in T on line 16 can

be done in O (n log n) time. As lines 4-17 repeat at most n times, their overall complexity is

0(炉+nm). Thus, the time complexity for the proposed algorithm is 0(炉 +nm).

34

rule

weight 4

3

3

(1 + 1 +0+4)/4

Figure 2.21: Pairing (rふ乃）．

rule

weight 4

3

3

ー ー

゜
4

Figure 2.22: Rules reordered by pairing.

rule k

.
J

.
l

weight 2

5

20

Figure 2.23: Selecting the heaviest rule rk.

The time complexity for Sub-Graph Merging (SGM) is O(nり[77].Because the precedence

graph for a rule list is actually sparse, the proposed algorithm is faster than SGM in most cases.

2.6.2 Experiments

The efficiency of the proposed algorithm is demonstrated through experiments based on both

conventional ORO and RORO. We implemented the swapping-window based paradigm (SWBP)

[61), the algorithm of Tanaka et al. [76), SGM [77), and the proposed method in Java under the

Cent OS Release 6.5(Final) on an Intel Core i5-2400 3.10 GHz CPU with 4 GB main memory. We

generated the rules and headers with the standard benchmark for packet classification algorithms

ClassBench [80). For RORO experiments, we added an evaluation type P or D to each rule of a

rule list generated by ClassBench with a probability of 1/2, and added the default rule. A packet

35

Algorithm 4: PairingAndSortingAlgorithm

input : rule list R, order a and packet arrival distribution F

output: rule list R

1 make a set S of rules for R ;

2 prepare an empty list T ;

3 while S # 0 do
.

Tmax := maximum weight rule in S ;

if there is no rule on which r max depends then

add r max into T ;

delete r max from S ;
．

continue・ ，

end

else if for all r ES, D(rmax, r)八Wrmax< Wr then

add r max into T ;

delete r max from S ;
．

continue・ ，

end

else

rtarget := searchPairingRule(rmax, S) ;

rnew := pair rmax with rtarget ;

add r new into S ;

delete r max from S ;

delete rtarget from S ;

end

end

18 sort the rules in T with those weights ;

19 decompose the paired rules in T ;

4

5

6

7

8

，

10

11

12

13

14

15

16

17

20 return T;

header generated by ClassBench consists of source/destination addresses, source/destination

port number and protocol number. Because the lengths of these components are 32, 32, 16, 16,

and 8 bits, respectively, the length of the condition of the rule and header was 104 bits. The

number of headers was about 1 M.

ClassBench has three kinds of seed files, namely Access Control List (acl), Fire Wall (fw),

and IP chains (ipc). Because the SGM algorithm did not terminate within 1 h for fw and

ipc, we only utilized the acl seed files in the experiments. Because the resulting graphs for fw

and ipc can be dense, the graph updating phase and subgraphs construction phase in SGM are

impractically slow.

Using the generated rule lists and header lists, we measured the time required to reorder

36

rule

weight 7

2

10 20

Figure 2.24: Selecting the minimum weight rule.

rule

weight 7

2

6
 ，

10 20 30

Figure 2.25: Weighted precedence graph.

3

6 I (20+6)/2 = 12

Figure 2.26: Computation of the average weight.

the rules and the latency of the rule list for every algorithm. The units of measurement are

seconds. The mean values over 10 trials for RORO are shown in Figs. 2.27 and 2.28. Note that

the reordering times are plotted on a logarithmic scale in Fig. 2.28.

As shown in Fig. 2.27, the proposed algorithm decreases the latency by about 9% compared

with SWBP [61) and the algorithm of Tanaka et al. [76). Detailed results are presented in Table

2.7. The latency of the proposed algorithm is less than or equal to that of SGM. Figure 2.28

shows that the reordering times for SGM and the proposed algorithm are 44 and 3 s, respectively,

37

ご
{
•
U
)7
 A
:
.
>
u
e
w
1
 u01w:.iy1sS'8I:)

1.2 X 108

1.1 X 108

1 X 108

9 X 107

8 X 107

7 X 107

6 X 107

5 X 107

4 X 107

3 X 107

2 X 107
1000 1500 2000 2500 3000 3500 4000 4500 5000

The number of Rules

Figure 2.27: Latency of dependency relation.

100

(
s
)
3

且
』
習
!l
e
p
J
o
e
1
1

10

Mohan [61] --+--
Tanaka [76]一沃一

SGM [77] ---¼
Proposed □

0.1

0.01
1000 1500 2000 2500 3000 3500 4000

The number of Rules

4500 5000

Figure 2.28: Reordering time (s) of dependency relation.

for 5000 rules. That is, the reordering time of the proposed algorithm is 15 times faster than

that of SGM for 5000 rules. The results in Figs. 2.27, and 2.28 and Table 2. 7 indicate that the

proposed algorithm is quite effective in terms of processing latency the time required to reorder

the rule list.

The effectiveness of the proposed algorithm using the conventional ORO model is shown in

Figs. 2.29 and 2.30. Because SGM applied to ORO did not terminate within 1 h for 4000 rules,

we only show the results for up to 3000 rules. Note that, similar to Fig. 2.28, Fig. 2.30 uses

a logarithmic scale. The latency of the proposed algorithm is about 10% lower than that of

SWBP [61] and Tanaka et al. [76), as shown in Fig. 2.29. The reordering time of the proposed

algorithm is 300 times faster than that of SGM for 3000 rules, as shown in Fig. 2.30. Because the

graph of the overlap relation is denser than that of the dependency relation, the reordering time

for SGM applied to ORO is much longer than for RORO, as shown in Figs. 2.28 and 2.30. The

above results demonstrate that the proposed algorithm is remarkably efficient for both RORO

38

Table 2.7: Latency for SGM [77] and the proposed algorithm.

of rules SGM [77] proposed algorithm

1000 2.4898e+07 2.4882e+07

2000 4.3011e+07 4.2977e+07

3000 6.2013e+07 6.1955e+07

4000 8.0241e+07 8.0115e+07

5000 1.0159e+08 1.0143e+08

8 X 107

1
0
7
1
0
7
1
0
7
1
0
7
1
0
7

x

x

x

x

x

7

6

5

4

3

L
I
.
2
)
 7
 .,{:m;:i+1l
1
 U
O
!
 苔

3
g
窃

s
q
o

Mohan [61] --+--
Tanaka [76] -沃一

SGM [77] ----¼
Proposed

2 X 107

1000 1500 2000

The number of Rules

2500 3000

Figure 2.29: Latency on the overlap relation.

and conventio叫 ORO.

Because the graph for the rule lists generated by ClassBench is actually sparse, the results

show that the proposed algorithm is faster than SGM. As an actual rule list can be assumed to

have the same characteristics as ClassBench, we conclude that the proposed algorithm would be

sufficiently effective for real packet classification.

39

1000

100

、'-'一CJ:,、

ら・昔 10

j
0 1

0 01
1000

Mohan [61] --+--
Tanaka [76] ----¾-
SGM [77] ----¼
Proposed

1500 2000

The number of Rules

2500 3000

Figure 2.30: Reordering time (s) on the overlap relation.

40

2. 7 Improving Reordering Methods based on [75]

The algorithm described in [75] neglected the variation in the evaluated packets and the, packet

arrival distributions. In this section, we propose a novel algorithm based on [75] that considers

the variation of evaluated packets and the packet arrival distributions.

The reordering algorithm [75] consists of three modules: interchanging two consecutive rules,

interchanging a single rule, and interchanging a set of rules.

2.7.1 Interchange Adjacent Rules

In this section, we show that the latency can be reduced by interchanging adjacent rules, and

present an algorithm that repeatedly interchanges adjacent rules in a rule list.

Theorem 2. 7.1. Exchanging the ith rule ri and the (i + l)th rule rk in a rule list R maintains

the classification policy if and only if e = f V M (乃） nM(r砂=0.

W,e consider rf and rf to be interchangeable if Theorem 2.7.1 holds for rules吋andrf.

Theorem 2.7.2. Let the ith rule rz and the (i+ l)th ruler{ be interchangeable. If e is different

from f, then if l(E(R(J', l)IF < l(E(R(J', K)IF holds, we have L(R冗，氏o(J',F) < L(R(J', F), where ~ し，氏

is an order that interchanges only r1, and r,..,, and o denotes the composition of functions.

Theorem 2. 7.3. Let the i th rule ri and the (i + 1) th rule r{ be interchangeable. If e is the

same as f, then if

il(E(応，し）圧+(i+l)l(E(応， r;,)[F

> i([(E(応，l)[F+IE(応， l)nM(r"')[F)

+(i+l)(l(E(Ra, l) ¥ M(r贔）

hold, we have L(応 ，にoa,F) < L(応，F).

We say that rf and r. are reducible if Theorem 2.7.2 or Theorem 2.7.3 holds for rf, but not

for r ..

The repeated interchange of adjacent rules is described in Algorithm 5. Note that we use a

flag IRa, OIF to terminate the algorithm.

This algorithm interchanges the ith and (i+l)th rules until Theorems 2.7.1, 2.7.2, and 2.7.3

hold. If the first i rules are interchangeable, the algorithm orders them according to

IE(Ra, O'― 1(1)) 1F~ IE(Rび '0'-1(2)) IFミ・・・:こ IE(Ra,O'―1(i)) IF• (2.17)

Although the rules will ideally be listed in descending order after applying the algorithm, in

many cases, this may not be the case because Theorem 2.7.1 does not hold.

41

Algorithm 5: InterchangeRandR

input : R, a, F

1 let IE(応，O)IF= oo for any F ;

2 i := 2;

while iさn-1do

3 I j := i -1 ;

while r a-1 (j) and r a-1 (j+l) are interchangeable and reducible do

4 interchange r u-l(j) and r u-i(j+l) ;

5 a := Ta-l(j),a―l(j+l) O a i

6 update ZDDs;

7 j := j -1;

end

8 I i := i + 1 ;

end

Table 2.8: A given rule list. Table 2.9: Reordering by the al-Table 2.10:

gorithm in Fig. 5. grouping rules.

Filter R IE(R辺， i)IH

r『=100 * 2
Filter R IE(R1r, i)IH Filter R

咽=1111 3 哨=11 0 * 4 rf = 1 0 0 *

哨=11 0 * 4
屯=1111 3 rf = * 0 * *

rf = * 0 * * 15 rP = 1 o o * 2 哨=11 0 *

rf = * * * * 28 rf = * 0 * * 15 吠=1111

L(Rid, H) = 192 rf = * * * * 28 rf = * * * *

Reordering by

IE(RT, i)IH

2

15

4

3

28

L(R1r, H) = 188 L(RT, H) = 168

2. 7.2 Interchange of Single Rule and Consecutive Rules

We now describe the effect of interchanging adjacent rules on the classification latency. Consider

the rule list in Table 2.8 and the packet arrival distribution H given by (2.18).

0000→ 10, 0001→ 0, 0010 H 0, 0011→ 0,
0100→ 7, 0101 H 2, 0110→ 8, 0111卜 13,

1000→ 2, 1001卜→ 0, 1010卜 0, 1011 H 5,

1100→ 1, 1101→ 3, 1110→ 0, 1111→ 3

(2.18)

To decrease the classification latency, we place rf, which has a large number of evaluated packets,

in the uppermost position without violating the classification policy. Algorithm 5 orders the first

42

rule in descending order of the number of evaluated packets, as in Table 2.9. However, because rf

depends on r『,rf cannot be placed in the uppermost position. To overcome this, an algorithm

that interchanges a single rule and rule groups is proposed [75]. For example, for order 1r in

Table 2.9, r『andr『areinterchangeable with rf and interchanging the set of rules r『,rf and

the single rule r『togive [哨，r『，rf,r『,rf] reduces the latency to 173. The latency can be

decreased to 168 by interchanging the set of rules r『,T< and the single rule哨，asin Table 2.10.

The method described in [75] places the ith rule in an upper position, without any policy

violation if the ith rule depends on the (i-1)th rule, by grouping and regarding them as a single

rule.

ijE(応叫+tlE(応 ，しk)IF-t(i + k -l)jM(r,.) n (E(応，,)¥ M(八）＼ ・・・¥M(r紐 ー,))IF
k=l k=l

-(i + j)IE(Rび 9し） ¥M(rしi)¥M(rし2)¥・ ・ ・¥ M(rしj)IF

(2.19)

Theorem 2. 7.4. Interchanging the ith ruleが andthe set of (i + l)th to (i + j)th rules

心，...,rし~;j in a rule list R maintains the classification policy if and only if rii is interchangeable

with all rules心，．．．，；勺．．

We say that a single rule r↑ and a set of rules r~;1, ... , r~> are interchangeable when they

satisfy Theorem 2.7.4.

Theorem 2. 7.5. Let the ith rule r↑ and the set of rules from the (i + 1) th rule to the (i + j) th
叫 eし• eし1 eし・

rulerしi'...'rしj1 be interchangeable. If r↑ and rしi'...'rし/ satisfy (2.19), then

L(応。び，F)< L(応，F),

where 1r is the order that interchanges the i th rule r↑ and the set of (i + l)th to (i + j)th rules

心，．．．，心．
eし•

We say that a single rule rz" and a set of rules r~;1'...'rljJ are reducible when they satisfy

Theorem 2.7.5.

Proof. Without loss of generality, we assume that l= l, り=2, .. ., lj = j + l, i.e., a is the identity.

We describe応 and応。び asRand応 forbrevity. From the assumption that応 isgiven by

interchanging the first rule r1 and the set of rules r2, ... , r1+j, L(R, F) and L(応，F)become

j+l

L(R, F) = L ilE(R), ilF
i=l
n-l

+ L ilE(R), ilF + (n -l)IE(R), nlF
i=J+2

J+l

L(応，F)= L 1r(i)IE(応，i)IF
i=l
n-l

+ L 1r(i)IE(応，i)IF+ (n -l)IE(応），nlF・
i~j+2

43

(2.20)

(2.21)

Algorithm 6: lnterchangeRandRs

Input : n, O", F, i

1 let IE(応 ，O)IF= oo for any F ;

2 j := 2;

while rい (j)and r a-1 (i+l), ... r a-1 (i+j) hold (2.19) do

if r a-1 (j) and rい (i+l),... r a-l(i+j) are interchangeable then

3

4

5

6

interchange r (J'―1(j) and r (J'-1(i+l), ... r (J'―l(i+j) ;

update a-and ZDDs for each E(応，i);

end

else

I j := j + l

end

i := i-1;

end

口

From the definition of the latency, ~faj~2 1r(i) IE(応， i) 圧 is~faj~2 ilE(R, i) IF and E(応，n)

is E(R, n) in (2.21). As L(R, F) -L(応，F)can be written as in (2.22), this proves Theorem

2.7.5.

L(R,F) -L(応，F)= f ilE(R),ilFー団,r(i)IE(応，i)IF
i=l i=l
J+l j+l

= L ilE(R),ilF一 L (k-l)IE(R, k)IF
i=l k=2 (2.22)

J+l

— L(k -l)IM(rk) n (E(R, 1) ¥ M(乃） ¥・ ・ ・¥ M(rk-1))IF
k=2

-(j + l)IE(R, 1) ¥ M(乃）＼・・ ・¥ M(rk-1) IF

The procedure for moving a group of rules to an upper position is described in Algorithm

6. The first part of the algorithm interchangesい (i)and r a-1 (i+l), ... , r戸 (i+j)repeatedly

until Theorem 2.7.5 holds, with the aim of moving toward the first position in a rule group of

j rules ra-1(i+I),・・・,ra-1(i+j)・This part is implemented in lines 2, 3, and 6 in Algorithm 6.

The second part of the algorithm moves rule r a-I(i+j) by adding r a-i(i) to the group of rules

r a-l(i+l), ... , r a-I(i+j) to form a rule group of (j+l) rules when r a→ (i) and r a-l(i+l), ... , r a-I (i+j)

are not interchangeable.

2.7.3 Adaptive Reordering Algorithm

In this section, we present an algorithm composed of Algorithms 5 and 6.

44

Algorithm 7: reorderingRuleList

input : R, CJ', F

1 let IE(応，O)IF= oo for any F;

2 i := 2;

while i < n -1 do

3 I j := i -1 ;

while r (Y-l(j) and r (Y-1(j+l) are interchangeable and reducible do

4 interchanger (Y-1(j) and r (Y-i(j+l) ;

5 (J':= T, び→(j) ,CY―l(j+l) O CJ';

6 update ZDDs;

7 j := j -1 ;

end

if j > 0 then

I call InterchangeRandRs(R, CJ', F, j -1) ; 8

end

9 I i := i + 1 ;

end

10 call InterchangeRandR(R, a, F) ;

In Algorithm 7, the individ叫 algorithmsare implemented on lines 8 and 10. First, rule吋

is moved to the uppermost position for i=2,3, ... ,n-1 (see Algorithm 7, lines 3 and 4). When

the algorithm breaks out of the inner loop at line 3, if j > 0 (i.e., rule吋cannotbe placed in the

first position), the algorithm calls the procedure in Algorithm 6 at line 10 to group the jth rule

and吋.When the algorithm breaks out of the outer loop at line 3, it terminates after finally

calling the procedure in Algorithm 5.

2.7.4 Experiments

Experiments were conducted to demonstrate the need to consider the variation in the number

of evaluated packets and determine the efficiency of the proposed method. We implemented the

proposed method in C++ under the Cent OS Release 6.5(Final) on an Intel Core i5-2400 3.10

GHz CPU machine with 4 GB main memory. We used the CUDD ZDD package [68]. The rules

and headers were generated with the benchmark packet classification algorithms of ClassBench

[80], and evaluation type P or D was added to each rule in the rule list with a probability of 1/2.

The length of the conditions for the rules and the headers was 120 characters and the number of

rules was about lk. The number of headers was about lM. We generated 30 rule lists from seed

files acl, fw, and ipc. With the generated rule lists and header lists, we measured the latency

using the method described in [75] for both a fixed-weight model and a variable-weight model.

The mean values of 10 trials are presented in Table 2.11. The latency of the fixed-weight model

(row 1) is higher than that of the variable-weight model (row 2) by 18, 1 and 5% for acl, fw,

45

4.2 X 108

4 X 108

0
8
0
8
0
8
0
8
0
8
0
8

1

1

1

1

1

1

x

x

x

x

x

x

8

6

4

2

3

8

3

3

3

3

2

て
I
t
L
)
7
A
:
:
m
 g

-e1 uoq-e::iyrn器
I
3

2.6 X 108

2.4 X 108

Proposed亡二二］

Simple Sort [22l平平

Swapping Window 61 臨碑翠

acl fw

The kind of Rules

1pc

Figure 2.31: Latency.

8

7

6

5

4

3

2

3

日
IJ,
}1uuap1oa11

゜

I I
[xxxx>4

岱~悶

acl fw

The kind of Rules

ipc

Figure 2.32: Reordering time (s).

and ipc, respectively. Thus, to solve the RORO problem, the variation of rule weights should

be considered. By comparing rows 2 and 3 (proposed method) in Table 2.11, we find that the

proposed method decreases the latency by about 6, 5, and 3% for acl, fw, and ipc, respectively,

against the method of [75].

To confirm the efficiency of the proposed method, we measured the time required to reorder

the rules and the latency using Simple Rule Sorting [22] and Swapping Window Based Paradigm

Table 2.11: Latency of proposed model and old model

acl fw ipc

fixed weights (old model) 299843000 260785000 346560000

varying weights 294295000 260503606 344 709000

proposed method 278112000 247181000 333953000

46

Algorithm [61], and the proposed method. The units of measurement are seconds. The mean

values of 10 trials are shown in Figs 2.31 and 2.32. Although the proposed method takes longer

than the methods of [22] and [61], it has the lower latency. This means that the proposed method

represents an improvement over the methods [22] and [61].

In this program, to adapt the variation in the number of evaluated packets, we used ZDDs

that were modified when the corresponding set of evaluated packets changed. Figure 2.32 shows

that ZDDs efficiently compute and manipulate the set of evaluated packets.

47

Chapter 3

Optimizing Rule List

To this point, we have only discussed methods for reordering rules. However, to reduce the

classification latency, reconstructing the rule list should also be considered. We formalize this

latency problem as another optimization scheme in which the aim is to identify the rule list

that minimizes the latency while preserving the original classification policy. We call this the

Optimal Rule List (ORL) problem.

Although ORO is NP-hard, if the graph of preceding relations on rules is a forest of oriented

trees and there is no variation in rule weights, ORO is solvable (under a certain assumption) in

polynomial time using single-machine job sequencing algorithm (34]. Focusing on this point, this

chapter presents a rule list reconstruction algorithms that uses the solution of single-machine

job scheduling. The algorithm first rewrites an input rule list so that its precedence graph is a

forest of oriented trees, and then optimizes the order of the rules.

3.1 Single Machine Job Sequencing Problem

The single-machine job sequencing problem is an optimization problem that attempts to identify

the order of jobs that minimizes the value of an objective function subject to certain precedence

constraints [48].

The input to the single machine job sequencing problem is the n jobs to be sequenced for

processing by a single machine. The jobs have process-ing times of Pl, p2, ... , Pn and weights of

w1,w2, ... ,wn with precedence constraints on the jobs. The precedence constraints are given in

the acyclic digraph G = (V, A). Each vertex坊 EV corresponds to job i. If there is an edge

(t, s) E A, job s precedes t, i.e., job t can not be processed before job s. The output of the

single-machine job sequencing problem is a feasible sequence of jobs that minimizes the weighted

sum of the completion time汀 wiCi,where Ci is the completion time of job i. Lawler showed i=l
that single-machine job sequencing is NP-hard even if all Wi = l or all Pi = l [48].

An example of the single-machine job sequencing problem is shown in Fig. 3.1, where all

Pi= l.

48

Job

Weight 12 14 10 7

3

10 7

16

Figure 3.1: Example of job sequencing problem.

3.2 Rule List Reconstruction Method via Inclusive Rules

In this section, we present a rule list reconstruction algorithm based on an inclusive rule list.

If rule list R satisfies V八，rjER, O(ri,rj)八i< j⇒ M(八） CM(乃）， thenn is said to be
an inclusive rule list. An example of an inclusive rule list is given in Table 3.2.

Rule rj that satisfiesヨi,i < j八 M(乃） C M(ri) is redundant and can easily be removed

from the rule list. In this study, an inclusive rule list does not contain such rules.

We prove that the graph of an inclusive rule list forms an oriented tree.

For rule list R, graph Gn is defined as

V = { 1, ... , IRI },

E = { ji I i,j EV八M(ri)c M(乃）八→ヨk(M(八） C M(rk) I¥ M(rk) C M(rj))}.

An example of a graph for a rule list is shown in Fig. 3.2.

(3.1)

Definition 3.2.1. {Oriented tree) If graph G satisfies the following three conditions, then G is

said to be an oriented tree:

1. VvEV(v#r⇒ ヨ!eEE v = end(e)),

2. Ve EE (r # end(e)),

3. For all v E V, there exists a path p from r to v,

where r is the root of G and end(e) is the end vertex of e.

Theorem 3.2.1. For inclusive rule list R, Gn is an oriented tree.

Proof. For all乃 (v# r), as M(乃） is a subset of M(rn), there is at least one edge e such that

v = end(e). We assume that

v = end(e1)八 v= end(e2)八 e1# e2. (3.2)

From Eq. (3.2) and the definition of overlap, O(init(e1),init(e2)), we have that init(e) is a

source vertex of e. Let v1 = init(e1) and v2 = init(e2). Because R is an inclusive rule list,

49

Table 3.1: Rule list. Table 3.2: Inclusive rule list.

Filter R Filter R

門 =10*11*

乃 =10*00*

乃 =*0001*

r4 = 0 * * 0 1 *

巧 =01**1*

府 =*00**0

r7 = * * * * * *

*

0

0

*

＊

＊

＊

*

0

0

*

0

*

＊

1

*

＊

1

*

1

*

1

0

0

0

0

*

＊

0

1

1

0

1

0

*

*

1

*

1

*

＊

＊

――
―
-

＝
―
―

―-

＝

＝

1

2

3

4

5

6

7

r

r

r

r

r

r

r

L(R) = 320 L(R) = 358

M(r1) c M(乃） and叫 1E E hold. Because v1 v and v2釘 EE,v匹 ff-E. This is a contradiction

for v2v EE. Thus, ¥Iv E v(v # r⇒ ヨ!eEE v = end(e)) holds.

Because rule r n (=乃） is not a subset of any rule, r is not an end vertex of any edge. Thus,

Ve E E (r # end(e)) holds.

For the set of rules Sv = {k I rv C rk}, we define the order j <sv i三 riC rj on Sv. Let Pv

be a list of Sv that is sorted according to <s町几 withv added to it is a path from r to v. ロ

We now present a rule reconstruction algorithm that rewrites rule list Ras inclusive rule list

R and applies the optimization method of [34] to R.

For rules ri and r・such that O ri, r・ (J) 八 M(ri)(/_ M(rj), a rewnt1ng algorithm searches

position k such that bi ='*'八 b{#'*', generates r: andパ， insertsthem into the next r i,

and then removes ri, where似 ofr i is expanded to O and似 ofri is expanded to 1. The

algorithm repeats this operation until the rule list becomes inclusive, and renumbers the rules.

The rewriting of rule r3 in Table 2.1 is shown in Fig. 3.3.

As there may be some variation in the rule weights in RORO, we can not always obtain

the optimal order, even if the graph of preceding relations is a forest of oriented trees. Thus,

the order obtained by reordering rules whose graph of precedence relation is a forest of oriented

trees is near-optimal. However, in the case of ORO, such an order is always optimal.

3.2.1 Experiments

We demonstrate the efficiency of the proposed method through experiments. The rules and

headers were generated with the benchmark packet classification algorithms ClassBench [80].

The number of headers was approximately 100k. A total of 50 rule lists were generated from

acl seed files. With the generated rule lists and header lists, we measured the latency using the

proposed method, SGM [77], and SWBP [61]. Note that SGM and SWBP reorder the rules in

ORO instead of RORO. Thus, rj can not be placed ahead of乃 wheni < j and乃 overlapsr j.

50

