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Chapter 1 

Introduction 

1.1 Research Background 

The number of malicious programs on the Internet has been growing at an alarming rate, and the 

attacks on various important agencies are increasingly complicated. These malevolent programs 

can result in unauthorized access to governments or companies, the spread of ransomware, 

and information leakage. With the rapid growth in the Internet of Things, the number of 

devices connected to the Internet has increased significantly, and unsecured equipment now 

poses critical problem as a gateway for distributed denial of service attacks. Packet classification 

is an effective countermeasure against such cyber-attacks. It is also the key technology for 

network management tasks such as quality of service (QoS), load balancing, and network function 

virtualization (NFV). Packet classifiers determines the behavior of incoming packets through a 

comparison with the operational classification policy. A classification policy is generally a list 

of classification rule. 

The linear search classification algorithm assigns prior actions to each packet according to 

the classification policy. These actions are determined by comparing the packet header with clas-

sification rules until a match is found. Because the processing latency of packet classification is 

proportional to the number of rules, a large number of rules can result in serious communica-

tion delay. To solve this problem, several techniques for reconstructing the rule list have been 

developed, and specialized data structures and hardware solutions have been proposed. 

The rapid growth of NFV [55] and software-defined networking (SDN) [54] has led to the 

need for a technique that efficiently classifies packets without specialized hardware such as 

ternary content addressable memory (TCAM) or field-programmable gate arrays [16,39,47,69, 

70]. In general, packet classifiers use five fields to classify packets: source address, destination 

address, source port number, destination port number, and protocol of the packet. These fields 

are represented as prefix/range patterns such as 133. 72. *. * and 0-65535, and most existing 
algorithms only handle these types of patterns. In addition to these patterns, researchers have 

introduced arbitrary bitmask patterns like *. 72. *. 141 to represent more complex fields [50, 57]. 

Clearly, a prefix pattern is a special case of an arbitrary bitmask pattern. In general, translation 
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from prefix/range patterns to arbitrary bitmask patterns is less efficient than that from arbitrary 

bitmask pattern to range patterns. As the virtual switch in the NFV environment specifies more 

fields, it is necessary to develop a packet classification technique based on arbitrary bitmask 

patterns. Therefore, developing a method with arbitrary bitmask rules is a worthy subject of 

study. 

In addition to specialized data structure solutions, rule-list-based algorithms decrease the 

classification latency by reordering the rules or reconstructing the rule list [19, 21, 22, 29, 30, 32, 

36, 56, 60, 61, 65, 66, 75-77]. In the former task, the rules are reordered according to weights 

representing the frequency of matching against packets, thus preserving the classification policy. 

The latter task involves constructing a rule list so that heavy rules are placed above light rules. 

As the rule list generated by such algorithms must retain the original classification policy, some 

method for checking whether the rule list satisfies the policy is required. Although there are 

various complex schemes for checking the network configuration, there is no simple algorithm for 

determining the equivalence of rule list policies. As most research on the problem of reordering 

rules or reconstructing rule lists does not confirm whether the resulting rule list retains the 

original policy, some proposed methods have no awareness of policy violations. 

1.2 Purpose of This Study 

This study has three main aims: 

1. Formulate the problem of linear search packet classification accurately and develop an 

efficient algorithm; 

2. Develop an algorithm for determining the equivalence of rule lists; 

3. Propose specialized data structures that are independent of the number of (arbitrary bit-

mask) rules. 

We discuss the above tasks individ叫 ly.As described above, it is necessary to check whether 

the reordering or reconstructing rules retain the original policy. 

For the second task, in the conventional ORO model, for overlap rules ri and Tj, we can 

not place Tj ahead of ri, even if those actions are the same. This condition is too strict, so 

Tanaka and Mikawa relaxed the constraint so that rules ri and Tj can not be interchanged if 

they overlap and their actions are different. However, there is a case whereby interchanging 

such rules does not cause a policy violation. Aside from this problem, there is an issue with 

the dependency model, whereby interchanging overlap rules may cause some variation in the 

rule weights. Thus, most algorithms do not calculate objective values accurately. To solve these 

problems, we formulate this problem based on policy violations instead of binary relations on 

rules like overlap or dependency. 

Following the growth of NFV, it is important develop an algorithm that is independent of 

the number of (arbitrary bitmask) rules. Although researchers have developed algorithms that 
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are independent of the number of rules or correspond to arbitrary bitmask rules, no algorithm 

covers both properties within practical memory constraints. Thus, in sections 5.3 and 5.4, we 

discuss fast classification and memory efficient algorithms. 

1.3 Studies on Classification 

Packet classification is a difficult task. The algorithms developed this task can largely be sepa-

rated into distinct groups depending on their approach [14, 62, 79]. 

In [14], Chao classified existing algorithms into four categories: 1) Basic Data Structures, 2) 

Geometric Algorithms, 3) Heuristics, and 4) Hardw:are-based Algorithms; see Table 1.1. Tay-

lor [79] divided them into four categories of 1) Exhaustive Search, 2) Decision Tree, 3) Decompo-

sition, and 4) Tuple Space; see Table 1.2. Nagpal et al. [62] used a slightly narrower classification, 

with the categories of 1) Decision Tree, 2) Trie, 3) Geometrical, 4) Divide & Conquer, 5) Tuple 

Space, and 6) Hardware; see Table 1.3. These classifications are not exhaustive - there are many 

algorithms that do not appear in the above three taxonomies [8,31,49,51,52, 74,82,86,87,89]. 

Table 1.1: Taxonomy developed by Chao [14]. 

Approach I Algorithms 

Linear Search 

Hierarchical Trie [73] 

Set-Pruning Trie 

Grid of Tries [73] 

Cross-Producting [73] 

2-D Classification Scheme [46] 

Area-Based Quadtree [12] 

Fat Inverted Segment Tree [20] 

Recursive Flow Classification [25, 26] 

Hierarchical Intelligent Cuttings (Hi Cuts) [24] 

Tuple Space Search [72] 

Bitmap Intersection [46] 
Hardware-Based Algorithms I 

Ternary CAMs 

Basic Data Structure 

Geometric Algorithms 

Heuristics 

In contrast to the above researchers, we categorize packet classification algorithms based on 

what they do instead of how they do it. Figure 1.1 shows the resulting classification of existing 

algorithms. The problems addressed in this study are highlighted in gray. We roughly divide 

the algorithms into software-and hardware-based approaches, and then split them into static 

and dynamic. Software-based algorithms can be further classified into Policy/Configuration 

Checking, Classification Rule List Optimization, and Specialized Data Structures. Specialized 

data structures are of particular interest for arbitrary bitmasks, and we discuss the complexity 

of algorithms that are independent of the number of rules. Rule list optimization consists of rule 
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Approach 

Table 1.2: Taxonomy developed by Taylor [79]. 

Algorithms 

Exhaustive Search 

Decision Tree 

Decomposition 

Tuple Space 

Linear Search 

Ternary CAM 

Grid of Tries [73] 

Extended Grid-of-Tries (EGT) [5] 

Hierarchical Intelligent Cuttings (HiCuts) [24] 

Modular Packet Classification [85] 

HyperCuts [67] 

Extended TCAM (E-TCAM) [70] 

Fat Inverted Segment Tree [20] 

Parallel Bit-Vectors (BV) [46] 

Aggregated Bit-Vector (ABV) [6] 

Cross-Producting [73] 

Recursive Flow Classification [25, 26] 

Parallel Packet Classification (P陀） [83] 

Distributed Crossproducting of Field Labels (DCFL) [78] 

Tuple Space Search & Tuple Pruning [72] 

Rectangle Search [72] 

Conflict-Free Rectangle Search [84] 

Caching [13, 15] 

list reconstruction and the reordering of rules, which can be formulated as Optimal Rule List 

(ORL) and Optimal Rule Ordering (ORO) problems, respectively. As the reordering condition 

in most conventional OROs is too strict, we divide ORO into that used in overlap models 

and Relaxed ORO (RORO). Most previous research on configuration checking considers the 

complicated problems of conflict analysis and configuration modeling and analysis. Although 

researchers who have tackled ORL and RORO need policy checkers that efficiently determine 

whether a reconstructed rule list maintains the original policy or not, there are no algorithm 

specifically designed for this problem. Thus, we consider this as a separate algorithm from 

those for configuration modeling and analysis. The above methods are detailed in the following 

sections. Of course, there are hybrid methods and algorithms that can not be classified by this 

diagram, such as decision diagram schemes [1, 10, 11, 37, 38, 58, 59). 

1.3.1 Policy and Configuration Checking 

Network configurations for access control, QoS, load balancing, and virtual private networks 

(VPNs) are the complex and error-prone. For example, checking reachability is an NP-hard 

problem [53]. As any misconfiguration may trigger a service stop or result in insecure transmis-

sion and, researchers have developed frameworks and validation techniques for network config-
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Table 1.3: Taxonomy developed by Nagpal et al. [62]. 

Approach Algorithms 

Decision Tree 
Hierarchical Intelligent Cuttings (HiCuts) [24] 

HyperCuts [67] 

Hierarchical Trie [73] 

Trie Set-Pruning Trie 

Grid of Tries [73] 

Area-Based Quadtree [12) 

Geometrical Fat Inverted Segment Tree [20] 

Grid of Tries [73] 

Lucent Bit Vector [46] 

Divide & Conquer 
Aggregated Bit-Vector (ABV) [6] 

Cross-Producting [73) 

Recursive Flow Classification [25, 26] 

Tuple Space Tuple Space Search & Tuple Pruning [72] 

Hardware 
Ternary CAMs 

Bitmap Intersection [46] 

Table 1.4: Taxonomy for algorithms that do not appear in [14, 62, 79]. 

Approach I Algorithms 

Smart Split [31] 

Boundary Cutting [52] 

EffiCuts [82] Decision Tree 

Trie 

Tuple Space 

Geometrical 

HybridCuts [49) 

Adaptive Grouping Factor(AGF) [74) 

Independent Sub-Rule(ISR) Leaf Structure [74) 

Quad-Trie [51) 

Clustering Boundary Cutting [8) 

Partition Sort [89) 

CAching in Buckets (CAB) [87) 

Adaptive Wildcard Rule Cache Management [86) 

urations [2, 3, 7, 18, 28, 33, 37, 38, 42, 43, 53, 88, 91, 92]. 

In addition to the network configuration, anomalies in the classification policy of an individ-

ual rule list, such as Shadowing, Generalization, Correlation, and Redundancy, are defined and 

analyzed [4,28,35,91]. Most of these algorithm use the binary decision diagram (BDD) [1,10,11] 

and can be modified to determine the equivalence of the rule list policies. However, as the 

classification rule list specifies only parts of header spaces, zero-suppressed BDD (ZDD) [58,59] 

is more efficient than BDD for sparse combination set. 
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Researches for Packet Classification 

Software Based Algorithms Hardware Based Algorithms 

Policy/Configuration 
Checking 

Figure 1.1: Research classification overview. 

1.3.2 Rule List Optimization 

To reduce the packet classification latency, packet classification is modeled and formulated as an 

optimization problem. Researchers have developed various rule reordering algorithms [19,22,29, 

30,32,36,56,60,61,65,66, 75-77], most of which are designed for the overlap model [19,22,29,30, 

32,61, 77]. In the overlap model, for two different rules that match the same packet, the posterior 

rule cannot be placed higher than the prior rule. However, even if rules Ti and Tj match the same 

packet p, Tj can be placed before乃 whenthe actions of ri and rj are the same. Thus, Tanaka 

and Mikawa introduced the dependency model [36, 65, 66, 75, 76], whereby even if rules Ti and Tj 

overlap, Tj can be placed ahead of ri if these actions are the same. Although several algorithms 

have been developed for this model [21, 36, 56, 60, 65, 66, 75, 76], variations in the rules weights 

mean that most do not accurately calculate the objective value. This phenomenon is discussed 

in the following section. In contrast to these algorithms, Misherghi et al. [60] formulated ORO as 

an integer programming problem that accounts for the above problems, and Fuchino et al. [21] 

proposed a fast rule reordering algorithm. The method presented [21] is discussed in detail in 

Section 2.6. 
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Table 1.5: Bitmask rules. Table 1.6: Lookup table 1. Table 1.7: Lookup table 2. 

Filter R (0 0) 1 0 0 0 1 1 (0 0 0) 001001 

r1 0 * * 0 1 (0 1) 1 0 0 1 1 1 (0 0 1) 1 0 1 1 0 1 

r2 1 * 1 1 * (1 0) 0 1 1 0 0 1 (0 1 0) 0 0 1 0 1 1 

T3 1 0 0 * * (11) 010101 (0 11) 0 0 1 1 1 1 

r4 * 1 0 * 1 (100) 000001 

r5 0 * * 1 * (101) 100001 

r6 * * * * * (11 0) 0 1 0 0 1 1 

(111) 0 1 0 0 1 1 

1.3.3 Specialized Data Structures 

The rapid growth of the NFV environment has two important consequences for packet classifica-

tion algorithms. One is the prevalence of arbitrary bitmask rules for complex packet classifica-

tion, and the other is the independence of the latency from the number of rules. Although there 

are various packet classification algorithms, only a few algorithms can treat arbitrary bitmask 

rules. 

Kobayashi et al. proposed an algorithm based on the matching order of bits [44,45]. For each 

internal node v, they add the highest priority priority(v) E {1, ... ,} to the sub-trie rooted at v. 

This allows us to traverse sub-tries that have high priority and achieve fast packet classification. 

Grouper [50] generates t lookup tables from an input rule list and uses them to classify a packet. 

Each lookup table consists of 2 L w /t」or2「w/tlrows and l w /t」or「w/tl columns. Each lookup 
table takes a sub-bitstring of length l w /t」or『w/tl and returns an n-length bitmap indicating 
which of the n rules match the sub-bitstring. Grouper classifies a packet as follows: It divides 

a packet into t groups and applies t lookup tables to those sub-bitstrings to find the t bitmaps. 

Intersecting all bitmaps indicates which of then rules match the packet. The rule corresponding 

to the left-most 1 bits in the final bitmap is the highest priority rule for the packet. For example, 

given the rule list R in Table 1.5 and t = 2, Grouper generates the lookup tables in Tables 1.6 

and 1. 7. For instance, packet p = 01010 is classified as follows: Applying lookup tables 1 and 

2 to 01 and 010 gives bitmaps 100111 and 001011. Intersecting them generates 000011, and so 

the highest priority rule is rs. 

The multi-valued decision diagram (MDD) [71] is a data structure that can be used for 

manipulating a function f : {O, 1 }w→ {O, 1, ... , n }. The MDD for a function f is obtained by 
applying reduction rules to a binary decision tree representing f. The deletion of a redundant 
node and sharing of an identical node are illustrated in Figures 1.2 and 1.3. For the rule list 

in Table 1.5, Figure 1.4 shows the MDD. Circles and boxes denote non-terminal and terminal 

nodes, respectively. A numeral i associated with a non-terminal node represents a Boolean 

variable of a function. Non-terminal nodes have edges with values of O ... , m. In Figure 1.4, m 
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Figure 1.2: Node deletion. Figure 1.3: Node sharing. 
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Figure 1.4: MDD for rule list in Table 1.5. 

is 1; 0 and 1 edges from a non-terminal node with a numeral i represent that the ith variable 

takes a value of O and 1, respectively. Terminal nodes denote the value of a function. By 

traversing from the root node to a terminal node according to the bitstring of a packet, we can 

obtain the rule number of the highest priority rule. For instance, a packet (bitstring) 01010 

traverses the heavy arrows in Figure 1.4 and reaches the terminal node labeled 5. 

Mikawa et al. proposed a data structure called a run-based trie (RBT) [57]. They define a 

run as a bitstring of maximal length and that does not contain any wild-cards. A run is defined 

as follows: 

Definition 1.3.1. (run form) Let Ti E {O, 1, * }w be a bitmask rule of length w. A substring 

励i+l... bj・(1::; i ::; j ::; w) of r that satisfies the following two conditions is called a run, 

i) bk = 0 V bk = l (iさKさj)

ii) (i~2 ⇒ bi-l = *)八 (j・:=;w-l⇒bj+l = *). 

8
 



T1 

p{;; ・ロ
I 
I 
I 
I 

1゚ 
p3 

乃
＼
‘
・・・・・・・
o
1“
 

几

＼

し
＼
＼
3
2
恥 i
 

2
1
 
p
 

九

R
¥＼
c

)

2
4
 

九
C
¥
¥b

p

Figure 1.5: Run-based trie for rule list in Table 1.5. 

For instance, a bitmask rule of length 16 

**01**001***1010 

consists of 3 runs. 01, 001, and 1010. These runs begin at the third, 7th, and 13th bits in the rule, 

respectively. Runs in rule Ti are represented as pf, p;, ... , Pt (0さKさ「w/21).RBT consists of 
w tries T1, T2, ... , Tw, each constructed by placing the bit pattern of the run beginning at the 

k-th bit of Ti ER  on the corresponding path of Tk. In addition, we mark p{ on the path if the 

run is the j-th run of Ti. RBT for the rule list in Table 1.5 is shown in Figure 1.5. A simple 

RBT search [57] traverses tries T1, T2, ... , Tw with the bit patterns of the packet beginning at 

the k-th bit, and collects the runs that match the pattern. The matched rules from the collected 

runs are then calculated, and the highest priority rule in the matched rules is returned. If there 

are no matching rules, the default rule Tn is returned. For example, packet 01010 traverses the 

heavy lines in Figure 1.5 and collects runs p}, pg, pl, and p~. Because 01010 only matches rule 

巧， thehighest priority rule for 01010 is乃・

Mikawa et al. also proposed decision tree algorithm constructed from RBT [5 7]. Because 

the patterns of the runs collected for each trie Ti in the RBT search are limited, they enumerate 

the patterns as S1, S2, ... , Sw and take the Cartesian product S1 x S2 x・ ・ ・x Sw. The decision 

tree reflects the structure of this process. Each path from the root to a leaf of the decision tree 

is equivalent to a search path obtained by traversing the RBT from T1 to Tw. Computing the 

highest priority rule for each path on the decision tree in advance, we can determine the highest 

priority rule by traversing the decision tree using RBT. 

Table 1.8 shows the time and space complexities of algorithms for arbitrary bitmask rules, 

where w is the rule length and n is the number of rules. The algorithms at lines 7 and 8 In Table 
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Table 1.8: Comparison of various packet classification schemes with arbitrary bitmask rules. 

Algorithm Worst-case Time Worst-case Space 

Linear Search O(nw) O(nw) 

Grouper [50] O(tn/w) 0(2w/t・tn) 

MDD [71] O(w) 0(2門

RBT Search [57] O(nw+研） O(nw) 

RBT Decision Tree [57) O(wり 0(炉）

MOB [44] O(nw) O(n研）

1.8 are discussed in the following sections. From Table 1.8, it is apparent that only MDD [71] and 

the RBT decision tree [57) are independent of the number of rules. As these two algorithms can 

consume a lot of memory, it is vital to develop a memory-efficient algorithm that is independent 

of the number of (arbitrary bitmask) rules. 

1.4 Organization of This Thesis 

This thesis consists of two main parts. Chapters 2-4 focus on problems related to rule lists and 

Chapter 5 discusses fast packet classification techniques based on specialized data structures. 

In Chapter 2, we introduce the conventional optimization problem of optimal rule ordering 

and highlight its defects. To model the latency caused by classification exactly, we introduce 

an optimization problem called relaxed optimal rule ordering and prove that this problem is 

NP-hard. Furthermore, the counting problem related to RORO is defined and we show that 

this problem is #P-complete complexity. We propose algorithms for these problems. 

Chapter 3 formulates an optimization problem constructs the optimal rule list so as to 

minimize the classification latency. We then propose reconstruction algorithms for rule lists 

based on the feasible property that the optimal rule reordering problem is solvable in polynomial 

time. 

The algorithms for reordering rules and reconstructing rule lists should ensure that the 

resulting rule list maintains the classification policy. In Chapter 4, to determine whether those 

algorithms satisfy this property, we propose an algorithm determining the equivalence of the 

rule list policies. 

In sections 5.3 and 5.4, we present algorithms that classify packets in constant time, inde-

pendent of the number of rules in the rule list. 

Finally, Chapter 6 summarizes this paper and discusses tasks for future work. 
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Chapter 2 

Optimal Rule Ordering 

Packet classification is achieved by performing a linear search on a classification rule list. A 

larger number of rules will result in a longer communication delay. To solve this problem, the 

packet classification problem can be generalized as optimal rule ordering (ORO), which aims 

to find the rule ordering that minimizes the latency due to packet classification. The decision 

problem corresponding to ORO is known to be NP-complete [29], and various heuristic methods 

have been developed [19,22,29,61, 75-77]. 

In most ORO problems, for two different rules that match the same packet, the posterior 

rule cannot be placed higher than the prior rule if the packet classification policy is to hold. 

However, there are many cases in which we can actually interchange such rules without any 

policy violation. Even if rules ri and rj match the same packet p, rj can still be placed before乃

when (1) the actions of ri and rj are the same [75, 76] or (2) there is a rule rk matching p that 

is placed before乃 [60].According to this property, the classificatton latency can become lower 

than that of the conventional model by relaxing the condition of interchanging rules. Based 

on this, we formulate an optimization problem that aims to exhaustively search for the most 

efficient packet classification. We refer to this problem as relaxed ORO {RORO). In RORO, 

interchanging rules may vary the number of packets for some rules, and so both a rule list and a 

packet arrival distribution are required as inputs. In this chapter, we prove the computational 

complexity of a decision problem corresponding to RORO. We refer to this problem as relaxed 

rule ordering {RRO). RRO is shown to be NP-hard. The formulation is a novel foundation for 

developing the heuristics for an optimization problem that minimizes the classification latency. 

Section 2.1 defines RORO and presents some terminology. In section 2.2, we prove that RRO 

is NP-hard. A rule pairing algorithm, and an algorithm based on the method [75] are presented 

in sections 2.6 and 2.7, respectively. The effectiveness of these algorithms is also confirmed. 

2.1 Relaxed ORO 

In this section, we formalize the process of packet classification and define the RORO problem. 

Packet classification on network devices is modeled as shown in Fig. 2.1. Each rule consists 
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Table 2.1: The rule list. Table 2.2: Reordering according to (2.2). 

Filter R IE(R,i)lu 

r[ = * 0 * l 4 

rf = 0 0 0 0 1 

哨=0 * 0 0 1 

rf = 0 * 1 * 3 

rf = * 1 * 1 3 

祐=* * * 1 

゜r見＝＊＊＊＊ 4 

L(R,U) = 60 

Filter R。 IE(Ra,i)lu 

吋＝＊〇*1 4 

r『=0 * 1 * 3 

T『=* 1 * 1 3 

哨=0 * 0 0 2 

哨=0 0 0 0 

゜州=* * * 1 

゜乃D＝＊＊＊＊ 4 

L(Ru,U) = 51 

packet p E {O, 1 }w 

1

2

3
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r
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Action of r1 

Action of r2 

Action of r3 

三 Actionof rn 

Figure 2.1: Packet classification model. 

of a rule number i E N, a condition string on {O, 1, *}叫 andan evaluation type {P, D}, where 

w is the length of a condition and * is a don't care term denoting that any bit can be matched. 

A rule list consists of n rules. P and D denote whether the device accepts or denies incoming 

packets, respectively. A packet p is a bit string of length w, i.e., p E {O, 1}凹 Arule is defined 

as shown in (2.1). An example of a rule list is provided in Table 2.1. 

Definition 2.1.1. (rule form) 

rf = b凸・・・bw,bk E {0,1,*}, e E {P,D} (2.1) 
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Table 2.3: Latency under (2.4). Table 2.4: Latency under (2.2) and (2.4). 

Filter R IE(R,i)IF Filter Ra IE(Ra,i)IF 

rf = * 0 * 1 4 rf = * 0 * 1 4 

牙=0000 20 r『=0 * 1 * 

゜哨=0 * 0 0 10 rf = * 1 * 1 ， 
r『=0 * 1 * 

゜
哨=0 * 0 0 30 

r<=* 1 * 1 ， rf = 0 0 0 0 

゜埒=* * * 1 

゜
r<=* * * 1 

゜D_ 
巧ー＊＊＊＊ 13 巧D ＝＊＊＊＊  13 

L(R,F) = 197 L(Ra,F) = 229 

A set of packets is denoted by P. When a packet arrives at a network device, it is compared 

with each rule in order, and assigned the evaluation type of the first matching rule. Because all 

packets must match at least one rule in the rule list, a default rule is added to the end of the 

list. If a packet does not match any rules prior to the nth rule, it is automatically assigned the 

evaluation type of the final rule r~. 

An ordering is a bijective functionび： [n]→ [n], where [n] = {1, 2, ... , n }. In this paper, we 
denote an ordering asび=(x1, X公..., Xn) as each rule k moves to Xk-For example, 

er= (1542367) (2.2) 

signifies 1→ 1,2→ 5, 3→ 4,4→ 2,5→ 3,6→ 6 and 7→ 7. In this case, a(2) = 5 means that 
the rule in the second position moves to the fifth position, and a―1 (5) = 2 means that the rule 

that moved to the fifth position was previously in the second position. Informally, the domain 

and codomain of the function a represent a set of rule numbers and a set of positions for rules. 

Let R be a rule list and a be an ordering. 応 denotesthe rule list reordered by a. With the 

above ordering a, the rule list 

R = [r『,rt r3, rふ唸埒，吟］

is reordered as follows: 

応＝ ［吋，rふ唸埒，吋，埒，吟]. 

We use R(p) to denote an evaluation type for p as the classification result. For instance, given 

the rule list R in Table 2.1, R(Olll) = D. The rule list in Table 2.1 denotes the function 

f:{0,1}4→ {P, D} given in (2.3). 
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0000→ P, 0001→ P, 0010→ D, 0011 HP, 
0100→ P, 0101→ P, 0110→ D, 0111→ D, 
1000→ D, 1001→ P, 1010→ D, 1011 HP, 
1100→ D, 1101→ P, 1110→ D, 1111→P 

(2.3) 

If there exists a packet p such that R(p) # Ru (p), we say that orderび violatesthe policy or 
that a policy violation occurs. 

Let id : [n]→ [n] be the identity ordering, i.e., id(i) = i for all i E [n]. 図 meansthat 
the rule list is not reordered and図 equalsR. In the following, id is omitted from a rule list 

inscription when the order of the rule list is id. 

Let M(ri) denote a set of packets that can match rule rf, i.e., M(乃） is a set of binary 

sequences generated by changing each'*'on the condition of rf to O or 1. For example, for r『
(Table 2.1), 

M(巧） = { 0101, 0111, 1101, 1111 }. 

As the evaluation type e is redundant for M (巧）， eis omitted from the inscription of the set of 

packets that can match rule rf as long as the absence of e causes no confusion. 

Given a rule list R and an ordering CT, a set of packets evaluated by rule ri is defined. This 

set is denoted as E (応，i).Similarly to M (乃）， eis omitted. For example, given the rule list in 

Table 2.1, the set of packets evaluated by rule r『isexpressed as 

E(R, 5) = { 0101, 1101, 1111 }. 

Note that E(R, 5) is different from M(巧）. As the packet 0111 is evaluated by rule r『,0111 is 
not in E(R, 5). 

Let F: {O, l}w→ N be a packet arrival frequency distribution and let IPIF denote I:PE戸 (p).
As an example, for P = { 0101, 1101, 1111 } and Fin (2.4), 

『IF=I{ 0101, 1101, 1111 }IF= F(OlOl) + F(llOl) + F(llll) = 9. 

0000→ 20, 0001→ 0, 0010→ 0, 0011 H 3, 
0100→ 10, 0101→ 2, 0110→ 0, 0111卜 0, 
1000→ 0, 1001 H 1, 1010→ 13, 1011→ 0, 
1100→ 0, 1101 H 0, 1110→ 0, 1111→ 7 

(2.4) 

Given a packet arrival distribution F, a rule list R, and an order of rules a, the number of 

packets evaluated by巧 underF can be defined. We denote this number as IE(応，i)IF and call 

it the weight of ri. For example, under the uniform distribution U, 

0000→ 1, 0001→ 1, 0010 1-------t 1, 0011 1-----t 1, 
0100 卜➔ 1, 0101 1-----t 1, 0110→ 1, 0111 1-----t 1, 
1000→ 1, 1001→ 1, 1010→ 1, 1011 1-----t 1, 
1100 卜➔ 1, 1101→ 1, 1110 1-----t 1, 1111→ 1 

14 

(2.5) 



the number of evaluated packets乃 inTable 2.2 is IE(応 ，3)lu= 2. 

Considering that the comparison of a packet with a rule has latency 1, under the order of 

rules a-and the packet arrival distribution F, the classification latency L(応，F)of rule list R 

is defined as follows: 

Definition 2 .1. 2. (Classification latency) 

L(応，F)=~ilE(応，戸(i))IF+ (n -l)IE(応，戸(n))IF- (2.6) 

In other words, latency can be expressed as 

n 

L(応，F)= LIE(応，i)IF.CY(i) -IE(応，びー1(n))IF
i=l 

in terms of the rule number. As a packet is not com pared with the last rule r r,-1 (n) , the second 

term is necessary. For example, the classification latency for the rule list in Table 2.1 with 

uniform distribution U is expressed as 

L(R,U) = 1-4 + 2-1 + 3-1 + 4-3 + 5-3十6-0+ 6-4 = 60. 

By reordering the rules in Table 2.1 according toぴ whilemaintaining the classification policy 

denoted by f, the latency decreases from 60 to 

L(Ra-,U) = 1・4+2・3+3・3+4・2+5・0+6・0+6・4 = 51. 

As described above, by reordering the rules, the classification latency of a rule list can be 

decreased. In addition, for each rule八， reorderingthe・rules may vary the number of packets 

evaluated by ri. Therefore, the optimal order of rules actually varies according to the packet 

arrival distribution. For example, the rule weights and latency for the packet arrival distribution 

F:{0,1}4→ N given by (2.4) are listed in Table 2.3. Comparing them with the results for a-
and Fin Table 2.4, we find that the latency increases from 197 to 229. In this way, the optimal 

order for rules is dependent on the packet arrival distribution. To clarify the optimal order for 

rules, we now define RORO with a given packet arrival distribution. 

Definition 2.1.3. (RORO) 

Input: Rule list R and packet arrival distribution F 

Output: Order of rulesび thatminimizes L(応，F)

s.t. ¥/p E P, R(p) =応(p)

In the above definition, ¥/p E P, R(p) = Ra (p) means that order a-does not violate the policy 

represented by rule list R, i.e., orderび isa feasible solution. 
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3
 

Figure 2.2: The precedence graph G冗 forR in Table 2.5. 

Figure 2.3: The precedence graph G玉forR in Table 2.1. 

2.2 RRO is NP-hard 

In this section, we show that the decision problem corresponding to RORO, i.e., RRO is NP-

hard. We define two decision problems for ORO and RORO in advance. 

Definition 2.2.1. (RULE ORDERING (RO)) 

Instance: Rule list R and positive integer B 

Question: Is there an orderび， s.t.I:~1 wげ (i)< B 
and¥/八，rjER, O(rj, 乃）八i<j⇒CY(i) <び(j)'

where O(rj, 巧） denotes that a packet matching both乃 andr j exists and Wi is the weight of 

巧.Wi corresponds to IE(R, i)IF-Note that the above subscript i represents the rule number, 

not the position of the rule. If ri and rj hold for O(rゎ乃）， wesay that ri and rj overlap. For 

example, rf and州overlapin Table 2.1, because the packet 0111 matches both r『and州．

Definition 2.2.2. (RRO) 

Instance: Rule list R, packet arrival distribution F, 

and positive integer B 

Question: Is there an orderび，s.t.L(応，F)< B 

and ¥Ip E P, R(p) = Rび(p).
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Table 2.5: Rule list R of RO. 

Filter R Wi 

r1 * 1 * 0 1 0 3 

r2 **0*00 5 

た3 0*100* 19 

r4 1 1 * 0 * 0 37 

rs 0 1 * 0 * * 13 

T5 0 1 0 * * * 29 

r7 ＊＊＊＊＊＊ 43 

As opposed to RO, RRO allows us to interchange rules ri and rj when O(rj心） holds 

and these evaluation types are the same. Because interchanging such rules may vary the set 

of packets IE(R, i) IF and IE(R, j) IF, RRO also needs the packet arrival distribution F as an 

input. 

For a rule list R in RO, we define a graph Gn = (V, A) as 

V={l,2, ... ,n} 

A = { ki I i, k E V, i < k, O(rk巧）， (2.7) 

ーヨjEV,i<j<k八O(rjぶ）八O(rk心）｝，

and for a rule list R in RRO, we define a graph G , = (V , A as 
N 

v'= { 1, 2, ... , n } 

A1 = { ki I i,k E V,i < k,D(rkぷ） (2.8) 

三jEV,i<j<k八D(rk心）八D(rj心）｝，

where D(rゎ巧） denotes that O(rゎTi)holds and the evaluation types of Ti and Tj are different. 

For example, for the rule list R in Table 2.5, the graph停 isshown in Fig. 2.2. For the rule 

list R in Table 2 .1, the graph G五isshown in Fig. 2.3. In graph G玉inFig. 2.3 for the rule list 
in Table 2.1, because D(T7, 巧） holds and there is no rule T j such that D (T7, T j) and D (T j, 巧），

there is edge (7, 5). If we avoid the evaluation types of the rules in Table 2.1 and make graph G 

instead of G1, there is no edge (7, 5) in G, because we have T5 such that O(T7, T5) and 0(T6心）．

To prove that RRO is NP-hard, we first present several lemmas. 

Lemma 2.2.1. The graph G玉fora rule list R in RRO is two-colorable. 

Proof. The vertices of the graph G五canbe divided into two sets, U and V, where the actions 
of rules corresponding~o a vertex u E U and v E V are P and D, respectively. For all rules rf 
f f and r. corresponding to the vertices in U(V), as those actions are the same, D(r., rf) does not 

hold. Thus, the sets U and V are independent sets and the graph G五isbipartite. If a graph G 
is a bipartite, the graph G is two-colorable. Thus, the graph G玉fora rule list R in RRO is 
two-colorable. ロ
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Figure 2.4: Coloring vertices from source vertex 7. 

Figure 2.5: Inserting a vertex between same color vertices. 

Lemma 2.2.2. For a directed acyclic graph G = (V, A) and a positive integer kさ1v12,we 
can generate a bipartite graph G1 = (V1, A1) in O (尼 +,nm),where the out-degree of a vertex 

v'E V1 n V is deg+(v) + k. 

Proof. We show that there is a method that takes graph G as input and outputs a graph such 

as G. 

1. Assign one of two colors to each vertex via a depth-first search, starting from the source 

vertex. For example, for the graph shown in Fig. 2.2, a colored graph is shown in Fig. 

2.4. 

2. Insert a vertex between vertices that have the same color. For the graph in Fig. 2.4, insert 

vertices 8 and 9, as shown in Fig. 2.5. The inserted vertices are boxed, and the original 

vertices are circled. 

3. For each v E V, insert vertices before v such that the number of squared vertices is k. For 

the graph in Fig. 2.5 and k = 2, inserting squared vertices results in the graph in Fig. 2.6. 

As the complexity of the depth-first search is O(n+m), the complexity for the step 1 is O(n+m), 

where m is the number of edges of the input graph. Steps 2 and 3 insert at most k (さ州） vertices 

and have 0(州+nm) complexity. ロ
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Figure 2.6: Adjusting the number of squared vertices preceding each circled node. 

Figure 2.7: Renumbering. 

Lemma 2.2.3. We can construct a rule list R and a packet arrival distribution F from a 

weighted directed acyclic graph G = (V, A) that is bipartite and has just one source vertex in 

O(IVl2 + IVIIAI). 

Proof. We show that Algorithm 1 takes such a directed acyclic graph and returns a rule list and 

a packet arrival distribution. 

Firstly, Algorithm 1 computes the longest distances for each vertex from the source vertex. 

In Algorithm 1, Tue denotes the condition of Tu, On lines 6-14, the algorithm makes rules 

whose longest distances are equal to 1. To be independent of these rules, the algorithm inserts 

'1'diagonally. In Table 2.6, T12, T18, T19, and T20 make a 4 x 4 unit-like matrix. The binary 

operation ++ on lines 10, 11, 25, 26, 38, and 39 concatenates two strings. For example, "0010" 
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++ "10001" gives "001010001". 
On lines 15-32, the algorithm makes rules whose longest distances are equal to k. As stated 

above, the rule is first constructed from the rules depending on ri using 〶 . The binary operation 

① on line 20 in Algorithm 1 takes two strings, x and y, on {O, 1, *} and returns a string z as 

follows: 
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z=x④ y = * * 0 * 1 * 0 *・ 

For instance, on lines 15-32, we show how乃 ismade. As the longest distance of r3 from 

the source vertex r21 is 4, before making r3, those rules whose longest distance is 3 are already 

made. Thus, rules r12 and r13 depending on r3 are already made. c ("")知12cand c(r叫釘13c

on line 20 generate the string **0000100010. As there are 4 rules whose longest distance is 4, 

the 4 x 4 unit-like matrix is added for rules r3, r5, r7, 乃 onlines 34-41. As a result, the string 

**00001000101000 is generated. 

Next, similar to the lines 6-14,'1's are inserted diagonally. 

On lines 34-41, the algorithm adds a matrix with'*'son the main diagonal and'O's elsewhere. 

From this matrix, we can make E(R', i) -/= (/J and IE(R', i) IF = 0 for any rule list and packet 

arrival distribution. 

Algorithm 1 makes the rule list in Table 2.6 from the graph in Fig. 2.7. We change the font 

of the condition of the rules in Table 2.6 to align the columns. 

We construct the packet arrival distribution F from R and weighted graph G as follows: 

For each rule乃 withWiヂ0,the algorithm makes packet p by changing'*'on ric to'O'and 

F(p) = Wi, where Wi is the weight of vertex i EV. Let the weights of the vertices in the Graph 

in Fig. 2. 7 be 

3, (if i = 3) 

5, (if i = 6) 

19, (if i = 9) 

37, (if i = 12) 
(2.9) Wi = ¥ 

13, (if i = 15) 

29, (if i = 18) 

43, (if i = 21) 

0, (otherwise). 

For rule list R in Table 2.6 and weighted graph Gin Fig. 2.7, the arrival distribution is expressed 

as shown in (2.10). 
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3, (if p = l 00110011010000011110010000000000000000000) 

5, (if p = l 00110010101000011110000010000000000000000) 

19, (if p = l 00100100011111111110000000010000000000000) 

F(p) = < 37, (if p= 100010010011111111110000000000010000000000) (2.10) 
13, (if p = 100100111111111111110000000000000010000000) 

29, (if p = l 00111111111111111110000000000000000010000) 

43, (if p = 111111111111111111110000000000000000000010) 

0, (otherwise) . 

The complexity of Algorithm 2 is a function of the size of the graph, and making the rule 

for the corresponding node is a function of the size of A. Thus, Algorithm 1 has complexity 

O(IVl2 + IVIIAI)- ロ

Theorem 2.2.1. RRO is NP-hard. 

Proof. As the decision problem RO is NP-complete [29], to prove that RRO is NP-hard, we 

reduce RO to RRO. 

Let R be a rule list in RO, i.e., r E R has a weight, and let B be a positive integer. We 

construct a rule listだinRRO, i.e., r E R1 has an evaluation type, a packet arrival distribution 

F, and a positive integer B such that 

コu,t, い (i)< B 八Vr凸 ER,O(r;, 乃）八i<j⇒u(i) <び(j)
iff玉， L(見，F)< B1八VpE P,R(p) =凡(p).

(2.11) 

First, we construct the weighted graph Gn from rule list R based on definition (2.7), where 

the vertex i and ri have the same weight. This process has 0(w州） complexity, because we need 

only to compare all pairs of rules ri and rj to create that graph, where w is the length of the 

rule condition. Based on the method in Lemma 2.2.2, we construct graph G1 from Gn with 

k = max{deg打1),deg+(2), ... , deg+(n)} in O(n3 +炉m)time. Next, rule list R1 and packet 

arrival distribution Fare determined using Algorithm 1. Finally, we set B = B• k. 

According to the above explanation, the transformation of (R, B) into (R1, F, B1) can be 

done in polynomial time, 0(州） • Proving that (2.11) holds is the only task that is yet to be 

performed. We show (2.11) by separately proving 

ヨび，t皿 -a(i)< B 八V巧，乃 ER,O(巧ぷ）八i< j⇒ a(i) <叫）
(2.12) 

⇒ 玉， L(見，刀 <B'八VpE P,R(p) =凡(p).
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and 

玉，L(見，F)< B1八VpE P, R(p) =凡(p).
n 

⇒ ヨぴ，〉叫・o-(i)< B 八訊，rjER, O(rj, 八）八i<j⇒a-(i) < o-(j) 
(2.13) 

i=l 

in parts I) and II) below. In the following, n and n'denote the number of rules in R and応
respectively. 

I) Suppose that there is an order CJ" such th~t I:~=l WfO"(i) < B and¥;/八，TjEn, O(rjぷ）八i'<

j⇒ CJ"(i) <叫） • We define T : [バ］→ [n] as 

T(i) = { :.u(「i/k1)-k+imodk 
(if i =パ）

(otherwise). 

From this definition, in the order T, the inserted rules Ti-1, ri-2, ... , ri-k according to rule 

Ti are ordered right before Ti. For example, for k = 3, CJ" = (2 14 3 5 6), 

T = (45612310111278913141516171819), 

where n = 6 and n = l 9. As G1 , and T are based on Gn to ensure that the preceding 
月

relation holds, ¥/p E P, だ(p)=丸(p)holds. 

The latency of RT under Fis expressed as follows: 

n -l 

L(戸） =~ilE(見， T―1(i)) IF + (n1 -l) IE (見，戸（バ））IF 

= LilE(R~, 戸 (i))IF-IE(見 ，T―1(n1))IF
i=l 

According to the construction method of the packet arrival distribution F, IE(見，戸(n'))IF 

= 0, IE(見，T―1(l))IF= 0, and (n'-l)/k = n, where l is not a multiple of k. Therefore, 

n'-l 

L(見，F)= L ilE(R~, 戸 (i))IF 
i=l 

= LkilE(見，T―1(ki))IF
i=l 

As ilE(R~, T―1 (i)) IF is eq叫 toCY(i)・wi, we obtain 

n 

L(R~,F) = L k・Wi・a(i) 
i=l 
n 

= k L wi・a(i) 
i=l 

I 

<k・B=B. 
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Thus, we have proved statement (2.12). 

II) Suppose that there is an order T such that L(R~,. ア） < B1 and Vp E P, R(p) =凡(p).We 

defineび： [n]→ [n] as a(i) = T(ik)/k. As G~, and Tare based on Gn to ensure that the 

preceding relation holds, 訊，TjEn, O(rj心）八i<j⇒a(i) < a(j) holds. 

n n 
1 ど亨(i)= k L kwia-(i) 

i=l i=l 

Thus, we have proved statement (2.13). 

1 
= k tkilE(応戸(ki))IF
i=l 
I 
n -1 
1 
＝ー LilE(だ，T―1('
k 

i))IF 
i=l 
l I 
<-B =B  
k 

From the above, statement (2.11) holds. 

As stated above, for any positive integers B, B and rule lists R, R , there is an order O" such 

that 区~=l 叫· び(i)< B八訊，rjER, O(rjふ）八 i< j that implies O" (i) <叫） if and only if 

there 1s an order T such that L (凡，F)< B 八VpE P, R(p) = RT(p). ロ

As RRO is NP-hard, its optimization version RORO is also NP-hard. The fact that 

RORO is NP-hard implies that we should develop a polynomial time heuristic instead of an 

exact algorithm. 
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Algorithm 1: GraphToRulelist(G = (V, A)) 
/ / input graph G = (V, A) is two-colorable; 
/ / n E V is the only source vertex in G; 

1 R← an empty list; 
2 add屯 whosecondition rnc is the list of'*'of length IVI -1 to R; 
3 d← LongestDistances(n, G); 
4 Vk← { V I dv = k }; 
5 i← 1; 
6 while i :S IVi I do 
7 j← l; 
8 C← "" / / empty string ; 
9 while j :S IVi I do 
10 if i + j = I Vi I + 1 then c← C ++ "1"; 
11 else c← C ++ "O"; 
12 j← j + l; 
end 

13 I add r{: whose condition rue is c for the present to R; 

14 I i← i + l; 
end 

15 D← max{d1, d2, ... , dn}; 
16 k← 2; 
17 while k :SD do 

1s I m← IVil + ... + IVk-11 ; 
foreach u E Vk do 

19 

20 

C← ヽヽ"・ 
foreach v E V do 

I if (v,u) EA  then c← c釦｀
end 

'1, ← l; 
while i :S IVkl do 
j← m+l; 
while j'.S IVkl do 

21 

22 

23 

24 

25 

26 

27 

if i + m -j = IVi日+1 then c← C ++ "1"; 
else c← C ++ "O"; 
j← j + l; 

end 

e← D; 
if k is even then e← P; 

28 

29 

30 

31 

add rt whose condition rue is c for the present to応

'1, ← i+ l; 

32 

end 

end 

end 

k← k+ l; 

foreach i E {1, 2, ... , IVI} do 

33 I if Ir』 <IVI then pad a shortage with *i 
end 

34 i← 1・
35 while i :S IVI do 
36 

37 

38 

39 

40 

41 

end 

J← 1; 
while j :S !VI do 

end 

if i = j then rゎ← ric +十"*";
else ri 

C ← ric ++ "O"; 
j← j + l; 

'1, ←'I,+ 1; 

42 add the default rule r D 1V1+1・ 
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Algorithm 2: LongestDistances(s, G) 

/ / input graph G = (V, A) is a directed acyclical graph; 

/ / parameter s is the source vertex of G; 

/ / ¥:Iv E V there exists a directed path from s to v; 

1 Vv EV, dv← O; 
2 a← a topological ordering of V, where a(s) = 1; 
3 i← 1; 
4 while i :S IVI do 
5
 

6

7

 

8

9

 

v← 戸 (i);
foreach (v, u) EE  do 

if du < dv + l then 
I du= dv + l; 
end 

end 

i← i + 1; 
return d; 

end 
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Table 2.6: The rule list generated from the graph in Fig. 2.7. 

rP * * o o o o 1 o o o 1 o 1 o o o 1 o o o * o o o o o o o o o o o o o o o o o o o o o 

虐** 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

哨** 0 0 0 0 1 0 0 0 1 0 1 0 0 0 * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

r『** 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

rf; * * 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

柑** 0 0 0 0 1 0 0 0 0 1 0 1 0 0 * * * * 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

r平 01 0 0 0 0 1 0 0 1 0 0 0 0 1 0 * * * * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

柑 01 0 0 0 0 1 0 0 1 0 0 0 0 0 1 * * * * 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

rf? 0 1 0 0 O O 1 0 0 1 0 0 * * * * * * * * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 O 

喝 10 0 0 1 0 0 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 

rf1 1 0 0 0 0 1 0 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 

喝 10 0 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 

喝 01 0 0 0 0 1 0 0 0 1 0 * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 

噌 01 0 0 0 0 1 0 0 0 0 1 * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 

喝 01 0 0 0 0 1 0 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 

喝 01 0 0 0 0 0 1 0 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 

弔 01 0 0 0 0 0 0 1 * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 

喝 01 0 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 

喝 00 1 0 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 

喘 00 0 1 * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 

rぶ** * * * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 

喝＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
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Figure 2.8: Binary decision tree. Figure 2.9: ZDD 

□□ 
Figure 2.10: Node deletion. Figure 2.11: Node sharing. 

2.3 Zero-Suppressed Binary Decision Diagrams 

As the algorithms discussed in the following sections use the zero-suppressed binary decision 

diagram (ZDD) [58), we explain the mechanism and process of ZDD in this section. 

A combination of w items can be represented by aw-bit vector (b1, b2, ... , 加）， whereeach 

bk expresses whether or not the combination contains the item. A set of combinations can be 

represented by a set of w-bit vectors. A set of evaluated packets can also be regarded as a set 

of combinations. 

The ZDD data structure was proposed by Minato to manipulate a set of combinations effi-

ciently [58). A ZDD is obtained by applying reduction rules to a binary decision tree representing 

a set of combinations. The deletion of a redundant node and sharing of an identical node are 

illustrated in Figs. 2.10 and 2.11, respectively. Figures 2.8 and 2.9 represent the same set of 

combinations {001, 111 }. Circles denote non-terminal nodes and boxes indicate terminal nodes. 

A numeral i associated with a non-terminal node represents a Boolean variable of item i. Non-

terminal nodes have edges with values of 1 and 0. The 1 and O edges of node i express whether 

or not this node contains item i. In ZDDs, the variables are ordered. On the path from the 

root node to a terminal node indicated by a bold arrow, a skipped variable i indicates that the 

combination does not contain item i. 
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2.4 Computing The Number of Evaluated Packets 

As mentioned in section 2.1, computing the packet classification latency for an orderび witha 

given packet arrival distribution involves computing each number of evaluated packets IE(Rび'i)IF

for every rule in a given list. However, in general, computing the number of evaluated packets 

IE(応，i)IF for rule Tn is very difficult. As the algorithms described in the following sections 

must compute the number of evaluated packets, this section defines the problem of computing 

the number of evaluated packets. We show that this problem is #P-complete under the uniform 

distribution. 

2.4.1 Complexity of Computing the Number of Evaluated Packets 

Definition 2.4.1. {Computing the number of evaluated packets) 

Input: rule list R, order a, distribution F, i E z+ 
Output: IE(応 ，i)IFunder F, a, R 

We show that the problem is #P-complete if i = n and Fis the uniform distribution [63]. 

To prove the following theorem, we introduce some terminology. A binary relation S(u, v) is 

polynomially balanced if there exists a Turing machine that can determine S (u, v) in polynomial 

time. A binary relation S(u, v) is polynomially decidable if there exists some k such that S(u, v) 

implies lvl :::; lulk [63]. 

Theorem 2.4.1. The problem of computing the number of evaluated packets is #P-complete if 

i = n and F is the uniform distribution. 

In the following, the term uniform distribution is omitted. 

Proof. First, we show that the problem of computing the number of evaluated packets of rn is 

in class #P. Next, we present a reduction algorithm from #SAT to the problem of computing 

the number of evaluated packets of rn; then, we show that this reduction maintains the number 

of solutions. 

1. Let x be a formula¢1八の2八・・・八<l>n-l constructed from the conditions of rules乃， where

むisthe disjunction of variables Zj; Zj is avoided if the jth character of the condition 

of Ti is'*', and Zj is set to Zj orらifthe jth character of the condition of乃 is'O'or

'1', respectively (1 ::; j ::; w). Let S (x, y) be the binary relation denoting that y satisfies 

x. The problem of computing the number of evaluated packets of rn is an enumeration 

problem defined by the binary relation S(x, y). As S(x, y) is polynomially balanced and 

polynomially decidable, the problem defined by S(x, y) is in class #P. 

2. We demonstrate a reduction from #SAT to the problem of computing the number of 

evaluated packets of rn, as shown in Algorithm 3. In the algorithm, ++ denotes the string 
concatenation operation and the rule evaluation type is don't care. As the number of 

solutions of x E #SAT is clearly the same as the number of solutions of Red(x) and the 
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Algorithm 3: Red 

input : formulra釘八伽八・・・八虹1

output: rule list R 

1 n← the number of variables ; 
2m← the number of clauses ; 
sn← an empty list ; 
4 i← O; 
while i < m do 

5

6

7

 

c/>i =上；

8

9

0

 ー

11 

12 

13 

cond←'"'・， 

J← 1 ; 
while j~n do 

if Xj E Ci then cond← cond ++ "O" ; 
else if功 ECi then cond← cond ++ "1" ; 
else cond← cond ++ "*" ; 
end 

set Ri's condition cond ; 

add Ri to the last of R ; 

i← i + 1; 
end 

return R 

order of Red is O(mn), Red is a parsimonious algorithm from #SAT to the problem of 

computing the number of evaluated packets of Tn-

From the above, the problem of computing the number of evaluated packets of r n is #P-

complete. ロ

We present an example of a reduction from #SAT to the problem of computing the number 

of evaluated packets of rn. Applying Algorithm 3 to the formula in (2.14) yields the rule list in 

Table 2.1. The number of assignments satisfying (2.14) is the same as IE(Rid, n)lu in Table 2.1. 

（四 V叩八 (x1V四 V祁 V四）

八(x1V X3 V四）八 (x1V森）

八（む V坂）八豆4

(2.14) 

2.5 Manipulating M(ri) and E(Ra, i) via ZDDs 

The problem of computing the number of evaluated packets of ri is丑P-complete,meaning 
it is hard to solve. RORO requires the efficient manipulation of a set of packets. As the 

range of packets reaching a network device is smaller than all possible packets, in practice, the 
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m
 

Figure 2.12: ZDDs for M(r1), M(r2), ... , M(r5). 

manipulated data in packet classification are regarded as a sparse set of all combinations. In this 

section, we describe an efficient method that manipulates a set of evaluated packets E(応，i)

for an orderび usingZDDs. 

The ZDDs for the set of packets M(乃） of each single rule and the rule list R in Table 2 .1 

are shown in Fig. 2.12, where M(r4) expresses the set of combinations {0111, 0110, 0011, 0010}. 

The set of packets evaluated by巧 usingrule list R and order <Y, E(Ra-, i), does not match any 

of rules 1, 2, ... , (<Y(i) -1), but does match rule ri. That is, E(応，i)is the set of packets that 

does not match rule numbers <Y―1(1), (j―1(2), ... , びー1(<Y(i)-1)and matches巧， where<Y―1 is the 

inverse function of <Y. Thus, to find E(Ra-, i), we compute the following: 

M(ri) ¥ M(い (1))¥ M(r u-1(2)) ¥・ ・ ・¥ M(い (u(i)-1)). (2.15) 

To compute E(応，i),it is necessary to determine M(門）， M(乃），..., M(rn)-As this set of 

combinations is frequently used in reordering methods, we can use ZDDs to manipulate them 

efficiently. The ZDDs of E(Rid, i) for the rule list in Table 2.1 are shown in Fig. 2.13, where 

E(Rid, 4) expresses the set of combinations {0111, 0110, 0010}. Note that, comparing M(r4) 

with E(Rid, 4), 0011 has been removed. For brevity, Rid is now abbreviated as R. In practice, 

the ZDDs for Figs. 2.12 and 2.13 are stored in a computer by sharing identical nodes, as in Fig. 

2.14. This sharing of nodes provides a compact representation of the set of combinations and 

allows for efficient manipulation. We show the efficiency of manipulating the sets of evaluated 

packets by ZDDs in section 2. 7.4. 
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E(R, 1) E(R, 2) E(R, 3) E(R, 4) E(R, 5) E(R, 6) 

！
 

ー !
 Figure 2.13: ZDDs for E(Rid, 1), E(Rid, 2), ... , E(Rid, 6). 

M(r1) M(r2) M(r3) M(r4) E(R, 1) E(R, 2) E(R, 3) E(R, 4) E(R, 5) E(R, 6) 

Figure 2.14: ZDDs for M(乃）sand E(図，i)s.
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2.6 Rule Pairing Algorithm 

In this section, we propose a rule reordering algorithm and calculate its time complexity. 

If there is no dependent rule (r心）， wherei < j and the weight of rj is greater than that 

of ri, we can simply sort the rules with those weights to find a better ordering. For example, 

the rule list in Fig. 2.15 can be sorted as shown in Fig. 2.16. In contrast to the rule list in Fig. 

2.15, that in Table 2.1 cannot be simply reordered with those weights, as shown in Fig. 2.17. 

This is because rf preceding r[, rf preceding r <, rf preceding r『,and rf preceding哨
violate the classification policy. These relations are represented by heavy lines in Fig. 2.17, 

except relation rf, r『.By gathering rules together as one in advance to satisfy 

if ji E A then the weight of ri is greater than that of rゎ (2.16) 

we can achieve a better ordering for rule list R by simply sorting. We focus on this property. 

Our algorithm aims to impart the above property on the precedence graph of the rule list. 

It recursively pairs the rules causing the policy violation until there are no such rules. As an 

example, for the rule list in Table 2.1, the weighted precedence graph Gn is shown in Fig: 2.18. 

Because pairs (r7, 乃），（巧，乃）， and(r7, 乃） do not have property (2.16), the algorithm selects 

one of the pairs and applies property (2.16). Pairing (巧，r6),the weighted graph in Fig. 2.18 

becomes that in Fig. 2.19. The weight of gathered rules ri1, ri2, ... , rik is the mean of weights 

(wi1 + Wi2 + ... , Wik)/k. 
Next, pairing (rい，乃）， theweighted graph becomes that in Fig. 2.20. 

Then, pairing (r;, 乃）， theweighted graph is transformed to that shown in Fig. 2.21. The 

resulting weighted graph has property (2.16). 

Finally, the algorithm sorts the rules with those weights and decomposes the paired rules. 

The rule list in Table 2.1 is reordered as shown in Fig. 2.22. 

The complete pairing and sorting procedure is described by Algorithm 4. In the algorithm, 

Wi is the weight of rule ri. To pair the rules, the algorithm searches for the heaviest rule on line 

4. To explain why the algorithm searches for the heaviest rule, we consider the weighted graph 

in Fig. 2.23. For this graph, there can be two pairing processes, presented as follows: 

加，rゎ叫→ [(rぃ乃），r月→［（（八，乃），叫],

加，rj,叫→ ［（巧，叫，r』→ ［（（八，叫，乃）］．

In this example, the algorithm first selects pair (ri, rk), to decrease the latency. As shown 

above, in most cases, if there are rules to be paired, the pairing algorithm should select the pair 

containing the heaviest rule. 

Another key process in the algorithm is the search for the rule to be paired with Tmax on line 

13. Generally speaking, this process selects the minimum weight rule from the rules that directly 

precede Tmax・To explain why the algorithm selects the minimum weight rule, we consider the 

weighted graph in Fig. 2.24. Pairing r a with Tb means that there will be no rule between r a and 

乃 inthe resulting ordering. Because the rules directly preceding Tmax are independent, we can 
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rule 

weight 27 16 10 17 55 21 28 

Figure 2.15: Example of a rule list that can be simply reordered. 

rule~ 了0
weight 55 28 27 21 17 16 10 

Figure 2.16: Example of a rule list simply reordered by the weights of the rules. 

rule 

weight 4
 
4
 

3
 

3
 

ー ー

゜
Figure 2.17: Reordering causing policy violations at the red edges. 

simply sort these according to their weights. Thus, in the case shown in Fig. 2.24, the pairing 

process selects Tj to be paired with Tmax(r砂

We now consider the process searchPairingRule() in detail. First, it computes the average 

weight of all vertices to which there is a path from Tmax・Then, the process selects the minimum 

average weight rule Tmin・Finally, it reversely traverses the edges from Tmin to Tmax by selecting 

the smaller average weight rule. 

For example, we consider the graph shown in Fig. 2.25. The procedure uses r7 as Tmax 

because W7 is the maximum weight. To select one of r4, r5, and r5, the average weights are 

computed for rules r1, r2, ... , r5 as shown in Fig. 2.26. Here, the upper, bottom-left, and 

bottom-right numbers show the rule number i, rule weight Wi, and average weight Ai, respec-

tively. In this example, because the average weight A2 is the minimum, r2 is selected, and then 
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Figure 2.18: Weighted precedence graph for the rule list in Table 2.1. 

rule 

weight 4
 

ー ー 3
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(0+4)/2 

Figure 2.19: Pairing (巧，r5).

rule 

weight 4
 

ー 3
 
3
 
(1 +0+4)/3 

Figure 2.20: Pairing (r5', 乃）．

r4, because A4 < A5. Thus, r4 is paired with r7. 

2.6.1 Complexity Analysis 

In this section, we describe the time complexity for the rule pairing procedure presented in 

Algorithm 4. In the following, let m denote the number of pairs of dependent rules and n be 

the number of rules. Searching for the maximum weight rule in Sat line 4 has O(n) complexity. 

Checking whether there is no rule on which r max depends (line 5) is an O (1) process. The time 

complexity for searchPairingRule(rmax, S) is O(n + m). Sorting the rules in T on line 16 can 

be done in O (n log n) time. As lines 4-17 repeat at most n times, their overall complexity is 

0(炉+nm). Thus, the time complexity for the proposed algorithm is 0(炉 +nm).
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(1 + 1 +0+4)/4 

Figure 2.21: Pairing (rふ乃）．

rule 

weight 4
 
3
 
3
 

ー ー

゜
4
 

Figure 2.22: Rules reordered by pairing. 

rule k
 

.
J
 

.
l
 

weight 2
 
5
 
20 

Figure 2.23: Selecting the heaviest rule rk. 

The time complexity for Sub-Graph Merging (SGM) is O(nり[77].Because the precedence 
graph for a rule list is actually sparse, the proposed algorithm is faster than SGM in most cases. 

2.6.2 Experiments 

The efficiency of the proposed algorithm is demonstrated through experiments based on both 

conventional ORO and RORO. We implemented the swapping-window based paradigm (SWBP) 

[61), the algorithm of Tanaka et al. [76), SGM [77), and the proposed method in Java under the 

Cent OS Release 6.5(Final) on an Intel Core i5-2400 3.10 GHz CPU with 4 GB main memory. We 

generated the rules and headers with the standard benchmark for packet classification algorithms 

ClassBench [80). For RORO experiments, we added an evaluation type P or D to each rule of a 

rule list generated by ClassBench with a probability of 1/2, and added the default rule. A packet 
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Algorithm 4: PairingAndSortingAlgorithm 

input : rule list R, order a and packet arrival distribution F 

output: rule list R 

1 make a set S of rules for R ; 

2 prepare an empty list T ; 

3 while S # 0 do 
. 

Tmax := maximum weight rule in S ; 

if there is no rule on which r max depends then 

add r max into T ; 

delete r max from S ; 
． 

continue・ ， 

end 

else if for all r ES, D(rmax, r)八Wrmax< Wr then 

add r max into T ; 

delete r max from S ; 
． 

continue・ ， 

end 

else 

rtarget := searchPairingRule(rmax, S) ; 

rnew := pair rmax with rtarget ; 

add r new into S ; 

delete r max from S ; 

delete rtarget from S ; 

end 

end 

18 sort the rules in T with those weights ; 

19 decompose the paired rules in T ; 

4
 
5
 
6
 
7
 
8
 

，
 
10 

11 

12 

13 

14 

15 

16 

17 

20 return T; 

header generated by ClassBench consists of source/destination addresses, source/destination 

port number and protocol number. Because the lengths of these components are 32, 32, 16, 16, 

and 8 bits, respectively, the length of the condition of the rule and header was 104 bits. The 

number of headers was about 1 M. 

ClassBench has three kinds of seed files, namely Access Control List (acl), Fire Wall (fw), 

and IP chains (ipc). Because the SGM algorithm did not terminate within 1 h for fw and 

ipc, we only utilized the acl seed files in the experiments. Because the resulting graphs for fw 

and ipc can be dense, the graph updating phase and subgraphs construction phase in SGM are 

impractically slow. 

Using the generated rule lists and header lists, we measured the time required to reorder 
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rule 

weight 7
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Figure 2.24: Selecting the minimum weight rule. 

rule 

weight 7
 
2
 
6
 ，
 

10 20 30 

Figure 2.25: Weighted precedence graph. 

3 

6 I (20+6)/2 = 12 

Figure 2.26: Computation of the average weight. 

the rules and the latency of the rule list for every algorithm. The units of measurement are 

seconds. The mean values over 10 trials for RORO are shown in Figs. 2.27 and 2.28. Note that 

the reordering times are plotted on a logarithmic scale in Fig. 2.28. 

As shown in Fig. 2.27, the proposed algorithm decreases the latency by about 9% compared 

with SWBP [61) and the algorithm of Tanaka et al. [76). Detailed results are presented in Table 

2.7. The latency of the proposed algorithm is less than or equal to that of SGM. Figure 2.28 

shows that the reordering times for SGM and the proposed algorithm are 44 and 3 s, respectively, 
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Figure 2.28: Reordering time (s) of dependency relation. 

for 5000 rules. That is, the reordering time of the proposed algorithm is 15 times faster than 

that of SGM for 5000 rules. The results in Figs. 2.27, and 2.28 and Table 2. 7 indicate that the 

proposed algorithm is quite effective in terms of processing latency the time required to reorder 

the rule list. 

The effectiveness of the proposed algorithm using the conventional ORO model is shown in 

Figs. 2.29 and 2.30. Because SGM applied to ORO did not terminate within 1 h for 4000 rules, 

we only show the results for up to 3000 rules. Note that, similar to Fig. 2.28, Fig. 2.30 uses 

a logarithmic scale. The latency of the proposed algorithm is about 10% lower than that of 

SWBP [61] and Tanaka et al. [76), as shown in Fig. 2.29. The reordering time of the proposed 

algorithm is 300 times faster than that of SGM for 3000 rules, as shown in Fig. 2.30. Because the 

graph of the overlap relation is denser than that of the dependency relation, the reordering time 

for SGM applied to ORO is much longer than for RORO, as shown in Figs. 2.28 and 2.30. The 

above results demonstrate that the proposed algorithm is remarkably efficient for both RORO 
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Table 2.7: Latency for SGM [77] and the proposed algorithm. 

# of rules SGM [77] proposed algorithm 

1000 2.4898e+07 2.4882e+07 

2000 4.3011e+07 4.2977e+07 

3000 6.2013e+07 6.1955e+07 

4000 8.0241e+07 8.0115e+07 

5000 1.0159e+08 1.0143e+08 
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Figure 2.29: Latency on the overlap relation. 

and conventio叫 ORO.

Because the graph for the rule lists generated by ClassBench is actually sparse, the results 

show that the proposed algorithm is faster than SGM. As an actual rule list can be assumed to 

have the same characteristics as ClassBench, we conclude that the proposed algorithm would be 

sufficiently effective for real packet classification. 
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2. 7 Improving Reordering Methods based on [75] 

The algorithm described in [75] neglected the variation in the evaluated packets and the, packet 

arrival distributions. In this section, we propose a novel algorithm based on [75] that considers 

the variation of evaluated packets and the packet arrival distributions. 

The reordering algorithm [75] consists of three modules: interchanging two consecutive rules, 

interchanging a single rule, and interchanging a set of rules. 

2.7.1 Interchange Adjacent Rules 

In this section, we show that the latency can be reduced by interchanging adjacent rules, and 

present an algorithm that repeatedly interchanges adjacent rules in a rule list. 

Theorem 2. 7.1. Exchanging the ith rule ri and the (i + l)th rule rk in a rule list R maintains 

the classification policy if and only if e = f V M (乃） nM(r砂=0. 

W,e consider rf and rf to be interchangeable if Theorem 2.7.1 holds for rules吋andrf. 

Theorem 2.7.2. Let the ith rule rz and the (i+ l)th ruler{ be interchangeable. If e is different 

from f, then if l(E(R(J', l)IF < l(E(R(J', K)IF holds, we have L(R冗，氏o(J',F) < L(R(J', F), where ~ し，氏

is an order that interchanges only r1, and r,..,, and o denotes the composition of functions. 

Theorem 2. 7.3. Let the i th rule ri and the (i + 1) th rule r{ be interchangeable. If e is the 

same as f, then if 

il(E(応，し）圧+(i+l)l(E(応，r;,)[F

> i([(E(応，l)[F+IE(応，l)nM(r"')[F)

+(i+l)(l(E(Ra, l) ¥ M(r贔）

hold, we have L(応 ，にoa,F) < L(応，F).

We say that rf and r. are reducible if Theorem 2.7.2 or Theorem 2.7.3 holds for rf, but not 

for r .. 

The repeated interchange of adjacent rules is described in Algorithm 5. Note that we use a 

flag IRa, OIF to terminate the algorithm. 

This algorithm interchanges the ith and (i+l)th rules until Theorems 2.7.1, 2.7.2, and 2.7.3 

hold. If the first i rules are interchangeable, the algorithm orders them according to 

IE(Ra, O'― 1(1)) 1F~ IE(Rび '0'-1(2)) IFミ・・・:こ IE(Ra,O'―1(i)) IF• (2.17) 

Although the rules will ideally be listed in descending order after applying the algorithm, in 

many cases, this may not be the case because Theorem 2.7.1 does not hold. 
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Algorithm 5: InterchangeRandR 

input : R, a, F 

1 let IE(応，O)IF= oo for any F ; 

2 i := 2; 

while iさn-1do 

3 I j := i -1 ; 

while r a-1 (j) and r a-1 (j+l) are interchangeable and reducible do 

4 interchange r u-l(j) and r u-i(j+l) ; 

5 a := Ta-l(j),a―l(j+l) O a i 

6 update ZDDs; 

7 j := j -1; 

end 

8 I i := i + 1 ; 

end 

Table 2.8: A given rule list. Table 2.9: Reordering by the al-Table 2.10: 

gorithm in Fig. 5. grouping rules. 

Filter R IE(R辺，i)IH

r『=100 * 2 
Filter R IE(R1r, i)IH Filter R 

咽=1111 3 哨=11 0 * 4 rf = 1 0 0 * 

哨=11 0 * 4 屯=1111 3 rf = * 0 * * 

rf = * 0 * * 15 
rP = 1 o o * 2 哨=11 0 * 

rf = * * * * 28 rf = * 0 * * 15 吠=1111 

L(Rid, H) = 192 rf = * * * * 28 rf = * * * * 

Reordering by 

IE(RT, i)IH 

2 

15 

4 

3 

28 

L(R1r, H) = 188 L(RT, H) = 168 

2. 7.2 Interchange of Single Rule and Consecutive Rules 

We now describe the effect of interchanging adjacent rules on the classification latency. Consider 

the rule list in Table 2.8 and the packet arrival distribution H given by (2.18). 

0000→ 10, 0001→ 0, 0010 H 0, 0011→ 0, 
0100→ 7, 0101 H 2, 0110→ 8, 0111卜 13,
1000→ 2, 1001卜→ 0, 1010卜 0, 1011 H 5, 
1100→ 1, 1101→ 3, 1110→ 0, 1111→ 3 

(2.18) 

To decrease the classification latency, we place rf, which has a large number of evaluated packets, 

in the uppermost position without violating the classification policy. Algorithm 5 orders the first 
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rule in descending order of the number of evaluated packets, as in Table 2.9. However, because rf 

depends on r『,rf cannot be placed in the uppermost position. To overcome this, an algorithm 
that interchanges a single rule and rule groups is proposed [75]. For example, for order 1r in 

Table 2.9, r『andr『areinterchangeable with rf and interchanging the set of rules r『,rf and 

the single rule r『togive [哨，r『，rf,r『,rf] reduces the latency to 173. The latency can be 

decreased to 168 by interchanging the set of rules r『,T< and the single rule哨，asin Table 2.10. 

The method described in [75] places the ith rule in an upper position, without any policy 

violation if the ith rule depends on the (i-1)th rule, by grouping and regarding them as a single 

rule. 

ijE(応叫+tlE(応 ，しk)IF-t(i + k -l)jM(r,.) n (E(応，,)¥ M(八）＼ ・・・¥M(r紐ー,))IF
k=l k=l 

-(i + j)IE(Rび 9し） ¥M(rしi)¥M(rし2)¥・ ・ ・¥ M(rしj)IF

(2.19) 

Theorem 2. 7.4. Interchanging the ith ruleが andthe set of (i + l)th to (i + j)th rules 

心，...,rし~;j in a rule list R maintains the classification policy if and only if rii is interchangeable 
with all rules心，．．．，；勺．．

We say that a single rule r↑ and a set of rules r~;1, ... , r~> are interchangeable when they 

satisfy Theorem 2.7.4. 

Theorem 2. 7.5. Let the ith rule r↑ and the set of rules from the (i + 1) th rule to the (i + j) th 
叫 eし• eし1 eし・

rulerしi'...'rしj1 be interchangeable. If r↑ and rしi'...'rし/ satisfy (2.19), then 

L(応。び，F)< L(応，F),

where 1r is the order that interchanges the i th rule r↑ and the set of (i + l)th to (i + j)th rules 

心，．．．，心．
eし•

We say that a single rule rz" and a set of rules r~;1'...'rljJ are reducible when they satisfy 

Theorem 2.7.5. 

Proof. Without loss of generality, we assume that l= l, り=2, .. ., lj = j + l, i.e., a is the identity. 

We describe応 and応。び asRand応 forbrevity. From the assumption that応 isgiven by 

interchanging the first rule r1 and the set of rules r2, ... , r1+j, L(R, F) and L(応，F)become 

j+l 

L(R, F) = L ilE(R), ilF 
i=l 
n-l 

+ L ilE(R), ilF + (n -l)IE(R), nlF 
i=J+2 

J+l 

L(応，F)= L 1r(i)IE(応，i)IF
i=l 
n-l 

+ L 1r(i)IE(応，i)IF+ (n -l)IE(応），nlF・
i~j+2 
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Algorithm 6: lnterchangeRandRs 

Input : n, O", F, i 
1 let IE(応 ，O)IF= oo for any F ; 

2 j := 2; 

while rい (j)and r a-1 (i+l), ... r a-1 (i+j) hold (2.19) do 

if r a-1 (j) and rい (i+l),... r a-l(i+j) are interchangeable then 

3

4

 

5
 

6
 

interchange r (J'―1(j) and r (J'-1(i+l), ... r (J'―l(i+j) ; 

update a-and ZDDs for each E(応，i); 

end 

else 

I j := j + l 
end 

i := i-1; 

end 

口

From the definition of the latency, ~faj~2 1r(i) IE(応， i) 圧 is~faj~2ilE(R, i) IF and E(応，n)
is E(R, n) in (2.21). As L(R, F) -L(応，F)can be written as in (2.22), this proves Theorem 

2.7.5. 

L(R,F) -L(応，F)= f ilE(R),ilFー団,r(i)IE(応，i)IF
i=l i=l 
J+l j+l 

= L ilE(R),ilF一 L (k-l)IE(R, k)IF 
i=l k=2 (2.22) 

J+l 

— L(k -l)IM(rk) n (E(R, 1) ¥ M(乃）¥・ ・ ・¥ M(rk-1))IF 
k=2 

-(j + l)IE(R, 1) ¥ M(乃）＼・・・¥ M(rk-1) IF 

The procedure for moving a group of rules to an upper position is described in Algorithm 

6. The first part of the algorithm interchangesい (i)and r a-1 (i+l), ... , r戸 (i+j)repeatedly 

until Theorem 2.7.5 holds, with the aim of moving toward the first position in a rule group of 

j rules ra-1(i+I),・・・,ra-1(i+j)・This part is implemented in lines 2, 3, and 6 in Algorithm 6. 

The second part of the algorithm moves rule r a-I(i+j) by adding r a-i(i) to the group of rules 

r a-l(i+l), ... , r a-I(i+j) to form a rule group of (j+l) rules when r a→ (i) and r a-l(i+l), ... , r a-I (i+j) 

are not interchangeable. 

2.7.3 Adaptive Reordering Algorithm 

In this section, we present an algorithm composed of Algorithms 5 and 6. 
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Algorithm 7: reorderingRuleList 

input : R, CJ', F 

1 let IE(応，O)IF= oo for any F; 

2 i := 2; 

while i < n -1 do 

3 I j := i -1 ; 

while r (Y-l(j) and r (Y-1(j+l) are interchangeable and reducible do 

4 interchanger (Y-1(j) and r (Y-i(j+l) ; 

5 (J':= T, び→(j) ,CY―l(j+l) O CJ'; 

6 update ZDDs; 

7 j := j -1 ; 

end 

if j > 0 then 

I call InterchangeRandRs(R, CJ', F, j -1) ; 8
 
end 

9 I i := i + 1 ; 

end 

10 call InterchangeRandR(R, a, F) ; 

In Algorithm 7, the individ叫 algorithmsare implemented on lines 8 and 10. First, rule吋

is moved to the uppermost position for i=2,3, ... ,n-1 (see Algorithm 7, lines 3 and 4). When 

the algorithm breaks out of the inner loop at line 3, if j > 0 (i.e., rule吋cannotbe placed in the 

first position), the algorithm calls the procedure in Algorithm 6 at line 10 to group the jth rule 

and吋.When the algorithm breaks out of the outer loop at line 3, it terminates after finally 

calling the procedure in Algorithm 5. 

2.7.4 Experiments 

Experiments were conducted to demonstrate the need to consider the variation in the number 

of evaluated packets and determine the efficiency of the proposed method. We implemented the 

proposed method in C++ under the Cent OS Release 6.5(Final) on an Intel Core i5-2400 3.10 

GHz CPU machine with 4 GB main memory. We used the CUDD ZDD package [68]. The rules 

and headers were generated with the benchmark packet classification algorithms of ClassBench 

[80], and evaluation type P or D was added to each rule in the rule list with a probability of 1/2. 

The length of the conditions for the rules and the headers was 120 characters and the number of 

rules was about lk. The number of headers was about lM. We generated 30 rule lists from seed 

files acl, fw, and ipc. With the generated rule lists and header lists, we measured the latency 

using the method described in [75] for both a fixed-weight model and a variable-weight model. 

The mean values of 10 trials are presented in Table 2.11. The latency of the fixed-weight model 

(row 1) is higher than that of the variable-weight model (row 2) by 18, 1 and 5% for acl, fw, 
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Figure 2.32: Reordering time (s). 

and ipc, respectively. Thus, to solve the RORO problem, the variation of rule weights should 

be considered. By comparing rows 2 and 3 (proposed method) in Table 2.11, we find that the 

proposed method decreases the latency by about 6, 5, and 3% for acl, fw, and ipc, respectively, 

against the method of [75]. 

To confirm the efficiency of the proposed method, we measured the time required to reorder 

the rules and the latency using Simple Rule Sorting [22] and Swapping Window Based Paradigm 

Table 2.11: Latency of proposed model and old model 

acl fw ipc 

fixed weights (old model) 299843000 260785000 346560000 

varying weights 294295000 260503606 344 709000 

proposed method 278112000 247181000 333953000 
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Algorithm [61], and the proposed method. The units of measurement are seconds. The mean 

values of 10 trials are shown in Figs 2.31 and 2.32. Although the proposed method takes longer 

than the methods of [22] and [61], it has the lower latency. This means that the proposed method 

represents an improvement over the methods [22] and [61]. 

In this program, to adapt the variation in the number of evaluated packets, we used ZDDs 

that were modified when the corresponding set of evaluated packets changed. Figure 2.32 shows 

that ZDDs efficiently compute and manipulate the set of evaluated packets. 
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Chapter 3 

Optimizing Rule List 

To this point, we have only discussed methods for reordering rules. However, to reduce the 

classification latency, reconstructing the rule list should also be considered. We formalize this 

latency problem as another optimization scheme in which the aim is to identify the rule list 

that minimizes the latency while preserving the original classification policy. We call this the 

Optimal Rule List (ORL) problem. 

Although ORO is NP-hard, if the graph of preceding relations on rules is a forest of oriented 

trees and there is no variation in rule weights, ORO is solvable (under a certain assumption) in 

polynomial time using single-machine job sequencing algorithm (34]. Focusing on this point, this 

chapter presents a rule list reconstruction algorithms that uses the solution of single-machine 

job scheduling. The algorithm first rewrites an input rule list so that its precedence graph is a 

forest of oriented trees, and then optimizes the order of the rules. 

3.1 Single Machine Job Sequencing Problem 

The single-machine job sequencing problem is an optimization problem that attempts to identify 

the order of jobs that minimizes the value of an objective function subject to certain precedence 

constraints [48]. 

The input to the single machine job sequencing problem is the n jobs to be sequenced for 

processing by a single machine. The jobs have process-ing times of Pl, p2, ... , Pn and weights of 

w1,w2, ... ,wn with precedence constraints on the jobs. The precedence constraints are given in 

the acyclic digraph G = (V, A). Each vertex坊 EV corresponds to job i. If there is an edge 

(t, s) E A, job s precedes t, i.e., job t can not be processed before job s. The output of the 

single-machine job sequencing problem is a feasible sequence of jobs that minimizes the weighted 

sum of the completion time汀 wiCi,where Ci is the completion time of job i. Lawler showed i=l 
that single-machine job sequencing is NP-hard even if all Wi = l or all Pi = l [48]. 

An example of the single-machine job sequencing problem is shown in Fig. 3.1, where all 

Pi= l. 
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Figure 3.1: Example of job sequencing problem. 

3.2 Rule List Reconstruction Method via Inclusive Rules 

In this section, we present a rule list reconstruction algorithm based on an inclusive rule list. 

If rule list R satisfies V八，rjER, O(ri,rj)八i< j⇒ M(八） CM(乃）， thenn is said to be 
an inclusive rule list. An example of an inclusive rule list is given in Table 3.2. 

Rule rj that satisfiesヨi,i < j八 M(乃） C M(ri) is redundant and can easily be removed 
from the rule list. In this study, an inclusive rule list does not contain such rules. 

We prove that the graph of an inclusive rule list forms an oriented tree. 

For rule list R, graph Gn is defined as 

V = { 1, ... , IRI }, 

E = { ji I i,j EV八M(ri)c M(乃）八→ヨk(M(八） C M(rk) I¥ M(rk) C M(rj))}. 

An example of a graph for a rule list is shown in Fig. 3.2. 

(3.1) 

Definition 3.2.1. {Oriented tree) If graph G satisfies the following three conditions, then G is 

said to be an oriented tree: 

1. VvEV(v#r⇒ ヨ!eEE  v = end(e)), 

2. Ve EE  (r # end(e)), 

3. For all v E V, there exists a path p from r to v, 

where r is the root of G and end(e) is the end vertex of e. 

Theorem 3.2.1. For inclusive rule list R, Gn is an oriented tree. 

Proof. For all乃 (v# r), as M(乃） is a subset of M(rn), there is at least one edge e such that 

v = end(e). We assume that 

v = end(e1)八 v= end(e2)八 e1# e2. (3.2) 

From Eq. (3.2) and the definition of overlap, O(init(e1),init(e2)), we have that init(e) is a 

source vertex of e. Let v1 = init(e1) and v2 = init(e2). Because R is an inclusive rule list, 
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Table 3.1: Rule list. Table 3.2: Inclusive rule list. 

Filter R Filter R 

門 =10*11*

乃 =10*00*

乃 =*0001*

r4 = 0 * * 0 1 * 

巧 =01**1*

府 =*00**0

r7 = * * * * * * 

*

0

0

*

＊

＊

＊

 

*

0

0

*

0

*

＊

 

1

*

＊

1

*

1

*

 

1

0

 

0
 
0
 
0
 
*

＊

 

0

1

1

0

1

0

*
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1
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1
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＊
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r

r

r

r

r

r

 

L(R) = 320 L(R) = 358 

M(r1) c M(乃） and叫 1E E hold. Because v1 v and v2釘 EE,v匹 ff-E. This is a contradiction 

for v2v EE. Thus, ¥Iv E v(v # r⇒ ヨ!eEE  v = end(e)) holds. 
Because rule r n (=乃） is not a subset of any rule, r is not an end vertex of any edge. Thus, 

Ve E E (r # end(e)) holds. 

For the set of rules Sv = {k I rv C rk}, we define the order j <sv i三 riC rj on Sv. Let Pv 

be a list of Sv that is sorted according to <s町几 withv added to it is a path from r to v. ロ

We now present a rule reconstruction algorithm that rewrites rule list Ras inclusive rule list 

R and applies the optimization method of [34] to R. 

For rules ri and r・such that O ri, r・ (J) 八 M(ri)(/_ M(rj), a rewnt1ng algorithm searches 

position k such that bi ='*'八 b{#'*', generates r: andパ， insertsthem into the next r i, 
and then removes ri, where似 ofr i is expanded to O and似 ofri is expanded to 1. The 

algorithm repeats this operation until the rule list becomes inclusive, and renumbers the rules. 

The rewriting of rule r3 in Table 2.1 is shown in Fig. 3.3. 

As there may be some variation in the rule weights in RORO, we can not always obtain 

the optimal order, even if the graph of preceding relations is a forest of oriented trees. Thus, 

the order obtained by reordering rules whose graph of precedence relation is a forest of oriented 

trees is near-optimal. However, in the case of ORO, such an order is always optimal. 

3.2.1 Experiments 

We demonstrate the efficiency of the proposed method through experiments. The rules and 

headers were generated with the benchmark packet classification algorithms ClassBench [80]. 

The number of headers was approximately 100k. A total of 50 rule lists were generated from 

acl seed files. With the generated rule lists and header lists, we measured the latency using the 

proposed method, SGM [77], and SWBP [61]. Note that SGM and SWBP reorder the rules in 

ORO instead of RORO. Thus, rj can not be placed ahead of乃 wheni < j and乃 overlapsr j. 
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