シロキサンコートしたケナフ紙の
結合状態の環境安定性

平成13年3月
分担研究代表者 大石不二夫
神奈川大学理学部合理学研究所

研究協力者 藤井茂輝 神奈川大学理学部理学研究科
シロキサンコートしたケナフ紙の結合状態と環境安定性

理学部　化学科教授　大石不二夫
理学研究科　化学専攻　博士前期課程　藤井　茂輝

1. 概要

天然素材である紙は、無公害・再生可能な素材として広く使用されている。しかし、水に弱く破れやすさなどの欠点をもっているために、その使用範囲が限定される。その欠点を克服するために、株式会社健一で紙をシロキサンコートする技術を開発中である。本研究では紙の素材として、草から採取できるバルブであるケナフを用いた。ケナフは、森林資源の保護という点で注目を浴びている。

紙の繊維をシロキサンコートすることにより、紙に耐久性（撥水性、耐汚染性、難燃性等）および透明性をもたせ、上記の欠点を克服するねらいである。コートの手法はソルゲル法を応用したものであり、この方法を用いると、紙の繊維にシラン系の薄膜をコートすることができる。しかし、紙とコート剤との結合状態、および屋外等（光・熱・水）の環境下におけるコート紙の安定性は不明である。本研究では、紙とコート剤との結合状態を解析し、次いで光・熱・水の環境下における安定性の評価を目的とする。

2. 試料

バルブの素材として、ケナフバルブ、針葉樹バルブを用いた。ケナフバルブはタイ産バルブの全蒸白バルブを中心として、他、国産バルブの剥皮漂白・全葉無漂白の3種を用いた。紙は JIS 規格（JIS P8221・1，JIS P8220，JIS P8121）に基づいて、バルブを解凍後、叩解し漂水度400付近の手漉きの紙を作成した。コート液の主原料としてメチルトリメトキシシランのオリゴマー状の溶液を用い、主原料に触媒としてジプチルスズジアセテートを加えながらよく摺拌し、得られた溶液をコート液とする。そのコート液を紙に塗布し、液体成分を乾燥させるために120℃・15分で乾燥した紙をコート紙とする。まず、紙とコート液との結合状態を解析し比較するために、表面のみに塗布するスプレーコートと内部までコート液を含浸させるディップコートの2つの手法で作成した。（図1）

3. 予想反応

この反応はソルゲル法を応用したものである。紙とコート液との予想反応は、下記①～③のように示される。

\[
\begin{align*}
\text{Si-OCH}_3 + \text{ROH} & \rightarrow \text{Si-OR} + \text{CH}_3\text{OH} \cdots \text{①} \\
\text{Si-OCH}_3 + \text{H}_2\text{O} & \rightarrow \text{Si-OH} + \text{CH}_3\text{OH} \cdots \text{②} \\
\text{Si-OH} + \text{ROH} & \rightarrow \text{Si-OR} + \text{H}_2\text{O} \cdots \text{③}
\end{align*}
\]

予想される主反応は、主原料であるメチルトリメトキシシランの-OCH₃基と紙のセルロース中に保有している-OH基との反応が直接反応とする式①、Si-OCH₃基と水分(空気中の水分、紙に吸着している水分
等)が反応し(式②), Si-OH 基に化学変化した後, セルロース中の OH 基との反応による式③と 2 通りの反応が予想される。副反応は、カーテシ液に油が反応する反応式⑤・⑥のように予想される。

\[
\begin{align*}
\text{Si-OCCH}_3 + H_2O & \rightarrow \text{Si-OH} + CH_3OH \quad \text{④}
\text{Si-OH} + \text{Si-OCCH}_3 & \rightarrow \text{Si-O-Si} + CH_3OH \quad \text{⑤}
\text{Si-OH} + \text{Si-OH} & \rightarrow \text{Si-O-Si} + H_2O \quad \text{⑥}
\end{align*}
\]

4. 現在までの研究の流れ
当初、針葉樹バルプを材料として作成した紙をシロキサンコートして用いていたが、現在、ケナフバルプから作成した紙を用いている。
また 2 液型・IPA(イソプロピルアルコール)配合のコート液を用いていたが、紙とコート液との結合状態を明確に判断するために、コート液中の成分をよりシンプルにした 1 液型・IPA 未配合のコート液で研究を進めている。

5. 実験
コート前後の紙の構造解析を FT-IR・NMR(13C・NMR・1H・NMR・29Si-NMR)・固体高分解能 NMR 測定により行う。

6. 結果
反応系中に水分が含まれないとコート液はゲル化しないことが分かった。このことから、セルロースの OH 基、紙に吸着された水分、空気中の水分と、コート液の\(\text{Si-CH}_3\)基が反応に関わることが予想される。イランケナフ全基漂白バルプの IR スペクトルからセルロースの \(\text{COC}\) (890cm\(^{-1}\))を基準として、OH 基 (3400cm\(^{-1}\))の吸収強度比の変化を調べた結果(図 2)、スプレーコートはコート前に比べ OH 基の減少が確認された。
一方、セルロースに結合・付着したコート液成分の Si-\(\text{CH}_3\) (1430cm\(^{-1}\))を基準とし、Si-\(\text{OCCH}_3\)基 (2840cm\(^{-1}\))の吸収強度比の変化を求めた結果(図 3)、スプレーコートではOH 基との反応により消耗し、ディップコートではコート液が過剰なため 未反応のまま残存していた。なお、固体高分解能 NMR から、\(\text{Si-OCCH}_3\)の \(\text{Si-OCCH}_3\)の変化とイランケナフ全基漂白\(\text{Si-OCCH}_3\)基の変化が確認できた。

7. 今後の計画
光・熱・湿の環境下における安定性の評価の手法として、メタルハライドウェザーメーターを用いてコート紙を促進劣化させ、劣化前後におけるコート紙の表面・界面の変化を FT-IR・NMR(13C-NMR・1H-NMR・29Si-NMR)・固体高分解能 NMR 測定による構造解析と SEM による微視的な形態観察の結果から解明する予定である。

藤井茂梢 大石不二夫ほか 成形加工学会(2001.9:発表予定)
図1 タイ産ケナフ紙のSEM(50倍)
図2 コートしたタイ産ケナフ紙のSEM(50倍)
図3 タイ産ケナフ紙のSEM(100倍)
図4 コートしたタイ産ケナフ紙のSEM(100倍)