1998年度　総合理学研究所共同研究報告

研究題目 G.「狭塩性海水魚類の塩類細胞に関わる組織学的研究」

主研究者　小笠原 強（神奈川大学理学部応用生物科学科教授）
共同研究者　平野 哲也（東京大学名誉教授・前東京大学海洋研究所所長）
ハワイ大学客員教授・
神奈川大学総合理学研究所客員所員）

研究目的と背景
淡水と海水の双方で生存できる広塩性魚類の鰓には塩類細胞が認められる。この細胞はミトコンドリアおよび管系に富んだ特殊な構造をもち、海水適応に際して増殖・肥大し余剰の塩類を排泄して、体液の浸透圧の恒常性維持に関わるとされている。一方、コイやフナなどの典型的な淡水魚にもこの細胞が観察され、塩分を外界から能動的に摂取して体液浸透圧の維持に関与するとされている。一般の海水魚すなわち狭塩性海水魚にも塩類細胞が報告されている。しかし、塩類細胞についての知見のほとんどは、ウナギやティラピアなどの広塩性魚類から得られており、それが魚類全般に適用されている。魚類は脊椎動物のうちでもっとも種数が多く、適応の生理機構も単一ではないと思われる。本研究は広塩性魚類を基礎としながら、狭塩性海水魚類の塩類細胞の挙動を観察し、基礎的な知見を得ようとするものである。

研究方法
メダカ、キンギョおよび数種の海産魚の塩類細胞を以下のような手法により、形態・組織学的に検索した。
1）パラフィン切片
2）蛍光色素生体染色
3）走査型電子顕微鏡
結果

1) 広塩性淡水魚

メダカは淡水域に生息する。この種を海水に直接移行すると1〜2日のうちに死亡する。しかし、50〜70％海水には適応し、その後に海水に移行しても死亡することはなく生還をもここなう。生還がおこなわれることは、その環境に完壁に適応した証拠となる。逆に、海水に長期飼育したメダカは淡水に直接戻してもよく適応する。ヒトを含む高等動物の内部環境、すなわち血液の浸透圧は外界の影響を受けずに常に一定に保たれている。すなわち、個々の細胞の環境の恒常性が補償されている。この機構は言うまでもなく、魚類において獲得されたと考えられている。

魚類の血液浸透圧は、鰓、腎臓および腸が機能して調節されている。鰓上皮の塩類細胞は、外界と血液との間において塩分の代謝に関わる特殊な細胞である。メダカの鰓塩類細胞について基礎的な観察をおこなった。淡水で飼育したメダカの鰓を光学顕微鏡切片で観察した。外界に接したやや大型の細胞を、その染色性および形態から塩類細胞とみなし。pitとよばれる陥入部を頭頂部に持つ塩類細胞は、塩分の変動による細胞の活動を反応させることが示されました。塩類細胞は、塩度の変動によって、関連組織の細胞の運動を制御するという可能性がある。それにより、塩類細胞の分化が制御されることが示唆される。pitは、塩類細胞に特異的に結合する蛻光色素DASPEIで生体染色すると、淡水中育成の鰓に反応が認められた。切片と対比して、塩類細胞からのシグナルを観察した。この染色では、塩類細胞の分布を鰓全体にわたり立体的に観察することが可能である。塩類細胞は鰓葉内側および呼吸上皮（鰓薄板）間に認められた。一方、淡水に飼育したメダカにおいては、個々の塩類細胞の数が減少した。ほとんどの塩類細胞にpitが観察された。pitは、機能している塩類細胞を特徴づける構造かも知れない、鰓薄板間では巨大な塩類細胞が単層で外界と血液の境界を形成していた。

メダカを淡水から海水に直接移行し30分後にしらべたところ、多くの塩類細胞にpitが観察され、開口部も淡水分体に比せて開いているようにも見えた。33％希釈海水中でも同様な変化が観察された。海水に飼育させたメダカを淡水に移行すると、塩類細胞はやや短時間で変化した。すなわち、ほとんどのすべての塩類細胞の開口部は走査型電子顕微鏡によっても観察されず、pitもみられなかった。これ以降の経時的観察はまだおこなっていないが、塩類細胞が外部塩濃度の変化
にきわめて短時間に反応して、形態を変えることが明らかになった。このような迅速な反応については、これまでに報告がない。

2) 狭塩性海水魚

メジナ、ゴンザイ、マダイおよびコバルトスズメの鰓をしらべた。海水に飼育させたメダカでの知見から、これらの魚類に多くの塩類細胞の発達が期待された。しかしながら、予想に反し塩類細胞は小型であり数も少なかった。広塩性魚で知られている知見は、幾世代にもわたって海水で生活してきた海水魚には当てはまらないのかかもしれない。淡水・海水の区別なく環境が一定であるなら、適応に関わるエネルギーを最小限にとどめる進化上の工夫があるものと推測される。

本プロジェクトは狭塩性海水魚の鰓をしらべるものであるが、現時点では海水魚自体のデータはまだほとんど得られていない。まず、メダカを中心とした広塩性魚類において基礎的な実験をおこない、これを中心として海水魚を解析する予定である。本プロジェクトはいま進行中である。海産の狭塩性魚類は淡水に適応することができないが、広塩性魚類は淡水にも海水にも適応することができる。この差違がメダカで観察された外界塩濃度に対する塩類細胞の迅速な反応（rapid response）に象徴されるような初期反応の有無によるものかどうかは、今後の課題である。さらに、この種のきわめて迅速な反応に内分泌系、神経系が関われるかどうかについても興味のもとである。