アルビノ・アフリカツメガエル胚に対する微量注射技術を用いた半透明な脳室形態並びに脳室内液流の可視化

松谷武嗣1 茂木和枝2 日野晶也1 小笠原強1,3 竹内重夫1 豊泉龍児1,4

Visualization of the Semitranslucent Brain Ventricle and Its Fluid Flow Using Microinjection Technique for Albino Xenopus laevis Larvae

Takeshi Matsuya1, Kazue Mogi2, Akiya Hino1, Tsuyoshi Ogasawara1,3, Shigeo Takeuchi1 and Ryuji Toyoizumi1,4

1 Department of Biological Sciences, Faculty of Science,
2 Research Institute for Integrated Sciences, and
3 High-tech Research Center, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293, Japan
4 To whom correspondence should be addressed. E-mail: toyo-bio@kanagawa-u.ac.jp

Abstract: In vertebrates, the central nervous system (CNS) develops as a tube called the neural tube. Ependymal cells seal the inner surface of the brain ventricle, and movement of the cilia on the apical surface of the ependymal cells generates fluid flow called cerebrospinal fluid flow. The role of cerebrospinal fluid flow for the process of neurogenesis and regionalization of the CNS remains unveiled. In this study, using albino larvae of Xenopus laevis, we report a new methodology to clearly visualize the semitranslucent morphology of the brain ventricle and patterning of the fluid flow within the cavity during amphibian CNS development. Microinjection of the quantum dot (fluorescent nanocrystal) through the roof plate of the fourth ventricle rapidly and efficiently visualized the whole brain ventricle under fluorescent micrography, enabling us to trace the complicated morphology during development of the third, fourth and lateral ventricles. Microinjection of polystyrene beads (3.1 μm in diameter) into the fourth ventricle also efficiently dispersed into every corner of the brain ventricle. This technique revealed that fluid flow within fourth ventricle displays dorso-ventral asymmetry. In 60% of the embryos examined, the rearward fluid flow within the third ventricle shifted to the left at the dorsal portion of the ventricle, whereas, in the other larvae, it was quite bilateral. These results suggest that fluid flow within the developing CNS is generated by a highly integrated, position-dependent metachronal wave of cilia on ependymal cell surfaces. This report is the first description of left-right asymmetric fluid flow in the brain ventricle of vertebrates, encouraging us to examine the relationships between the laterality of tadpole behavior and left-right asymmetry underlying the molecular anatomy of the developing brain.

Keywords: albino, cerebrospinal fluid flow, nanocrystal, polystyrene beads, left-right asymmetry

序論
脊椎動物の脳の中心部には脳室と呼ばれる腔所があり、脳室は発生初期の脳の形態形成時に出現する。脳室は脳の正常な発生のために必要な構造であり、その形状は発生に伴う脳の部域化と共に変化する。脳室内部は脈絡叢から分泌される脳脊髄液で満たされており、脳室の内表面は皮質の上皮細胞(ependymal cell)で覆われている。脳室の内表面は上皮細胞の表面には繊毛が生えており、その繊毛の運動によって脳脊髄液が一定の速度で
流動することが、ヒト成人の脳室内流液を MRI などの手法で調べた低解像度の研究から指摘されている 
1)。しかしながら、胎児期発生初期の脳室内流液が担
っている機能に関する研究は極めて少ない。脳室内
の流液は、の発生段階から生じ始め、発生の進行に
伴ってどのように変化していくか、また特定の発生
段階において脳室内流液は一定の流動パターンを示す
のか、即ち発生プログラムの制御下にあるのかという
問題については、哺乳類肝を含め、脊椎動物胚全般を
見渡しても殆ど皆無がなす8）。脊椎動物の神経発生に
おける脳室内流液の役割に関する研究が進んでいない
理由のひとつとして、脳室内流液研究の適切な実験モ
デルが確立していないことが挙げられる。このような
背景を踏まえ、我々は、比較的容易に入手可能な両生
類のアフリカツメガエル (Xenopus laevis) のアルビ
ノ幼生の脳領域は比較的透明度が高いことに着目した。
野生型のアフリカツメガエル幼生では、幼生全体の透
明度がなくなる発生段階にメラノフォアでメラニン色
素が合成され、着色したメラノフォアが中枢神経系の
背部を覆うように分布するので脳腔構造の観察が妨げ
られるが、アルビノの幼生ではメラニンが合成されな
いため、野生型幼生よりも高いく頭部の観察に都合が
よい。そこで我々は、ツメガエルのアルビノ幼生の脳
室内に毒性の低い蛍光試薬を注入すれば、生きている
状態で脳腔構造の観察が可能となり、脳室内流液の研
究の良いモデル実験系になると考えた。本研究では、
アルビノのアフリカツメガエル幼生を研究対象として、
生きた個体内での脳室内流液の可視化を行った。研究
の第一段階として、蛍光色素を微量注入し脳室を可視
化することで脳室の発生に伴う形態変化を追跡した。
第二段階として、脳室内流液を可視化することで脳脊
髄液の流動のパターンの調査を行った。
本研究は、神経発生における脳室内流液の役割を解
析するための実験モデルを確立することを志向した萌
芽的研究であり、このような研究の方向性は、脳脊髄
液と相関する水頭症や脊髄空洞症などの病態の理解に
寄与してゆくことが期待される。

材料と方法
アルビノのアフリカツメガエル雌雄成体に、生殖腺剥
激ホルモンである gonadotrophin を皮下注射し雌
400 unit、雄 200 unit）、自然交配により有精卵を得
た。胚が胞肝期に達するまでに、チオグリコール酸溶
液（pH 8.6）で有精卵のゼリー層を除去した後に、人工淡
水である 10% Steinberg 氏液を満たしたシャレ中で
実験に必要とする発生段階（stage 41-48）に達するまで
15～26℃のインキュベーター内で飼育した。発生段階の
同定は、Nieuwkoop と Faber の 1967 年の発生段階表
に従った 10)。

蛍光観察
脳室の標識に使用する蛍光試薬としては、蛍光色素の
FITC-dextran (50mg/ml DDW) と、超微粒子である量
子ドート (nanocrystal) の Qdot655 (Quantum Dot Co.,
USA) 懸濁液を原液（2μM）のまま用いた。stage 41-48
の幼生頭部の脳室内に、これらのいずれか一方を 1 個
体あたり 5nl ずつ注入した。

微量注射
微量注射の際には、10% Steinberg 氏液で希釈した
0.01% MS-222 を注入して全身麻酔をかけ
後、同濃度の MS-222 溶液を満たしたテラサキブ
レット（住友ベークライト製）のウェルとウェルの間隙
に並べ、Drummond 社製の微量注射器（Nanoject）
を用いて、脳室の中で最も広い第 4 脳室の蓋板（roof
plate）を通じて、その後方背側から前方腹側へかけて
正中線上で低角度に注射針を差し込み、蛍光試薬を注
射した。その後、主に注射当日から翌日にかけて蛍
光像を観察した。

ビーズを用いた脳室内流液の可視化
脳脊髄液の流動パターンの観察には、予備実験の結果、
観察に最適と思われた平均直径 3.135±0.146μm の無
着色のポリスチレンビーズ (Polysciences Inc., USA)
の懸濁液を脳室内に注入することで流液を可視化した。
stage 47-48 に達するまで飼育した幼生を主にその手順
で麻酔をかけ、テラサキブレット中に並べ、微量注射
器（Nanoject）を用いて 1 個体あたり 50nl のビーズ
懸濁液 (原液を 20 倍に DDW で希釈) を第 4 脳室内に注
入した。 CCD カメラ装置（ニコン、CCS276B）を装着し
た SXZ12 実体顕微鏡下で、注入したビーズの動きを
観察し、30fps の密度で DVD ディスクに記録し (総合
倍率×250)、コンピュータ上で脳脊髄液の流動パターン
ンを解析した。脳室内に注入したボリステチレンピーズの観察に際しては、SZX12の高級平台（型番SZX-ILLB100）からの透過光と、斜め上方から照射した冷光装置の反射光の2種類の光を当て、ボリステチレンピーズが白く光る状態で、なおかつ脳室形態が判別できるように、双方の光量を調節した。

結果
Qdotで可視化される脳室、脊髄中心管について
FITC-dextranを第4脳室内に注射した幼生では、約60分後には脳室だけではなく中枠神経系全体が緑色の蛍光によって染色された（図1b）。しかし、Qdot655を脳室内に注射した幼生では、注射当日の間は、脳室のみがFITC-dextranよりも強い蛍光強度で鮮明に可視化された（図1d）。注射1日後の蛍光を比較すると、FITC-dextranを注射した幼生では、蛍光が脳組織から滲出し、頭部を中心に全体に広がっていたが、Qdot655を注射した幼生では脳組織内への蛍光の広がりは生じなかった。FITC-dextranに比べて脳組織の外側へのQdot655の滲出は遅かに少なかった（図2a）。以上の結果から、FITCよりもQdotの方が生じたツメガエルアルピノ幼生の脳室形態の観察に適した蛍光ツールであることが明らかになった。

Qdot655注射1日後の幼生では、脳室から脊髄中心管へとラベリングが進行した（図2a）。さらに、Qdot655注射2日後には赤色蛍光が脊髄神経の尾端にまで行き渡っており、しばしば尾端部には特に強い蛍光のスポットが観察された（図2b,c）。FITC-dextranを用いた場合には、注射1日後には頭部を中心に幼生全体に緑色蛍光が散在してしまい、脊髄中心管は後方へ接した頭部側の一部を除き、ラベリングされることかなかった。

次にQdot655注射幼生の生存率を調査した。脳室内にQdot655を注射しMS-222存在下で麻酔したまま観察した幼生を、観察終了後に通常の人工淡水（10%Steinberg氏液）に戻すと、数分後に麻酔から覚醒し、再び遊泳を開始した。Qdot655を注射した幼生を、汲み置き水（約1週間取り置いた水道水）を満たした12穴のボリステチレン製浮遊培養用テストフレーム（岩城硝子製）に1穴につき2個体ずつ静置し、18℃で5日間飼育し、長期生存率を調査した結果、Qdot655を脳室内に注射した幼生は無処理の幼生と比較して生存率は低かったが、注射5日後では注射幼生総数の3分の2にあたる16個体の幼生が生存していた（表1）。Qdot655を注射した個体は、麻酔から覚醒した後、長期飼育中に異常な行動を示すことはなく、Qdotが中枢神経系の機能に悪影響を与えていないことが示唆された。

各発生段階の脳室形態を比較すると、stage41-48で脳室形態が絶え間なく変化している様子が観察された。脳室の前端にある第3脳室は、発生の進行に伴いその容積を拡大していた。stage46になると第3脳室の前端が左右に分離し始め、側脳室が形成され始めているのが観察された（図3d-f）。
表 1. Qdot655 を脳室内に注射した幼生の長期生存率。

<table>
<thead>
<tr>
<th></th>
<th>0日</th>
<th>1日</th>
<th>2日</th>
<th>3日</th>
<th>4日</th>
<th>5日</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qdot655</td>
<td>100%</td>
<td>88%</td>
<td>79%</td>
<td>79%</td>
<td>71%</td>
<td>67%</td>
</tr>
<tr>
<td>無処理</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>92%</td>
</tr>
</tbody>
</table>

上段は生存率、下段は生存数 / 注射幼生数。

図 3. 第 3 脳室とそこから派生する側脳室の形態 (dorsal view). (a) stage 41-42. (b) stage 42-43. (c) stage 44-45. (d) stage 46. (e) stage 47. (f) stage 48 後期。

図 4. 第 4 脳室の形態 (dorsal view). (a) stage 41-42. (b) stage 42-43. (c) stage 44-45. (d) stage 46. (e) stage 47. (f) stage 48 後期。

CNS 後方の脳室である第 4 脳室は、stage 41-42 の幼生では菱形に近い形態をしていたが、発生の進行に伴ってその容積を拡大し、同時に、第 4 脳室の前部は耳状を帯びて楕円形に近い形態へと変化していた (図 4)。さらに、stage 48 の後期には、第 4 脳室の側面に位置する内リンパ囊が肥大成長し、それに圧迫される形で、第 4 脳室の中央部分の両側面に拡げが出来るのは観察された (図 4f)。

脳室内液の流動パターンについて
脳脊髄液の流動パターンは、脳室内に注入したビーズを脳側から観察し、その動きを解析することで可視化することが出来た (図 5)。脳側面からの観察では、頭蓋部の組織の厚みと弯曲に妨げられて、ビーズの動きをトレースすることは殆ど出来なかった。

図 5. 脳室内に注入されたビーズ (dorsal view). (a) 第 3 脳室. (b) 第 4 脳室. 第 4 脳室に微量注入されたビーズが、脳脊髄液の循環によって数日後には第 3 脳室にまで拡散していった。

図 6. 第 3 脳室における脳脊髄液の流動パターンの模式図 (dorsal view). (a) 左右対称の流動を示したケース. (b) 左右対称の流動を示したケース. 3 段に分けて、流動速度のビーズの流れを示している。

第 3 脳室の脳室内液流については、脳室の上層と下層でのビーズの流動パターンに大きな差異は見出されなかった。第 3 脳室底側の蓋板付近中央部では、観察 37 個体のうち 22 個体 (59.5%) でビーズの流れが左右非対称性が観察され、15 個体 (40.5%) で左右対称なビーズの流れが観察された (図 6a)。液流が左右非対称形状を示した 22 個体のうち、21 個体は左寄り (図 5b) の撮影個体、1 個体は右寄りの流動が認められた。また、観察された全ての個体において、第 3 脳室の蓋板付近中央部のビーズ流動速度は、第 3 脳室内の他領域のビーズの流動速度よりも遅かに遅かった。

一方、第 4 脳室および中脳水道では、脳室の上層と下層ではビーズの流動パターンに大きく異なっていた (図 7)。第 4 脳室では、ビーズの流れは左右対称で、脳室の左右対面の脳室壁付近でビーズの流動速度が速く、脳室底に近い下層から盖板に近い上層へとビーズが上昇していた。上層へと移動したビーズは脳室壁、盖板に沿って左右対面から上層中央に移動し、ビーズは正中部分で下層へと下降していた (図 7a)。第 4 脳室下層におけるビーズの流れは、正中線上では直線状に尾部方向へと、その他の領域では後方に流されつつも
図 7. 第 4 腦室・中脳水道における脳脊髄液の流動パターンの模式図 (dorsal view). (a) 腦室の上層でのビーズの流動パターン. (b) 腦室の下層でのビーズの流動パターン. 太い矢印は、移動速度の速いビーズの流れを示している。

左右両側の脳室壁方向に向かうという、主に 2 方向の流れを形成していた (図 7b). 第 4 腦室上層におけるビーズの流れは、左右の脳室壁付近で前方に移動しながら上昇し、上部中央部でビーズがやや後方へ引き戻されながら下降し、この上昇と下降を繰り返しながら、第 4 腦室上層全体としては、ビーズは概ね頭頂方向へと分散していた。

第 4 腦室と第 3 腦室を連絡している中脳水道の部分では、ビーズは蓋板に近い上層部へと直接的に移動し、脳室底に近い下層では尾側方向へと直接的に移動していた。第 4 腦室に注入したビーズは、数十分後には脳室に通じた脳室前部へと分散していたので、狭隘な中脳水道を頭頂方向に向けて流れる液流とビーズが連携して第 3 腦室に効率よく運ばれたと考えられ、ツメガエル幼生の脳内液流が強く速いものであることを示唆している。実際、第 3 腦室や第 4 腦室のビーズ流の運動スピードは 30fps のフレームレートでしきい値を割り増しで観察し、総状の位置関係が変わるものであった。

第 3 腦室背側の左右非対称な脳室内液流の役割

ヒトを含む霧 rencontrerの体は、側頭回やフランス語に近く但非対称性を示し、左側と右側との機能的分野と脳の神経解剖学的な左右非対称性とが密接に関連することが知られている。一方、表生類においては、大脳皮質や脳のうち、間脳背側の神経核である手部核が、変動期幼生や固体において形態的な左右非対称性を示すのが 20 世紀前半から知られていてが 19，在の他の領域に左右非対称性があるか否かに関しては報告がない。また、本研究所で用いたアフリカツメガエルの手部核は、終生左右非対称とする。下等軟骨魚類の手部核の非対称性が報告されていたにもかかわらず、硬骨魚類の脳では、両生類とは異なる終生左右非対称である 20 世紀末まで信じられていた。しかしながら、共焦点レーザー顕微鏡技術の進展に伴い、2000 年ごろから、孵化直後のゼブラフィッシュ幼魚において、手部核の神経回路網が、一過性に左右非対成で肥大し、より緩密になることが報告されている。また、手部核近傍の組織である松果体群を形成する松果体核体も、正中よりも左寄りに位置することが報告されている 18.19.

両生類脳の左半球と右半球との機能的分野の存否については、長らく不明であったが、1990 年代になって、口喚起行動や、幼生の驚愕反応（逃避遊泳活動）などの左右非対称性があることが報告されて、その高次行動に「利き脳」があることが明らかになった 20.21.

しかしながら、これまで「利き脳」の存在が報告され種の多くは、Rana sp. などのリデリス属や Rana sp. の比較的高等な無尾両生類であり、本研究所で用いた Xenopus laevis などの最も下等な水棲無尾両生類であるヒトの種において、利き脳の明快な左右性を示した研究は少ない。

硬骨魚類ゼブラフィッシュにおいては、nodal, lefty (antivin, pitx2）の 3 種類の遺伝子が、孵化直後のごく短期間において、間脳背側の視床脳上部の一領域おそらく
くは手稿編、副松果体の原基を形成する発生枠束を受けて一領域の左側に偏って発現することが1990年代後半以降明らかになっている。しかしながら、両生類Xenopus laevisの幼生においては、その相同遺伝子の発現が左非対称であると報告はない。

以上の如く、現時点では、手稿編が左右非対称なアフリカツメガエルについて、神経解剖学的あるいは分子レベルでの脳の左右非対称性を研究した報告は純粋在状態である。しかしながら、前研究は、アルビノのアフリカツメガエル幼生を材料とした簡便で新しい方法を用いて、両生類の脳室内液を生きた幼生個体内内で可視化することに成功し、その発生半数の個体の第3脳室背側の中央部で左右非対称な脳室内液洗が発現していることを世界で初めて明らかにした。即ち、組織形態で、もはや、液流という第3のメルクマールは、両生類において左右非対称性を示しているのである。両生類の利き脳については、その存在を疑問視する研究者もいるが、液流方向の左右性を変化する方向が見出されれば、脳室内液流が行動の側面に与える影響を定量的に評価することを通じて両生類の利き脳の存在を実験発生学的に明証することが出来ると思われる。

第3脳室内液の流速、その背側領域で、脈絡叢ないし松果体複合体原基になると思われる中央組織を挟んで、後方に向けた後方の液流を形成していた。その中央組織に接近したビーズは、周囲のビーズよりも早くスピードが増し「飛ばされる」様の振る舞いをしていっていたので、この組織の表面に強い繊毛流があると思われた。ヘマトキリン-オニオン染色を施した横断切片を用いた観察から、stage 46-48幼生の、この中央組織の表面には他のがもとに密に繊毛が存在していた（n=3、データは示さず）。近年、ホメオボックスを有する転写因子otx5(orthodenticle homeobox-5)が硬骨魚類ゼブラフィッシュ胚や両生類ツメガエルの松果複合体の分子マーカーとなることが報告されている。今後、otx5をマーカーとして、digoxigenin標識cDNAプロープを用いてin situ hybirdizationを行い、この第3脳室背側の中央組織に松果複合体原基が含まれるか否かについて検討したい。

第3脳室の左右非対称な流速の生理的意義は何であろうか？1998年、野中茂史らは、monociliaの繊毛運動を司るモータータンパク質Kinesin familyのうち、KIF-3Bのノックアウトマウスが内臓逆位を示すことをきっかけに、野生型マウス胚のノード（node、オルガナイザ領域）の腹側の極の表面に左右から左に向けた左右非対称な液流があることを発見し、これをノード液と名付けた。KIFやDynineなどがモータータンパク質としての機能を喪失し、ノード表面のmonociliaの繊毛運動を行わない変異型マウスにおいては、ノード流が大きく弱いか存在せず、その後の体節形成において、左側板のみで発現を示すnodalやpitx2などの遺伝子発現の左右非対称性が乱れることが分かった。従って、ノード領域で生成される左向きの液流が、内臓の左右性を制御するnodalの左側板における発現を誘導し、その後のnodal—pitx2への左側特異的なシグナル伝達経路を活性化し、内臓の左右の向きを規定すると考えられている。上述のように、nodalは、ゼブラフィッシュの間脳一部の背側領域でも左右特異的な発現をする。厳密に言うと、ゼブラフィッシュに3種類あるnodal遺伝子のうちcycllopsのみが左側特異的な発現をする。nodalはTGF-βsuperfamilyに属し、中胚葉誘導活性など多彩な分化誘導活性を有する拡散性の分泌因子Nodalをコードするので33、34、マウスの内臓の左右性決定において、ゼブラフィッシュの脳の左右性決定においても、Nodalが左側組織に向けて選択的に拡散し、そのシグナル伝達経路を左側組織で活性化すると考えられている。しかしながら、一方で、マウスオルガナイザ領域のノード液は、ノードの窪みと、胚を包むライヘル膜（Reichert's membrane）との間を回転運動しているとの観察結果や、ノードの極の部分でカルシウムセンサーが機能し、ノード周辺組織の細胞間カルシウム濃度に左右非対称性が発現されたことなどから、ノード液が拡散性のNodalあるいはGDF-1（Growth Differentiation Factor-1）、Shh（Sonic hedgehog）などの他の分泌因子を左側組織に非対称に運搬することが左右非対称シグナル伝達生成の主要になるのではなく、ノード液によって、左側のカルシウムシグナリングが活性化され、この興奮が左側板に伝わることで左特異的なnodal遺伝子の発現が誘導されるものと考えられている。ノード液の生成を支持する動きを依然として活発である。

孵化直後の脳でnodalが左非対称に発現する時期のゼブラフィッシュ幼生は微小で、脳室が腹側にあり、曲がって細曲しているために観察しにくいため、脳室内液のモニタリングについての報告は昨年ようやく第1報が発表され、CNSから脊髄神経の方向に液流があると記載しているのみである。一方、Xenopusの幼生のアルピノは比較的小さく、ゼブラフィッシュに比べて弱さであり、しかも幼生の脳は扁平で直線に発生するために、脳室内液のバターニングについての、透明度でゼブラフィッシュに比べて弱いから、トルネードでは気泡よりも透明に有利である。更に我々は、結果の的確に前半に記したように、最新のテクノロジーである量子ドット法を用いてやや透明度で劣るツメガエル幼生の脳室を鮮明に可視化することに成
功したので、透明度が低いことから生じる技術的な困難も今後は乗り越えられると思われる。Qdot655の蛻光強度は非常に強く、脳室内にQdotを注入したアルピラクチン幼生に励起光を照射すると、室内照明下で更に蛻光観察（白色光）を同時に照射した状態でも、その赤色蛻光を肉眼で容易に観察できる程度であった。今後は、ポリシルレーズとフラットドットとの混合液の共注射を行い、高速スキャンの可能な共焦点レーザー蛻光顕微鏡と三次元再構成技術を組み合わせて用いて、脳室方向の脳室内液体のより精密な計測を行いたい。

第3節 脳室内の流動に関する我々の観察結果では、ノード流流の特徴のある事実、左へ右への単純で平面的な流動パターンのみではなく、脳室内にコンパクトな閉空室内の複数で三次元的な挾拌運動の中で、一領域の内に左側非対称な流動が観察された。流動のスピードは、その活動の複雑性から計測し難かったが、モニター画面にて第3脳室及び第4脳室を映写された際に、秒毎にビーズがめぐるしく相互の位置を変えていた、動きの復雑さを30fpsのフレームレートでようやく記録できる程度であった。一方、脳室内液体は、想像していたよりも遠かに速い単位の現象であり、仮に、ツメガエル幼生脳において脳室内向けの左右非対称なNodalリガンドの分泌があっただとしても、脳室内では速やかに均一に拡散してしまっていることが予想された。分子レベルではNodal因子よりもやや大きなシグナルと予想される直径約20nmのQdot粒子を第4脳室に注入すると、数分以内に第4脳室ならびに第3脳室や側脳室にまで均一に分布するほど、脳室内流動が速かったことからも、実際の予想は支持される。我々は、現段階では、脳における左右非対称性の分子機構を、マウス脳オルガナイザーにおけるノード流の単純なアノドライで捉えるのは難しいと考えている。脳室内流動のモーダーチェアである脳上室に比較的ルースな単層上皮であることから、我々は、「激しい」脳室内流動が、脳上室細胞を隔てた脳側の脳組織の細胞内外基質の中に、緩やかな左向きの流動を形成し、分泌性因子が脳室内ではなく脳室壁の基底側の基底側方に左向きに拡散する効果をもたらしているとの作業仮説を持つに至った。このアイデアを検証するために、アルピリタメガエル幼生の脳組織中にFITC溶液や量子ドット懸濁液を局所に注入し、その拡散の様子を定量化する必要がある。

第4節 脳室内の流動の役割
第4脳室や中脳水道における、上記のような速く強い脳室内流動の脳室でのパターンの差異については、その生理的意義を推察することが難しい。しかしながら、中枢神経系や脳幹神経の脳室でのパターンには、神経幹底板における分泌因子Sonic hedgehogや最も背側の構造である蓋板におけるBone Morphogenetic Protein（BMP）やDorsalinなどの分泌因子の発現が、一連の神経組織特異的な転写子コード（転写因子群の発現の組み合わせ）を誘導し、それが背側に沿った領域特異的な細胞種の分化につながることの明かになっている。一見すると「速すぎる」第4脳室内の安定した流体パターンは、上皮細胞よりも基底側の脳組織内の組織液に伝え、これを動かすことで流体パターンに沿ったBMPやShhの緩やかな拡散を促し、後部CNSにおける安定した前後・脳室軸分化を支えているのかかもしれない。

中脳・後脳領域の主に前側組織に発現するFGF familyリガンド群は、小脳と中脳の前後軸ならびに領域特異的な組織分化を規定することが明らかになっている。中脳水道におけるシンプルな双方向性の流動は、FGF-8a, 8b, 17などの中脳・後脳領域間の脳組織間を脳室液やFGF因子を添加した培養液中で培養した結果から、脳室壁が「中脳・後脳領域オルガナイザー」の活性を媒介することをParadaら（2005）は報告しているが、これは、上記論の一部を支持する40。

本研究の今後の展開について
今後は、繊毛運動の制御や膜の運動を制御する細胞内カルシウム濃度の調節（カルシウムイオンフロアなど）を用いて、脳室内流動全体を、あるいは局所的に停止させたり乱させたりすることで、中枢神経組織の前後・脳室軸、左右軸に沿った分子マーカーの発現パターンがどのように変化するかを観察したい。その際に、脳室内流動を止めることで低酸素症に応じた病的な遺伝子発現が増強されるように、実験結果の解釈をシンプルになるよう実験的な工夫を加える必要があると予想している。

謝辞
本研究は、共同研究「両生類・幼生の脳形成ににおける脳室内液流の役割の研究」として神奈川大学総合理工学研究科の助成のもとで行いました。所長ならびに所員各位に感謝いたします。

文献

松森、茂木 他: ツメガエル幼生の脳室形態ならびに脳室内流動の可視化 59


