【3.2.1 地震観測結果】成果②

地震動および微動観測記録による地盤振動特性の比較検討

山本俊雄* 荏本孝久* 栗山利男**
*神奈川大学工学部建築学科 **構造計画研究所

1. まえがき
地震動は、震源、伝播経路、地盤構造の影響を受けて相違すると考えられているが、工学基盤と称される基盤層の不整形性やその上部の表層地盤構造や地形・地質に大きく影響を受けると考えられる。したがって、表層地盤の振動特性を把握することが重要な課題となっている。
これまでの研究成果から微動観測によって地盤構造を推定することが行われてきたが、微動から推定される地盤振動特性が観測された地震動特性と十分な整合性があるのかという課題は、現在でも十分には解明されていないのが現状である。
これらの実例を蓄積することにより微動の適用限界などが明らかになることが期待されている。
本報は、このような試みの一環として、地震動および微動観測記録による地盤振動特性の比較検討を実施した。

2. 地震観測の概要
神奈川大学ではキャンパス再開発に伴って、新1号館（地下1階、地上8階：非免震構造）、23号館（地下2階、地上8階：免震構造）が建設された。
この一環として地震観測システムが構築された。
観測システムは両建物内にそれぞれ5箇所（各3成分）と2号館の中間付近の地盤において、地表（G：GL-1.5m）と地中の工学的基盤レベル位置（Gh：GL-21.8m）の2箇所に地震計（各3成分）が設置された。
23号館地下2階に設置した地震計のトリガーにより地震観測システム（72成分）が起動し、地震記録が得られる。
地表・地中の地震計は、サーボ型加速度計（SY-355：東京測振、測定周波数：DC〜100Hz、測定範囲：±2000gal、分解能：約0.001gal）で構成されている。

3. 観測地点の地形・地質・地盤
大学キャンパスは、帷子川左岸の六角橋に位置し台地と谷の境界面で、周囲には小規模な河岸段丘や台地を刻む谷の谷壁が見られる。
図-1に示すように観測地点の北側は西から東に谷底低地が認められ、洪水台地を刻む谷部に当たり、河川の運搬による堆積物が谷を埋め、周囲は宅地造成による盛土が認められる。
地震計の設置地点の地盤調査によれば、GL-10mが表土（N値0〜10）で、GL-10〜19m付近までが相模層群のシルト・細砂（N値14〜50）、それ以深は上総層群の土壌（N値50以上）となる。
4. 地震観測記録による地盤振動特性

表-1 に 2002 年度に観測された地震（16 地震）のリストを示す。

本報では、この中から5 地震 (7/20 : M5.1, 8/28 : M4.0, 9/12 : M3.8, 10/18 : M4.1, 12/8 : M4.6）を対象として地震動特性の検討を行った。

なお、観測成分については、X 成分 (NS 方向)、Y 成分 (EW 方向)、Z 成分 (UD 方向) である。
(1) 伝達関数： 図-2 に地表 (Gs) と地中 (Gb) での観測記録のフーリエスペクトル (X, Y, Z 方向と地表と地中の観測記録のフーリエスペクトル比 (Gs/Gb) により算定した伝達関数 (X, Y, 2D) を示す。 図-2 より、Gs, Gb とも地震により周期特性は異なるが、平均的にはGs の Y 方向に明瞭なピークが認められる。伝達関数で見ると、X, Y 方向で特性が異なり、X 方向で約 0.26 秒、0.08 秒、Y 方向では約 0.23 秒、0.1秒付近にピークが認められる。特に、Y 方向で明瞭であり、工学的基盤浅い表層地盤の卓越周期と考えられる。Z 方向 (上下方向) においては、パラソキがあるが約 0.15 秒付近にピークが認められる。
(2) H/V スペクトル： 図-3 に、地震記録による H/V スペクトル (Gs と Gb) を X, Y 成分および 2 次元水平合成 (202) 成分に区別して算定した結果を示した。Gb(-21.8 m) においても変動するが振幅が小さく Gs の特性とは異なっている。また、Gs では伝達関数（図-2）と同様な特性を示しているが、振幅は伝達関数より小さい。

5. 微動観測結果による地盤振動特性との比較

地震観測結果と比較するため、地震観測地点の地表面で微動観測を実施した。観測方法は、3 成分微動計 (SPC35 : 東京振測) により、100Hz サンプリングで 3 分間の観測を 4 回 (2003年 4月 9～11日) 実施した。
図-4 に各成分のフーリエスペクトルと H/V スペクトル（地震動と同様に成分別）の結果を示した。前者はやや変動が大きいが、後者は地震観測記録に比べピークの明瞭さに欠けるが、周期特性は良く整合し、平均化すると痛観測と微動観測のH/V スペクトルは、ほぼ同様な傾を示していることがわかった。

6. まとめ

地震観測記録と微動観測記録から地盤振動特性を比較した。その結果を以下にまとめる。
① 地震観測記録の伝達関数 (Gs/Gb) は明瞭なピークを示し、表層地盤の卓越周期が得られる。観測地の地形によるものと考えられるが、X 方向と Y 方向で周期特性が異なり、2 成分についても X、Y
図2 地震観測記録による地盤振動特性

一方と周期は異なるが、增幅が認められた。ただし、倍率はX、Y方向に比較して小さい。
②地震観測記録と微動観測記録のI/Vスペクトル比は、個々の観測記録では変動するが、平均的には良い整合し、地震記録による伝達関数に周期特性は対応するが、振幅は小さい。
③地形構造が不整形な場合は地盤振動特性の方向性に注意が必要であり、このような観測地点においては、方向別に検討することも重要となる。

あとがき
本研究は、文部省学術フロンティア・横浜市産学共同研究総合プロジェクト「地震・台風災害の制御・低減に関する研究(TEDCOM)」による。
【参考文献】
1)nakatsuda大規模地震時における地盤波動特性評価のための地震の活用に関する研究、平成5年度～平成7年度・科学研究費補助金(試験研究B-1)、1997.3
図3 地震観測記録によるH/V スペクトル（上段：地表，下段：地中）

図4 微動観測記録による地盤振動特性（上段：フーリエスペクトル，下段：H/V スペクトル）