Convenient Synthesis of Hex-5-enopyranosides

Ken-ichi Sato,* Noriyuki Kubo, Rituko Takada, Amjad Aqeel,† Hironobu Hashimoto,† and Juji Yoshimura†

Laboratory of Organic Chemistry, Faculty of Engineering,
Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221
†Laboratory of Chemistry for Natural Products,
Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227

Hex-5-enopyranosides were prepared in an one-pot procedure from 6-bromo-6-deoxy- or 6-0-tosylhexopyranoside by the successive treatment with iodide anion and 1,8-diazabicyclo-[5.4.0]undec-7-ene in DMSO.

Hex-5-enopyranosides are very useful precursor of such biologically important compounds as 6-deoxy-L-hexose and cyclitol, and have been synthesized by treatment of 6-bromo- or 6-iodo-6-deoxyhexopyranosides with AgF/pyridine, NaH/N,N-dimethylformamide, or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/CH₃CN-benzene. These methods, however, are often accompanied with the formation of such by-products as 6-fluoro-6-deoxy derivatives. We should like to report a facile and effective synthesis of hex-5-enopyranosides from easily available 6-bromo-6-deoxy- and 6-0-tosylhexopyranosides.

\[
\begin{align*}
\text{X=Br, OTs} \\
\text{1) NaI, Bu₄NI, MS 4A} \\
\text{2) DBU/DMSO} \\
\end{align*}
\]

The optimized conditions for this elimination reaction were as follows: A mixture of 6-bromo-6-deoxy or 6-0-tosylhexopyranoside (0.5 mmol), sodium iodide (2.5 mmol), tetrabutylammonium iodide (0.25 mmol) and molecular sieves 4A in dimethyl sulfoxide (DMSO, 10 ml), was stirred at 80-110 °C until the starting hexose disappeared on TLC. After DBU (0.6 mmol) was added, the mixture was stirred at 80 °C until the intermediary 6-iodide disappeared, poured into water (40 ml) and extracted with ethyl acetate several times. The combined organic layer was washed with a small amount of water, dried and evaporated to give crude hex-5-enopyranoside, which was purified by preparative TLC. Under this condition (A in Table 1) five 6-bromo-6-deoxy-α-D-glucopyranosides (1) and α-D-altrohexopyranosides (4-7) and two 6-0-tosyl-α-D-glucopyranosides (2 and 3) gave the expected hex-5-enopyranosides in 84-95% yields.

The addition of the molecular sieves caused a distinct improvement as was not always the case (see the yields under condition B in Table 1, where the reaction
was carried out without molecular sieves 4A). Under the anhydrous conditions
undesired hydrolysis may be prevented especially in the cases of the sluggishly
eliminating substrates. The effect of the substitution with iodide was much more
obvious as shown in the cases of α-D-glucopyranosides 1–3 (see the
yields under condition C in Table 1, where the reaction was carried out without
the iodides and molecular sieves). Thus the method proposed herein may promise
a wide application to the preparation of hex-5-enopyranosides.

Table 1. Yields of hex-5-enopyranosides under different reaction conditions

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>Chemical shift of methylene proton /ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>R¹ R² R³ X</td>
<td>Yields/°</td>
<td>A</td>
</tr>
<tr>
<td>1 Me Me Bz Br</td>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>2 Me Me Bn OTs</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>3 Bz Bz Ac OTs</td>
<td>10</td>
<td>84</td>
</tr>
<tr>
<td>4 OBz OAc Bz Br</td>
<td>11</td>
<td>95</td>
</tr>
<tr>
<td>5 OAc NHAc Bz Br</td>
<td>12</td>
<td>84</td>
</tr>
<tr>
<td>6 H OBz Me Br</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>7 H OBz Bz Br</td>
<td>14</td>
<td>94</td>
</tr>
</tbody>
</table>

References
Hanessian, ibid., 26 279 (1971).
4) F. Chretien, 3rd European Symposium on Carbohydrates, Grenoble, 1985, Abstracts
p.113.
57, 2535 (1984); T. Yasumori, K. Sato, H. Hashimoto, and J. Yoshimura, ibid.,
7) The structures of 5-enopyranosides 8–14 were clearly ascertained by
disappearance of H-5 protons and exocyclic methylene protons on C-6 (see Table
1), which have characteristic small geminal coupling constants, if any.

(Received July 7, 1988)